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4.1 Introduction

In the simplest case, a superconductor is described by a single complex order parame-
ter field. The corresponding field theory has two fundamental length scales, the mag-
netic field penetration depth λ and the characteristic length scale associated with the
order parameter, the coherence length ξ . Their ratio κ determines the response of a su-
perconductor to an external field, sorting them into two categories as follows: type-1
when κ < 1/√2 and type-2when κ > 1/√2. This theory has a critical point at κ = 1/√2
(the Bogomol’nyi point). However, in general, a superconducting state breaks multi-
ple symmetries and is described by a multicomponent theory, characterized by sev-
eral different coherence lengths ξi. As a result, there can appear a state where ξ1 ≤
ξ2. . . < √2λ < ξn ≤ . . .ξm, that has no counterpart in the single-component case.
This state was recently termed “type-1.5” superconductivity. Breakdown of the type-
1/type-2 dichotomy is rather generic near a phase transition between superconducting
states with different symmetries. Examples include the transitions between U(1) and
U(1) ×U(1) states or between U(1) and U(1) × Z2 states. The latter case is realized, for
example, in systems that feature transition between s++/s+− and s+ is states, because
the s+ is state spontaneously breaks time-reversal symmetry.Moreover, certainmulti-
band superconductors that break only a single symmetry are nonetheless described
bymultiband Ginzburg–Landau theory. The extra fundamental length scales have
many physical consequences. In particular, in these regimes vortices can attract one
another at long range but repel at shorter ranges. Such a system can form vortex clus-
ters in lowmagnetic fields.Vortex clustering in the type-1.5 regime gives rise to many
physical effects, ranging from macroscopic phase separation in domains of different
broken symmetries, to unusual phase transitions and transport properties.

Type-1 superconductors expel weak magnetic fields, while strong fields give rise
to macroscopic phase separation in the form of domains of Meissner and normal
states [1, 2]. The response of type-2 superconductors is the following [3]: below some
critical value Hc1, the field is expelled. Above this value a superconductor forms a
lattice or a liquid of vortices which carry magnetic flux through the system. Only at
a higher second critical value, Hc2 is superconductivity destroyed. These different
responses are the consequences of the form of the vortex interaction in these systems,
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134 | 4 Type-1.5 superconductivity

the energy cost of a boundary between superconducting and normal states and the
thermodynamic stability of vortex excitations. In a type-2 superconductor the energy
cost of a boundary between the normal and the superconducting state is negative,
while the interaction between vortices is repulsive [3]. This leads to the formation of
stable vortex lattices and liquids. In type-1 superconductors the situation is the oppo-
site; the vortex interaction is attractive (thus making them unstable against collapse
into one large “giant” vortex), while the boundary energy between normal and super-
conducting states is positive. The ‘ordinary’ Ginzburg–Landau model has a critical
regimewhere vortices do not interact [4, 5]. The critical value of κ in themost common
GL (Ginzburg–Landau) model parameterization corresponds to κ = 1/√2 (often the
factor√2 is absorbed into the definition of coherence length in which case the critical
coupling is κ = 1). The noninteracting regime, which is frequently called the “Bogo-
mol’nyi limit” is a property of the Ginzburg–Landau model where, at κ = 1/√2, the
core-core attractive interaction between vortices exactly cancels the current-current
repulsive interaction [4, 5]. However, in a realistic condensed matter system, even in
the limit κ = 1/√2, there will always be leftover intervortex interactions, appearing
beyond the GL field-theoretic description, from underlying microscopic physics. The
form of that interaction potential is determined not by the fundamental length scales
of the GL theory but by nonuniversal microscopic physics, and it can indeed be non-
monotonic [6]. These microscopic corrections are extremely small. However, they are
relevant in a very narrow window of parameters near κ ≈ 1/√2, where intervortex
forces in GL theory are also very small. By contrast in multicomponent theories type-1
and type-2 regimes are not in general separated by a Bogomol’nyi point.

The Ginzburg–Landau free energy functional for amulticomponent superconduc-
tor has the form

F = 1
2 ∑

i
(Dψi)(Dψi)∗ + V(ψi) + 1

2 (∇ × A)2 , (4.1)

where ψi are complex superconducting components, D = ∇ + ieA, and ψi = |ψi|eiθi ,
a = 1, 2, and V(ψi) stands for effective potential. We consider a general form of the
potential terms but the simplest gradient terms. In general however Equation (4.1) can
be augmented with mixed (with respect to the components ψi) gradient terms, e.g.,
Re[Dα=x,y,zψiDβ=x,y,zψj]. (For more details on the effects of these terms see [7].)

The multiple superconducting components can have various origins. First of all
they can arise in (i) superconducting states which break multiple symmetries. Such
systems are described by several order parameters in the sense of Landau’s theory of
phase transitions, and have different coherence lengths associated with them. Multi-
ple broken symmetries are present even in the simplest generalization of the s-wave
superconducting states: the s+ is superconducting state [8, 9], which breaks U(1)×Z2
symmetry [10]. Likewise, multiple broken symmetries are present in non-s-wave su-
perconductors. Another example ismixtures of independently conserved condensates
such asmodels for the theoretically discussed superconductivity inmetallic hydrogen
and hydrogen-rich alloys [11, 12]. There, ψi represents electronic and protonic Cooper
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pairs or deuteronic condensates. A similar situation was discussed in certain models
of nuclear superconductors in the interior of neutron stars, where ψi represent pro-
tonic and Σ− hyperonic condensates [13, 14].

Another class of multicomponent superconductors is (ii) systems which are de-
scribed bymulticomponent Ginzburg–Landau field theories that do not originate inmul-
tiple broken symmetries. The most common examples are multiband superconduc-
tors [15–17]. In this case, ψi represent superconducting components belonging to dif-
ferent bands. Since a priori there are no symmetry constraints preventing interband
Cooper pair tunneling the theory contains generic terms which describe intercompo-
nent Josephson coupling, η

2 (ψiψ∗
j + ψiψ∗

j ). These terms explicitly break symmetry.
Here the number of components ψi is not dictated by the broken symmetry pattern.
Multicomponent GL expansions can be justified when, for example, SU(N) or [U(1)]N
symmetry is softly explicitly broken down to U(1) [18]. Recently, rigorous mathemati-
cal work has been done on the justification of multicomponent Ginzburg–Landau ex-
pansions [19]. Some generalizations of type-1.5 concepts for the case of p-wave pairing
in multiband systems were discussed in [20].

4.1.1 Type-1.5 superconductivity

Multicomponent systems allow a type of superconductivity that is distinct from type-1
and type-2 [7, 10, 18, 21–26]. It emerges from the following circumstances: Multicom-
ponent GL models have several fundamental scales, namely the magnetic field pene-
tration depth λ andmultiple coherence lengths (characteristic scales of the variations
of the density fields) ξi, which render the model impossible to parameterize in terms
of a single dimensionless parameter κ, thus making the type-1/type-2 dichotomy in-
sufficient for classifying and describing these systems. Rather, in a wide range of pa-
rameters, there is a separate superconducting regime with some coherence lengths
that are larger and some that are smaller than the magnetic field penetration length
ξ1/√2 < ξ2/√2 < . . . < λ < ξM/√2 < . . . < ξN/√2. In that regime a situation is
possible where vortices exhibit long-range attraction (attributable to overlap of “outer
cores”) and short-range repulsion (driven by current-current and electromagnetic in-
teraction) and form vortex clusters coexisting with domains of the two-component
Meissner state [21]. The first experimental works [25, 26] proposed that this state is re-
alized in the two-bandmaterialMgB2. Moshchalkov et al. termed this regime “type-1.5
superconductivity” [25]. Recently, experimental works proposed that this state is real-
ized in Sr2RuO4 [27, 28] and LaPt3Si [29, 30]. A prediction of a (narrow) region of the
type-1.5 state was made for certain interface superconductors [31]. Also it was pointed
out that a generic type-1.5 regime should form in certain iron-based superconductors
near transitions from s to s+ is pairing states [10]. Type-1.5 superconductivity has been
discussed in the context of the quantum Hall effect [32] and neutron stars [33]. For
other recent works on this and related subjects see e.g., [20, 34–43].
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Fig. 4.1: A schematic picture of magnetization curves of type-1, type-2 and type-1.5 superconduc-
tors. The magnetization jump at Hc1 is one of the features of the type-1.5 regime. However, it is not
a state-defining property since a jump can be caused by a number of other reasons (microscopic
corrections, anisotropies etc) in ordinary type-2 superconductors.

In these systems, one cannot straightforwardly use the usual one-dimensional
argument concerning the energy of the superconductor-to-normal state boundary to
classify the magnetic response. First of all, the energy per vortex in such a case de-
pends on whether a vortex is placed in a cluster or not. Formation of a single isolated
vortex might be energetically unfavorable, while formation of vortex clusters can be
favorable, because in a cluster (where vortices are placed in aminimumof the interac-
tion potential), the energy per flux quantum is smaller than that for an isolated vortex.
Besides the energy of a vortex in a cluster, there appears an additional characteristic
associated with the energy of the boundary of a cluster. In other words for systems
with inhomogeneous vortex states there are many different interfaces, some of which
have positive and some negative free energy.

We summarize the basic properties of type-1, type-2 and type-1.5 regimes in Ta-
ble 4.1.

4.2 The two-band Ginzburg–Landau model with arbitrary
interband interactions. Definition of the coherence lengths
and type-1.5 regime

4.2.1 Free energy functional

Realization of the type-1.5 regime requires at least two superconducting components.
In this section we study the type-1.5 regime using the following two-component
Ginzburg–Landau (TCGL) free energy functional.

F = 1
2 (Dψ1)(Dψ1)∗ + 1

2 (Dψ2)(Dψ2)∗ − νRe{(Dψ1)(Dψ2)∗} + 1
2 (∇ × A)2 + Fp (4.2)

Here D = ∇ + ieA, and ψi = |ψi|eiθi , i = 1, 2, represent two superconducting com-
ponents. While, in general, two components can have different critical temperatures,
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Table 4.1: Basic characteristics of bulk clean superconductors in type-1, type-2 and type-1.5 regimes.
Here the most common units are used in which the value of the GL parameter which separates type-
1 and type-2 regimes in a single-component theory is κc = 1/√2. Magnetization curves in these
regimes are shown in Figure 4.1

Single-
component type-1

Single-
component type-2

Multi-component type-1.5

Characteristic
lengths scales

Penetration
length λ & co-
herence length ξ
( λ

ξ < 1
√2

)

Penetration
length λ & co-
herence length ξ
( λ

ξ > 1
√2

)

Multiple characteristic density vari-
ations length scales ξi, and pene-
tration length λ, the nonmonotonic
vortex interaction occurs in these
systems in a large range of parame-
ters when ξ1 ≤ ξ2 ≤ . . . < √2λ <
ξM ≤ . . . ≤ ξN

Intervortex
interaction

Attractive Repulsive Attractive at long range and repul-
sive at short range

Energy of su-
perconducting/
normal state
boundary

Positive Negative Under quite general conditions neg-
ative energy of superconductor/
normal interface inside a vortex clus-
ter but positive energy of the vortex
cluster’s boundary

The magnetic
field required to
form a vortex

Larger than the
thermodynamical
critical magnetic
field

Smaller than the
thermodynamical
critical magnetic
field

In different cases either (i) smaller
than the thermodynamical critical
magnetic field or (ii) larger than
the critical magnetic field for single
vortex but smaller than the critical
magnetic field for a vortex cluster of
a certain critical size

Phases in ex-
ternal magnetic
field

(i) Meissner state
at low fields,
(ii) Macroscopi-
cally large normal
domains at ele-
vated fields. First-
order phase tran-
sition between
superconducting
(Meissner) and
normal states

(i) Meissner state
at low fields,
(ii) vortex lattices/
liquids at larger
fields. Second-
order phase tran-
sitions between
Meissner and
vortex states and
between vortex
and normal states
at the level of
mean-field theory.

(i) Meissner state at low fields,
(ii) Macroscopic phase separation
into vortex clusters coexisting with
Meissner domains at intermediate
fields, (iii) Vortex lattices/liquids
at larger fields. Vortices form via a
first-order phase transition. The tran-
sition from vortex states to normal
state is second order.

Energy E(N)
of N-quantum
axially sym-
metric vortex
solutions

E(N)
N < E(N−1)

N−1
for all N. Vortices
collapse onto a
single N-quantum
mega-vortex

E(N)
N > E(N−1)

N−1 for
all N. N-quantum
vortex decays
into N infinitely
separated single-
quantum vortices

There is a characteristic number Nc
such that E(N)

N < E(N−1)
N−1 for N < Nc,

while E(N)
N > E(N−1)

N−1 for N > Nc. N-
quantum vortices decay into vortex
clusters.
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in the simplest case, the two-band superconductor breaks only U(1) symmetry. Then
Equation (4.2) can be obtained as an expansion of the free energy in small gaps and
small gradients [17, 18, 44–47]. Such an expansion should not be confused with the
simplest expansion in a single small parameter τ = (1 − T/Tc) that yields only one or-
der parameter for a U(1) system and neglects the second coherence length. The mul-
tiparameter expansions that are not based on symmetry are justified under certain
conditions [18, 47]. Indeed the existence of two bands in a superconductor by itself is
not a sufficient condition for a superconductor to be described by a model like (4.2),
with two well-defined coherence lengths. For discussion of the applicability condi-
tions of the theory (4.2) for two-band U(1) systems see [18, 23]. Note that, in a gen-
eral two-band expansion, the terms corresponding to one component can be larger
than terms contributed by another component. However, as will be clear below, for
the discussion of typology of superconductors, the relevant parameters are charac-
teristic length scales associated with the exponential laws at which field components
restore their ground state values away from a perturbation such as a vortex core (i.e.,
the coherence lengths). Indeed a component with smaller amplitude can give rise to a
longer coherence length that is important for intervortex interaction, and should not be
discarded based merely on the smallness of amplitude |ψi|. In principle, for the com-
ponent with larger amplitude, one can keep higher power terms in the GL expansion
such as |ψi|6, etc. These terms lead to some corrections to the two coherence lengths,
while not affecting the overall form of intervortex forces. Typically these terms can be
neglected. This can be seen from the comparison of vortex solutions in the GL formal-
ism and in a microscopic model without GL expansion [18].

We begin with the most general analysis by considering the case where Fp can
contain an arbitrary collection of nongradient terms, or arbitrary power represent-
ing various inter- and intraband interactions. Belowwe show how three characteristic
length scales are defined in this two-component model (two associated with density
variations and the London magnetic field penetration length).

The only vortex solutions of the model (4.2) which have finite energy per unit
length are the integer N-flux quantum vortices which have the following phase wind-
ings along a contour l around the vortex core: ∮l ∇θ1 = 2πN,∮l ∇θ2 = 2πN, which
can be denoted as (N, N). Vortices with differing phase windings (N,M) carry a frac-
tional multiple of the magnetic flux quantum and have energy divergent with the sys-
tem size [48], which, under usual conditions, makes them irrelevant for the physics of
magnetic response.

In what follows, we investigate only the integer flux vortex solutions, which are
the energetically cheapest objects to produce by means of an external field in a bulk
superconductor. Note that since this object is essentially a bound state of two vortices,
it in general will have two different co-centered cores.
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4.3 Coherence lengths and intervortex forces at long range in
multiband superconductors

In this section we give a criterion for attractive or repulsive force between well-
separated vortices in system (4.2) and show how it can be determined purely by
analyzing Fp and how three fundamental length scales can be defined in the model
(4.2) following [7, 22, 49]. We also discuss the condition for nonmonotonic intervor-
tex forces. Below we will analyze system (4.2) in the case ν = 0 but for an arbitrary
effective potential. Detailed discussion of the effects of mixed gradient terms can be
found in [7]. By gauge invariance, Fp may depend only on |ψ1|, |ψ2| and δ = θ1 − θ2.
We consider the regime when Fp has a global minimum at some point other than the
one with |ψi| = 0, namely at (|ψ1|, |ψ2|, δ) = (u1, u2, 0) where u1 > 0 and u2 ≥ 0 (for
discussion of phase-separated regimes see [42]). Then themodel has a trivial solution,
ψ1 = u1, ψ2 = u2, A = 0, (i.e., the ground state). Here we are interested in models
that support axially symmetric single-vortex solutions of the form

ψi = fi(r)eiθ , (A1, A2) = a(r)
r (− sin θ, cos θ) (4.3)

where f1, f2, a are real profile functions with boundary behavior fi(0) = a(0) = 0,
fi(∞) = ui, a(∞) = −1/e. No explicit expressions for fi , a are known, but, by ana-
lyzing the system of differential equations they satisfy, one can construct asymptotic
expansions for them at large r, see [7, 22].

At large r from the vortex in the model (4.2) the system recovers (up to exponen-
tially small corrections) the ground state. In fact, the long-range field behavior of a
vortex solution canbe identifiedwith a solution of the linearization of themodel about
the ground state, in the presence of appropriate point sources at the vortex positions.
This idea is explained in detail for single component GL theory in [50]. A common
feature of topological solitons (vortices being a particular example) is that the forces
they exert on one another coincide asymptotically (at large separation) with those be-
tween the corresponding point-like perturbations (point sources) interacting via the
linearized field theory [51]. For (4.2), the linearizationhas one vector (A) and three real
scalar (ϵ1 = |ψ1|−u1, ϵ2 = |ψ2|−u2 and δ) degrees of freedom. The isolated vortex so-
lutions have, by definition within the ansatz we use, δ ≡ 0 everywhere. Note that the
GL system may also possess nonaxially symmetric solutions, such as vortex clusters,
and for these there is no reason why δ should vanish everywhere and in fact it does
not [24]. However, below we first consider long-range intervortex forces within lin-
ear approximation where these effects are neglected. In this case, for a single vortex,
we can use an axially symmetric ansatz. Hence we have no source for δ, so we can set
δ = 0 in the linearization, which becomes

Flin = 1
2 |∇ϵ1|2 + 1

2 |∇ϵ2|2 + 1
2 (ϵ1

ϵ2
) ⋅H(ϵ1

ϵ2
)+ 1

2 (∂1A2 − ∂2A1)2 + 1
2 e

2 (u21 + u22) |A|2 .
(4.4)
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Here,H is the Hessian matrix of Fp(|ψ1|, |ψ2|, 0) about (u1, u2), that is,
Hij = ∂2Fp

∂|ψi |∂|ψj|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(u1 ,u2,0) . (4.5)

Note that, in Flin, the vector potential field A decouples from the scalar fields ψi. This
mode mediates a repulsive force between vortices (originating in current-current and
magnetic interaction) with decay length which is the London magnetic field penetra-
tion length λ = 1/μA, where μA is the mass of the field, that is,

μA = e√u21 + u22 . (4.6)

By contrast, the scalar fields ϵ1, ϵ2 are, in general, coupled (i.e., the symmetric
matrixH has off-diagonal terms). To remove the cross-terms one should find a proper
linear combination of the fields that correspond to normal modes of the system. To
this end we make a linear redefinition of fields, expanding (ϵ1, ϵ2)T with respect to
the orthonormal basis for ℝ2 formed by the eigenvectors v1, v2 ofH,

(ϵ1, ϵ2)T = χ1v1 + χ2v2 . (4.7)

The corresponding eigenvalues μ21, μ
2
2 are necessarily real (sinceH is symmetric) and

positive (since (u1, u2) is a minimum of Fp), and hence

Flin = 1
2

2∑
a=1

(|∇χi|2 + μ2i χ
2
i ) + 1

2
(∂1A2 − ∂2A1)2 + 1

2
e (u21 + u22) |A|2 . (4.8)

The scalar fields χ1, χ2 describe linear combinations of the original density fields. The
new fields recover ground state values at different characteristic length scales. The
characteristic length scales are nothing but coherence lengths which are given by the
inverse of μi

ξ1 ≡ 1/μ1 , ξ2 ≡ 1/μ2 (4.9)

respectively. Note that here and below we absorb a factor 1/√2 in the definition of co-
herence length. Each of these fields defines a vortex core of some characteristic size
thatmediate an attractive force between vortices at long range. In terms of the normal-
mode fields χ1, χ2 and A, the composite point source which must be introduced into
Flin to produce field configurations identical to those of the vortex asymptotics is

κ1 = q1δ(x) , κ2 = q2δ(x) , j = m(∂2, −∂1)δ(x) , (4.10)

where κ1 is the source for χ1, κ2 the source of χ2, j the source for A, δ(x) denotes the
two-dimensional Dirac delta function and q1, q2 and m are unknown real constants
which can, in principle, be determined numerically by a careful analysis of the vor-
tex asymptotics. Physically, a vortex, as seen from a long distance can be thought of
as a point particle carrying two different types of scalar monopole charge, q1, q2, in-
ducing fields of mass μ1, μ2 respectively, and a magnetic dipole moment m oriented

Unauthenticated
Download Date | 10/10/17 9:41 AM



4.3 Coherence lengths and intervortex forces at long range | 141

orthogonal to the x1x2 plane, inducing a massive vector field of mass μA ≡ (√2λ)−1.
The interaction energy experienced by a pair of point particles carrying these sources,
held distance r apart, is easily computed in linear field theory. For example, two scalar
monopoles of charge q inducing fields of mass μ held at positions y and ỹ inℝ2 expe-
rience interaction energy

Eint = − ∫
ℝ2

κχ̃ = − ∫
ℝ2

qδ(x − y) q
2π K0(μ|y − ỹ|) = − q2

2π K0(μ|y − ỹ|) (4.11)

where κ is the source for the monopole at y, χ̃ is the scalar field induced by the
monopole at ỹ [50] and K0 denotes the modified Bessel’s function of the second kind.
The interaction energy for a pair of magnetic dipoles may be computed similarly. In
the case of our two-component GL model, the total long-range intervortex interaction
energy has three terms, corresponding to the three sources in the composite point
source (4.10), and turns out to be

Eint = m2

2π K0(μAr) − q21
2π K0(μ1r) − q22

2π K0(μ2r) . (4.12)

Note that, the first term in this formula, which originates in magnetic and current-
current interaction, is repulsive, while the other two are associated with core-core
interactions of two kinds of cores and are attractive. The linearized theory does not
contain information about the prefactors q1, q2 and m. However, they can be deter-
mined numerically from the full nonlinear GL theory. At very large r, Eint(r) is domi-
nated by whichever term corresponds to the smallest of the three masses, μA, μ1, μ2,
so to determine whether vortices attract at long range, it is enough to compute just
these masses. The generalization to the case with a larger number of components is
straightforward: additional coherence lengths give additional contributions to attrac-
tive interaction in the form − q2i

2π K0(μir). Generalizations to multiple repulsive length
scales in layered systems or caused by stray fields were discussed in [38]. In thin films,
intervortex interaction acquires also 1/r repulsion at long range due to the magnetic
field outside the sample, similarly to the single-component case [52].

Consider the case where the long-range interaction is attractive due to ξ1 > λ > ξ2
being the largest length scale of the problem. For the existence of short-range repulsive
but long-range attractive interaction it is required that m2 is sufficiently large. This
criterion is equivalent to the condition that the system has a solution with negative
free energy interfaces in external fields [7, 22, 49]. Indeed when the interface energy is
always positive, the system exhibits type-1 behavior: i.e., tends to form a single vortex
with high winding number. If there are interfaces with negative energy in the external
field, the system tends to maximize these interfaces. In the type-1.5 regime the system
forms vortex clusters, where it maximizes the number of vortex cores inside the vortex
clusters. At the same time the systemminimizes the interface of the cluster itself (that
costs positive energy).
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To summarize, the nature of intervortex forces at large separation in the model
under consideration, can be determined purely by analyzing Fp: one finds the ground
state (u1, u2) and the Hessian H of Fp about (u1, u2). From this one computes the
mass of the vector field A, μA = e√u21 + u22 (i.e., the inverse of the magnetic field pene-
tration length), and themasses μ1, μ2 of the scalar normal modes (i.e., the inverses of
the coherence lengths), these masses being the square roots of the eigenvalues ofH. If
either (or both) of μ1, μ2 are less than μA, then the dominant interaction at long range
is attractive (i.e., the vortex core extends beyond the area where the magnetic field is
localized), while if μA is less than both μ1 and μ2, the dominant interaction at long
range is repulsive. The special feature of the two-componentmodel is that the vortices
whose core extends beyond the magnetic field penetration length are thermodynam-
ically stable in a range of parameters and, moreover, one can have a repulsive force
between the vortices at shorter distances where the system has thermodynamically
stable vortex solutions [7, 22, 49]. It is important to stress that length scales μ−11 , μ−12
are not directly associated with the individual condensates ψ1, ψ2. Rather they are
associated with the normal modes χ1, χ2, defined as [7, 22]

χ1 = (|ψ1| − u1) cosΘ − (|ψ2| − u2) sinΘ , χ2 = −(|ψ1| − u1) sinΘ − (|ψ2| − u2) cosΘ .
(4.13)

These may be thought of as rotated (in field space) versions of ϵ1 = |ψ1| − u1, ϵ2 =|ψ2|−u2. Themixing angle, that is, the angle between the χ and ϵ axes, is Θ, where the
eigenvector v1 ofH is (cosΘ, sinΘ)T. This, again, can be determined directly fromH.

Note also that the shorter of the length scales μ−11 , μ−12 , although being a funda-
mental length scale of the theory, can be masked in a density profile of a vortex so-
lution by nonlinear effects. This, for example certainly happens if μ−11 ≪ μA ≡ λ−1

(see short discussion in Ref. [22]). Also note that in general the minimum of the inter-
action potential will not be located at the London penetration length, because it will
in general also be affected by nonlinearities. From this discussion it follows that, in
general, one cannot drop the subdominant component based on comparison of the
ground state values of the amplitudes of |ψi | in the GL expansion. Namely, the long-
range interaction can be determined by a mode with smaller amplitude. The formal
justification of the multiband GL expansion can be found in [18].

4.4 Critical coupling (Bogomol’nyi point)

In single-component superconductors, the type-1 and type-2 regimes are separated by
aBogomol’nyi point κ = 1 (note that abovewe absorbed the factor 1/√2 into the def-
inition of coherence length). At that point, vortices do not interact, the free energy of
normal-to-superconductor interfaces is zero andwehaveHc1 = Hc2 = Hc [5, 51, 53, 54].
This regime is referred to as the “critical point” because of the saturation of the Bogo-
mol’nyi inequality [5, 51, 53–56]. Thenecessary, but not sufficient, conditions for a crit-
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ical point is lack of intervortex forces at long range within the linear approximation.
To that end, all modes excited in a vortex solutionmust have equalmasses μi and am-
plitudes. FromEquation (4.12) it is obvious that for amulticomponent superconductor
it requires fine tuning and, in general, type-1 and type-2 regimes are not separated by
a critical point. Furthermore, from the section on microscopic theory below, it is clear
that in general μ1 and μ2 (as functions of the system’s parameters) do not cross but
form an avoided crossing. Thus, in the two-component case the Bogomol’nyi critical
point is a zero-measure parameter set which requires special symmetry of the model.
Such fine tuning for a composite vortex can be achieved in a U(1) × U(1) system with
a potential that is symmetric with respect to both components

Fp = −α|ψ1|2 + β
2 |ψ1|2 − α|ψ2|2 + β

2 |ψ2|2 (4.14)

For a standard form of gradient terms, this potential gives equal coherence
lengths. The Bogomol’nyi point is realized when ξ1 = ξ2 = λ. Just like in a single-
component system, vortices donot interact in this regime. In single-component super-
conductors with κ ≈ 1, a substantial literature was devoted to intervortex interactions
that appear beyond Ginzburg–Landau field theory in microscopic theory [6, 57, 58].
As follows from the microscopic theory of multiband systems [23], these effects are in
general negligible for the type-1.5 regime. The microscopic theory [23] confirms that
the physics behind the vortex interaction in the type-1.5 regime is dominated by the
same mechanism as in the GL model: density-density interaction caused by a large
“outer core” due to a disparity in coherence lengths.

4.5 Microscopic theory of type-1.5 superconductivity in U(1)
multiband case

In this section we briefly outline microscopic theory of type-1.5 superconductivity in
the particular case of multiband superconductors that break only U(1) symmetry. In
this case existence of multiple coherence lengths does not follow from symmetry and
has to be justified. A reader who is interested in more general cases of higher symme-
try breaking as well as the general properties of the type-1.5 state can skip this discus-
sion and proceed directly to the next section. Existence of multiple superconducting
bands is not a necessary condition for appearance of multiple coherence lengths [23].
The appearance of multiple coherence lengths and a type-1.5 regime in multiband-
band superconductors was described using microscopic theory at all temperatures,
without relying on GL expansions in [23]. We refer a reader, interested in a full micro-
scopic theory that does not rely on GL expansion to that work, while here we focus on
microscopic justification of GL expansion.

As discussed above, inmultiband systems, in general multicomponent GL expan-
sions are not based on symmetry. Therefore, obviously it cannot be obtained as an
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expansion in a single small parameter τ = 1 − T/Tc. Instead such expansions are jus-
tifiedwhen the systemhasmultiple small parameterswhich are not symmetry-related.
In the simplest case these are multiple small gaps in different bands, small gradients,
and small interband coupling constants. A single-parameter-τ expansion emerges as
a single-component reduction of the model in the τ → 0 limit for a system that breaks
only U(1) symmetry [18].

In this sectionwe focuson the two-bandcase and consider themicroscopic deriva-
tion of the two-component GL model (TCGL):

F = ∑
j=1,2

(aj|∆j|2 + bj
2

|∆j|4 + Kj|D∆j |2)
− γ (∆1∆∗2 + ∆2∆∗1) + B2

8π
(4.15)

where D = ∇+ iA, A and B are the vector potential andmagnetic field and ∆1,2 are the
gap functions in two different bands.

4.5.1 Microscopic Ginzburg–Landau expansion for U(1) two-band system

To verify applicability of TCGL theory we consider the microscopic model of a clean
superconductor with two overlapping bands at the Fermi level [18, 23]. Within quasi-
classical approximation the band parameters characterizing the two different cylin-
drical sheets of the Fermi surface are the Fermi velocities VFj and the partial densities
of states (DOS) νj, labeled by the band index j = 1, 2.

It is convenient to normalize the energies to the critical temperature Tc and length
to r0 = ℏVF1/Tc. The vector potential is normalized by ϕ0/(2πr0), the current den-
sity normalized by cϕ0/(8π2r30) and therefore the magnetic field is measured in units
ϕ0/(2πr20) where ϕ0 = πℏc/e is the magnetic flux quantum. In these units the Eilen-
berger equations for quasiclassical propagators take the form

vFjnpDfj + 2ωnfj − 2∆jgj = 0 ,
vFjnpD∗f+j − 2ωnf+j + 2∆∗j gj = 0 .

(4.16)

Here vFj = VFj/VF1, ωn = (2n + 1)πT are Matsubara frequencies, the vector np =(cos θp, sin θp) parameterizes the position on 2D cylindrical Fermi surfaces. The
quasiclassical Green’s functions in each band obey the normalization condition
g2j + fj f+j = 1.

The self-consistency equation for the gaps is

∆i = T
Nd∑
n=0

2π∫
0

λijfjdθp . (4.17)

The coupling matrix λij satisfies the symmetry relations n1λ12 = n2λ21 where ni are
the partial densities of states normalized so that n1 + n2 = 1. The vector potential
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satisfies the Maxwell equation ∇ × ∇ × A = j where the current is

j = −T ∑
j=1,2

σj
Nd∑
n=0

Im
2π∫
0

npgjdθp . (4.18)

The parameters σj are given by σj = 4πρnjvFj and

ρ = (2e/c)2(r0VF1)2ν0 .
Here we briefly outline the derivation of the TCGL functional (4.15) from the

microscopic equations following [23]. First we find the solutions of the Eilenberger
equations (4.16) in the form of the expansion by the gap functions amplitudes |∆1,2|
and their gradients |(npD)∆1,2|. Then these solutions are substituted to the self-
consistency equation (4.17). Using this procedure we find the solutions of Equations
(4.16) in the form:

fj = ∆j
ωn

− |∆j|2∆j
2ω3

n
− vFj
2ω2

n
(npD)∆j + v2Fj

4ω3
n
(npD)(npD)∆j , (4.19)

and f+j (np) = f∗j (−np). Note that this GL expansion is based on neglecting the higher
order terms in powers of |∆| and |(npD)∆|. Indeed this approximation naturally fails
in a number of cases. The regimes when it can be justified were determined in the
work [18] by a direct comparison to the full microscopic model. Let us determine mi-
croscopic coefficients in the GL expansion. Substituting to the self-consistency equa-
tions (4.17) and integrating by θp we obtain

∆1 = (λ11∆1 + λ12∆2)G + (λ11GL1 + λ12GL2) (4.20)
∆2 = (λ21∆1 + λ22∆2)G + (λ21GL1 + λ22GL2) (4.21)

where

G = 2
Nd∑
n=0

πT
ωn

; X = ∑
n=0

πT
ω3
n

(4.22)

GLj = X( v2Fj
4 D2∆j − |∆j |2∆j) (4.23)

Expressing GLi from the equations above we obtain

n1GL1 = n1 ( λ22
DetΛ̂

− G) ∆1 − λJn1n2
DetΛ̂

∆2 (4.24)

n2GL2 = n2 ( λ11
DetΛ̂

− G) ∆2 − λJn1n2
DetΛ̂

∆1 (4.25)
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The system of two coupled GL Equations (4.24) can be obtained minimizing the free
energy provided the coefficients in Equation (4.15) are given by

ai = ρni(λ̃ii + ln T − Gc)
γ = ρn1n2λJ/DetΛ̂
bi = ρniX/T2
Ki = v2Fibi/4

(4.26)

where λJ = λ21/n1 = λ12/n2. Note that the expression for Ki in Ref. [18] has an extra
coefficient ρ. The temperature is normalized to Tc. Here X = 7ζ(3)/(8π2) ≈ 0.11,
λ̄ij = λ−1ij and Gc = G(Tc) is determined by the minimal positive eigenvalue of the
inverse coupling matrix λ̂−1:

Gc = Trλ − √Trλ2 − 4Detλ
2Detλ .

We have used the expression G(T) = G(Tc) − ln T. Near the critical temperature ln T ≈−τ and we obtain
ai = αi(T − Ti) (4.27)
αi = niλJ (4.28)
Ti = (1 + Gc − λ̃ii) . (4.29)

In the above procedure of GL expansion leading to system (4.24) we assumed both
the eigenvalues of the coupling matrix λ̂ are positive.

4.5.2 Temperature dependence of coherence lengths

Coherence lengths are given by the inverse masses of linear modes. First we investi-
gate the asymptotic behavior of the superconducting gaps formulated in terms of the
linear modes of the density fields both in TCGL andmicroscopic theories described in
the previous section. To find the linear modes we follow the procedure described in
Section 4.3 using the GL model with expansion coefficients (4.26). Let us set K1 = K2
which can be accomplished by rescaling the fields ∆1,2. Then the corresponding Hes-
sianmatrix (4.5) can be diagonalized with the k-independent rotation introducing the
normal modes χβ = Uβi(∆i − ∆i0)where β = L, H and i = 1, 2. The rotation matrix Û is
characterized by the mixing angle [7, 23] as follows:

Û = ( cos θL sin θL− sin θH cos θH
) (4.30)

Note that in accordance with the results of section (4.3) the TCGL theory yields identi-
cal values of two mixing angles θL = θH = Θ. However, in general, outside the region
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(a)

(c)

(b)

(d)

Fig. 4.2: (a) and (b) Comparison of field masses (inverse coherence lengths) given by full micro-
scopic (solid lines), and microscopically derived TCGL (dotted) theories. The microscopic parameters
are λ11 = 0.5, λ22 = 0.426 and λ12 = λ21 = 0.01; 0.1 for (a,b) respectively. The yellow shaded
region above the dashed-dotted line shows the continuum of length scales determined by branch-
cut contributions which are specific to the microscopic theory and are not captured by the TCGL
description. (c,d) Comparison of mixing angle behavior given by the exact microscopic (red lines)
and microscopically derived TCGL theories (blue line). Note that the larger coherence length has a
maximum as a function of temperature deep below Tc near the crossover to the regime when the
weak band superconductivity is induced by an interband proximity effect (the corresponding inverse
quantity μL has a minimum). This nonmonotonic coherence length behavior is more pronounced
at weak interband coupling and disappears at strong interband coupling [23]. A multiband system
with weak interband interaction can easily fall into the type-1.5 regime near that crossover tempera-
ture. Panels (b) and (d) show how the TCGL theory starts to deviate from microscopic theory at lower
temperatures when interband coupling is increased. Parameters are the same as on panels (a,b)
respectively.

where GL expansion is accurate, the exact microscopic calculation yields deviations
θH ̸= θL. This is discussed in Ref. [18].

The fields χL,H corresponding to the linear combinations of ∆1,2 vary at distinct
lengths: ξH = 1/μH and ξL = 1/μL. They constitute coherence lengths of the TCGL
theory (4.15) and characterize the asymptotic relaxation of the linear combinations of
the fields ∆1,2, the linear combinations are represented by the composite fields χL,H.

With the help of Equations (4.26) for GL coefficients obtained from microscopic
theory we can study the temperature dependencies of the coherence lengths char-
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acterizing the asymptotic relaxation of the gap fields. Since the system in question
breaks only one symmetry, then at critical temperature only one coherence length can
diverge while the second coherence should stay finite. Infinitesimally close to critical
temperature T = Tc − 0 the divergent coherence length has the following standard
mean-field behavior ξL = 1/μL ∼ 1/τ1/2, where τ = 1 − T/Tc. The contribution of
another linear mode in the theory sets the scale which is proportional to ξH = 1/μH
and remains finite even at T = Tc. But the amplitude of this mode rapidly vanishes
in the region T = Tc − 0. Similar behavior can be derived directly in a full micro-
scopic calculation [18]. In Figure 4.2a, b the temperature dependence ofmasses μL,H is
plotted comparing the results of the full microscopic [23] andmicroscopically derived
TCGL theories [18]. It is shown for the cases of weak and strong interband coupling
in Figure 4.2c, d. We have found that TCGL theory describes the lowest characteristic
mass μL(T) with a very good accuracy near Tc (compare the blue and red curves in
Figure 4.2a, b). Remarkably, when interband coupling is relatively weak (Figure 4.2c)
the “light” mode is quite well described by TCGL also at low temperatures down to
T = 0.5Tc aroundwhich the weak band crosses over from active to passive (proximity-
induced) superconductivity. Indeed the τ parameter is large in that case. Nonetheless,
if the interband coupling is small one does have a small parameter to implement a GL
expansion for one of the components. Namely, one can still expand, e.g., in the powers
of the weak gap |∆2|/πT ≪ 1. Conversely, for the “heavy” mode we naturally obtain
some discrepancies even relatively close to Tc, although TCGL theory gives a quali-
tatively correct picture for this mode when the interband coupling is not too strong.
More substantial discrepancies between TCGL and microscopic theories appear only
at lower temperatures or at stronger interband coupling (Figure 4.2d) where the mi-
croscopic response function has only one pole, while TCGL theory generically has two
poles. Note that these expected deviations concern shorter range physics and do not
directly affect long-range intervortex forces. In the type-1.5 regime long-range attrac-
tive forces are governed by core-core interaction whose range is set by the larger co-
herence length (lighter mode). The long-range attractive forces here are similar to the
long-range forces in type-1 superconductors, while short-range forces are similar to
those in type-2 superconductors. These interactions are obviously principally differ-
ent from microscopic-physics-dominated intervortex forces in superconductors near
the Bogomol’nyi point. Most clearly that can be distinguished within the microscopic
theory [23].

The microscopic two-band GL expansion discussed in this section has a straight-
forward generalization to N-component expansions in N-band U(1) models [47], as
well as tomore complicated states suchas s+ is that breakmultiple symmetries [9, 47].

Unauthenticated
Download Date | 10/10/17 9:41 AM



4.7 Structure of clusters in the type-1.5 regime in a two-component superconductor | 149

4.6 Systems with generic breakdown of type-1/type-2 dichotomy

The simplest situationwhere the type-1/type-2dichotomygenerically doesnothold are
superconducting systems that exhibit a phase transition from the U(1) to U(1) × U(1)
state (or similar transitions between the states with broken higher symmetries), such
as the theoretically discussed superconducting states of liquid metallic hydrogen or
deuterium [11], or models involving mixture of protonic and Σ− hyperonic conden-
sates in neutron stars [13]. Indeed at such a transition the magnetic field penetration
length remains finite but there is a divergent coherence length due to the breakdown
of additional symmetry (if the phase transition is continuous). Also the mode associ-
ated with the divergent coherence length looses its amplitude at the phase transition.
Therefore, near this transition one of the coherence lengths is the largest length scale
of the problem and the system can only be either a type-1 or type-1.5 superconductor.
A similar situation was discussed in the context of interface superconductors [31].

In away similar, but more subtle, situation takes place at the transition from the s
to s+ is state [10]. The s+ is superconductor breaks additional Z2 symmetry and there
is a corresponding diverging coherence length in the problem. An important generic
aspect of the s + is superconducting states is that the density excitations are coupled
with the phase difference excitations in the linear theory [10]. One of the mixed phase-
difference-densitymodes gives rise to a divergent coherence length at that phase tran-
sition. Thus, such a system can be either type-1 or type-1.5 near the transition from the
s to s + is state.

4.7 Structure of vortex clusters in the type-1.5 regime in a
two-component superconductor

In this section, following Ref. [24], we consider in more detail the full nonlinear prob-
lem in two-component Ginzburg–Landau models, with and without Josephson cou-
pling ηwhich directly couples the two condensates (for treatment of other kinds of in-
terband coupling see [7], formicroscopic derivation of the coefficients see Section 4.5).
When η = 0 the condensates are coupled electromagnetically. When there is nonzero
interband Josephson coupling, the phase difference is associatedwith amassivemode
with mass√η(u21 + u22)/u1u2.
F = 1

2 ∑
i=1,2

[|(∇ + ieA)ψi |2 + (2αi + βi|ψi |2) |ψi |2] + 1
2 (∇ ×A)2 − η|ψ1||ψ2| cos(θ2 − θ1)

(4.31)
Since the Ginzburg–Landau model is nonlinear, in general intervortex interac-

tions arenonpairwise.Nonpairwise interactions are important at shorter rangeswhere
the linearized theory, considered above, does not in general apply. Below we discuss
the importance of complicated nonpairwise forces between superconducting vortices
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arising in certain cases in multicomponent systems [24, 42, 43]. These nonpairwise
forces in certain situations have important consequences for vortex cluster formation
in the type-1.5 regime.

Figures 4.3 and 4.4 show numerical solutions for N-vortex bound states in several
regimes (for technical details see Appendix of [24]). The commonaspect of the regimes
shown on these figures is that the density of one of the components is depleted in the
vortex cluster and has its current mostly concentrated on the boundary of the vortex
cluster (i.e., has a “type-1”-like behavior). At the same time, the second component
forms a distinct vortex lattice inside the vortex cluster (i.e., has a “type-2”-like behav-
ior).

When stray fields are taken into account in thin films, they give repulsive intervor-
tex interaction at very long distances, while vortices can retain attractive interaction
at intermediate length scales. That gives rise to various hierarchical structures such
as lattices of vortex clusters or vortex stripes [38, 59]. The study of dynamics demon-
strated that such vortex systems can form a vortex glass phase [60]. This is in contrast

Fig. 4.3: Ground state of Nv = 9 flux quanta in a U(1) × U(1) type-1.5 superconductor (i.e., η = 0).
The parameters of the potential being here (α1, β1) = (−1.00, 1.00) and (α2, β2) = (−0.60, 1.00),
while the electric charge is e = 1.48 (in these units the electric charge value parameterizes the
London penetration length). The displayed physical quantities are (a) the magnetic flux density, (b)
(resp. c) is the density of the first (resp. second) condensate |ψ1,2|2. (d) (resp. e) shows the norm of
the supercurrent in the first (resp. second) component. Panel (f) is Im(ψ∗

1 ψ2) ≡ |ψ1||ψ2| sin(θ2 − θ1)
being nonzero when there appears to be a difference between the phase of the two condensates.
The solution shows that clearly there is a vortex interaction-induced phase-difference gradient that
contributes to nonpairwise intervortex forces. Parameters are chosen so that the second component
has a type-1-like behavior while the first one tends to form well-separated vortices. The density
of the second band is depleted in the vortex cluster and its current is mostly concentrated on the
boundary of the cluster (see Ref. [24]).
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Fig. 4.4: Elongated ground state cluster of 18 vortices in a superconductor with two active bands.
Parameters of the interacting potential are (α1, β1) = (−1.00, 1.00), (α2, β2) = (−0.0625, 0.25)
while the interband coupling is η = 0.5. The electric charge, parameterizing the penetration depth
of the magnetic field, is e = 1.30 so that the well in the nonmonotonic interacting potential is
very small. In this case there is visible admixture of the current of the second component in vortices
inside the cluster, though its current is predominantly concentrated on the boundary of the cluster.

to type-2 superconductors where a vortex glass can appear only in the presence of vor-
tex pinning and not in clean samples.

4.8 Macroscopic separation in domains of different broken
symmetries in type-1.5 superconducting state

As discussed above, a system with nonmonotonic intervortex interaction potentials
allows a state with macroscopic phase separation in vortex droplets and Meissner do-
mains. In type-1.5 superconductors this state can also represent a phase separation
into domains of states with different broken symmetries. In this section we will give
two different examples of how such behavior can arise.

Note that in multicomponent superconductors some symmetries are global (i.e.,
associatedwith the degrees of freedomdecoupled from the vector potential) and some
are local, i.e., associated with the degrees of freedom coupled to the vector potential.
As is well known, in the latter case the concept of spontaneous symmetry breakdown
is not defined the same way as in a system with global symmetry. However below, for
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brevity we will not be making terminological distinctions between local and global
symmetries (detailed discussion of these aspects can be found in e.g., [48]).

4.8.1 Macroscopic phase separation into U(1) × U(1) and U(1) domains in the
type-1.5 regime

Consider a superconductor with broken U(1) × U(1) symmetry, i.e., a collection of in-
dependently conserved condensates with no intercomponent Josephson coupling. As
discussed above, in the vortex cluster state, in the interior of a vortex droplet, the su-
perconducting component which has vortices with larger cores is more depleted. In
the U(1) × U(1) system the vortices with phase windings in different condensates are
bound electromagnetically, resulting in an asymptotically logarithmic interaction po-
tentialwith aprefactor proportional to |ψ1 |2|ψ2|2/(|ψ1|2+|ψ2|2) [48], and evenweaker
interaction strength at shorter separations.

Consider now a macroscopically large vortex domain. Even if the second compo-
nent there is not completely depleted, its density is suppressed and, as a consequence
the binding energy between vortices with different phase windings (∆θ1 = 2π, ∆θ2 =
0) and (∆θ1 = 0, ∆θ2 = 2π), can be arbitrarily small. Moreover, the vortex ordering
energy in the component withmore depleted density is small aswell. As a result, even
a tiny thermal fluctuation can drive a vortex sublattice melting transition [11, 61] in a
large vortex cluster. In that case the fractional vortices in the weaker component tear
themselves off the fractional vortices in the strong component and form a disordered
state. Note that vortex sublattice melting is associated with the phase transition from
U(1) × U(1) to U(1) broken symmetries [11, 61]. Thus, a macroscopically large vortex
cluster can realize a domain of U(1) phase (associated with the superconducting state
of the strong component) immersed in a vortexless U(1)×U(1)Meissner state domain.
If the magnetic field is increased, the systemwill go from the vortex cluster state (with
coexisting U(1) × U(1) and U(1) domains) to a U(1) vortex state.
4.8.2 Macroscopic phase separation in U(1) and U(1) × Z2 domains in three-band

type-1.5 superconductors

In this subsection we discuss an example of vortex clusters in three-band supercon-
ductors that locally break an additional Z2 symmetry forming “phase-frustrated”
states. Such superconductors also allow the coexistence of domains with different
broken symmetries in the ground state. The minimal GL free energy functional to
model a three-band superconductor is

F = 1
2 (∇×A)2+ ∑

i=1,2,3

1
2 |Dψi|2+αi|ψi |2+12βi|ψi |4+ ∑

i=1,2,3
∑
j>i

ηij|ψi ||ψj| cos(φij). (4.32)
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Here the phase differences between two condensates are denoted φij = θj − θi. Mi-
croscopic derivations of such models describing s + is superconducting states can be
found in [9, 47].

Systems with more than two Josephson-coupled bands can exhibit phase frustra-
tion [8–10, 62, 63]. For ηij < 0, a given Josephson interaction energy term isminimal for
zero phase difference (we then refer to the coupling as “phase-locking”), while when
ηij > 0 it is minimal for a phase difference equal to π (we then refer to the coupling as
“phase-antilocking”). Two-component systems with bilinear Josephson coupling are
symmetric with respect to the sign change ηij → −ηij as the phase difference changes
by a factor π, for the system to recover the same interaction. However, in systems with
more than two bands there is generally no such symmetry. For example, if a three-
band system has η > 0 for all Josephson interactions, then these terms cannot be
simultaneously minimized, as this would correspond to all possible phase differences
being equal to π.

The ground state values of the fields |ψi| and φij of system (4.32) are found by
minimizing the potential energy

∑
i
{αi|ψi|2 + 1

2
βi|ψi |4} + ∑

j>i
ηij|ψi||ψj| cos(φij) . (4.33)

This can however not be done analytically in general, though certain properties can
be derived from qualitative arguments. In terms of the sign of the η’s, there are four
principal situations:

Case Sign of η12, η13, η23 Ground state phases

1 − − − φ1 = φ2 = φ3
2 − − + Frustrated
3 − + + φ1 = φ2 = φ3 + π
4 + + + Frustrated

Case (2) can result in several ground states. If |η23| ≪ |η12|, |η13|, then the phase
differences are generally φij = 0. Conversely, if |η12|, |η13| ≪ |η23| then φ23 = π and
φ12 is either 0 or π. However, in certain parameter ranges the resulting state is in fact
a “compromise” where φij is not an integer multiple of π.

Case (4) is in fact equivalent to (2) (mapping between these scenarios is trivial).
The wide range of resulting ground states can be seen in Figure 4.5. As η12 is scaled,
ground state phases change from (−π, π, 0) to the limit where one band is depleted
and the remaining phases are (−π/2, π/2).
An important property of the potential energy (4.33) is that if any of the phase dif-
ferences φij is not an integer multiple of π, then the ground state possesses an addi-
tional discrete Z2 degeneracy. For example, for a system with αi = −1, βi = 1 and
ηij = 1, two possible ground states exist and are given by φ12 = 2π/3, φ13 = −2π/3
or φ12 = −2π/3, φ13 = 2π/3. Thus in this case, the broken symmetry is U(1) × Z2, as
opposed to U(1). As a result, like any other system with Z2 degeneracy, the theory al-
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Fig. 4.5: Ground state phases of the three components as a function of η12 (here θ3 = 0 fixes the
gauge). The GL parameters are αi = 1, βi = 1, η13 = η23 = 3. For intermediate values of η12 the
ground state exhibits discrete degeneracy (symmetry is U(1) × Z2 rather than U(1)) since the energy
is invariant under the sign change θ2 → −θ2, θ3 → −θ3. For large η12 we obtain θ2 − θ3 = π
implying that |ψ3| = 0 and so there is a second transition from U(1) × Z2 to U(1) and only two
bands at the point d). Here, the phases were computed in a system with only passive bands, though
systems with active bands exhibit the same qualitative properties except for the transition to U(1)
and two bands only (i.e., active bands have nonzero density in the ground state).

lows an additional set of topological excitations: domainwalls interpolating between
the two inequivalent ground states as well as more complicated topological excita-
tions [64–66]. Generalizations to frustrated systems with larger numbers of compo-
nents was discussed in [67].

There is a divergent coherence length at the critical point where the system un-
dergoes the U(1) × Z2 → U(1) phase transition (which is the transition from an s + is
to an s state). The nature of this divergent length-scale is revealed by calculation of
the normal modes. Specifically, generating a set of differential equations from Equa-
tion (4.32) and linearizing these close to the ground state, gives a mass-matrix whose
eigenbasis is also an orthonormal basis of small perturbations to the ground state [10].
In systems that break only U(1) symmetry, these modes are segregated with respect to
phase and amplitude so that small perturbations to the phase and amplitude sectors
decay independently of each other. Small perturbations to the amplitude thus haveno
implications for the phase difference sector, and vice versa. In contrast, in the region
where Z2 symmetry is broken the modes are generally mixed in this kind of model. In
this case a perturbation to the amplitude sector necessarily implies a perturbation to
the phase sector as well and vice versa.

The immediate implication of this is that in the region with broken Z2-symmetry,
there are five rather than three coherence lengths that describe amplitude perturba-
tions. If the phase transition is second order one of these coherence lengths diverges
as we approach the transition point where Z2-symmetry is restored. Thus, vortices in
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this region produce a perturbation to the amplitude that recovers with a coherence
length that is divergent. Since the magnetic field penetration depth is finite near that
transition the system can be either type-1 or type-1.5 with attractive intervortex inter-
action [10].

In iron-based superconductors a dome of s+ is state is expected to form as a func-
tion of doping [9]. Away from the transition point, iron-based materials appear to be
type-2. Also the amplitude of the mode with divergent coherence length vanishes at
the Z2 phase transitions. Thus, there should be a range of doping and temperatures
in the proximity of the critical point where the type-1.5 superconductivity is generic.
The general case of N-component frustrated superconductors is less studied, however
certainly in case of a larger number of components there are more possibilities for the
appearance of normal modes with low or zero masses leading to type-1.5 regimes [67].

4.8.3 Nonlinear effects and long-range intervortex interaction
in s + is superconductors

The ground state of a phase-frustrated superconductor is in many cases nontrivial,
with phase differences being compromises between the various interaction terms. In-
serting vortices in such a system can shift the balance between different competing
couplings, since vortices can in general have different effects on the different bands.
In particular, since the core sizes of vortices are not generally the same in all bands,
vortex matter typically depletes some components more than others and thus can al-
ter the preferred values of the phase difference. So the minimal potential energy in-
side a vortex lattice or cluster may correspond to a different set of phase differences
than in the vortex-free ground state. In particular even in s-wave systems vortices can
create “bubbles” of Z2 order parameter around themselves. Examples are shown in
Figures 4.6 and 4.7.

The vortex structure near the Z2 phase transition has crucial physical conse-
quences for the phase diagram of the system beyond mean-field approximation,
leading to re-entrant phase transitions [68].

In the vicinity of Z2 phase transition, besides the appearance of the type-1.5
regime, the system has a number of other unusual properties such as anomalous
vortex viscosity [69] and distinct anomalous thermoelectric effects [70, 71].

4.9 Fluctuation effects in type-1.5 systems

In single-component Ginzburg–Landau models, the order of the superconducting
transition in zero applied magnetic field in three dimensions depends on the ra-
tio of magnetic field penetration length and coherence length. Halperin, Lubensky
and Ma established that in extreme type-1 superconductors the gauge field fluctua-
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Fig. 4.6: Interacting vortex clusters with internally broken Z2 symmetry in a frustrated three-
band superconductor. The snapshot represents a slowly evolving (quasistationary) state of the
weakly interacting well-separated clusters. In this numerical computation, each of the clusters
has with a good accuracy converged to a physical solution of GL equations, but the snapshot is
taken during the slow evolution driven by the weak long-range intercluster interaction. The snap-
shot demonstrates the existence of long-range field variations associated with the soft mode.
This produces long-range weak intervortex forces. Displayed quantities are: (a) Magnetic field,
(b–d) |ψ1|2, |ψ2|2, |ψ3|2, (e) |ψ1||ψ2| sin φ12, (f) |ψ1||ψ3| sin φ13), (g) |ψ1||ψ3| sin φ23). The GL pa-
rameters are α1 = −3, β1 = 3, α2 = −3, β2 = 3, α3 = 2, β3 = 0.5, η12 = 2.25, η13 = −3.7. The
parameter set was chosen so that it lies in the regime where the ground state symmetry of the sys-
tem without vortices is U(1), but is close to the U(1) × Z2 region. Because of the disparity in vortex
core size the effective interaction strengths η̃ij are depleted to different extents. As a consequence,
a vortex cluster produces a bubble of state with broken U(1) × Z2 symmetry.

tions make the superconducting phase transition first order [72, 73]. In the opposite
limit of extreme type-2 systems, Dasgupta and Halperin [74] demonstrated that the
superconducting transition is second order in single-component systems and has
the universality class of the inverted-3DXY model. The nature of the superconduct-
ing phase transition in this limit is the proliferation of vortex-loop excitations. The
inverted-3DXY universality class can be demonstrated by duality mapping [56, 74–76].
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Fig. 4.7: Interacting vortex clusters with broken internal Z2 symmetry in a frustrated three-band
superconductor. Panel (a) displays the magnetic field B. Panels (b) and (c) respectively display
sin φ12 and sin φ13, the third phase difference can obviously be obtained from these two. Second
line, shows the densities of the different condensates |ψ1|2 (d), |ψ2|2 (e), |ψ3|2 (f). The third line
displays the supercurrent densities associated with each condensate |J1| (g), |J2| (h), |J3| (i). The pa-
rameter set here is the same as in Figure 4.6. Here the difference compared to the previous picture,
is that the sine of the phase differences is represented ‘unweighted’ by the densities in contrast to
Figure 4.6, clearly indicating that vortices create an area with broken Z2 symmetry. Panel (c) now
makes clear that the inner cluster is in a defined state φ13 ≈ π/2 (whose opposite state would have
been −π/2). Panel (b) gives a visualization of the long-range interaction between the clusters.

The value of the Ginzburg–Landau parameter κ = λ/ξ at which the phase transi-
tion changes from second to first order is difficult to establish. Early numerical works
suggested that the tricritical point does not coincide with the Bogomol’nyi critical
point [77]. The largest Monte Carlo simulations performed at this time [78, 79] claim
that the tricritical κtri = (0.76 ± 0.04) is slightly smaller than the critical κc = 1,
which, in our units, separates the type-1 regimewith thermodynamically unstable vor-
tices and the type-2 regime with thermodynamically stable vortices. In these works it
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is claimed that even in the weakly type-1 regime where the vortex interaction is purely
attractive and vortices are not thermodynamically stable, the phase transition can be
continuous. This raises the question about the nature of the phase transition in the
type-1.5 regime where by contrast vortices have long-range attractive interaction but
are thermodynamically stable. The problemwas investigated in the effective j-current
model [80] where thermally excited vortices are modeled by directed loops with long-
rangeattractive, short-range repulsive interaction similar to the long-range interaction
between vortices in the GL model. The results indicate that the zero-field supercon-
ducting phase transition in type-1.5 materials can be first order [80]. This is in contrast
to ordinary single-component GL theory which always has a continuous phase tran-
sition in the inverted 3d XY universality class in the parameter regime where vortices
are thermodynamically stable. For the s+ is type-1.5 systems, it was found that fluctua-
tions canmodify themean-field phase diagramsquantitatively, resulting in re-entrant
phase transitions where Z2 symmetry is broken by heating [68].

4.10 Misconceptions

In this section we clarify misconceptions about coherence lengths and type-1.5 be-
havior in some recent literature on one subclass of multicomponent superconductors:
U(1)multiband materials. An erroneous argument was advanced in [81, 82] that near
Tc these superconductors have degenerate coherence lengths. Using this incorrect
derivation by Kogan and Schmalian, many further papers appeared that reach vari-
ous incorrect conclusions about the phase diagram and properties of these materials,
for example [83–87].

Consider a two component Ginzburg–Landau model with Josephson coupling,
governed by a pair of coupled partial differential equations

a1∆1 + b1|∆1|2∆1 − γ∆2 − K1Π2∆1 = 0 (4.34)
a2∆2 + b2|∆2|2∆2 − γ∆1 − K2Π2∆2 = 0 (4.35)

whereΠ = ∇−iA. Kogan and Schmalianhave argued that such a system cannot exhibit
so-called type-1.5 superconductivity because close to Tc, suchmodels inevitably have
two degenerate coherence lengths in two bands, not two distinct coherence lengths as
the type-1.5 regime requires. They assumed that GL functionals can only be obtained
by expansion in a single small parameter τ = (1−T/Tc). The conclusion on coherence
lengths they reached by claiming that system (4.34), (4.35) is actually equivalent, for
small τ = (1 − T/Tc), to the alternative system−ατ∆1 + β1|∆1|2∆1 − KΠ2∆1 = 0 (4.36)−ατ∆2 + β2|∆2|2∆2 − KΠ2∆2 = 0 . (4.37)

Here α, βi , K are constants that depend in a knownway on the parameters ai , bi , Ki , γ
in (4.34), (4.35). It is not hard to see that this claim is nonsensical. First of all it nei-

Unauthenticated
Download Date | 10/10/17 9:41 AM



4.10 Misconceptions | 159

ther physically nor mathematically makes sense that the GL expansion can be done in
only one small parameter τ = (1 − T/Tc). Multiband expansions are expansions car-
ried in several small parameters. The limiting expression that Kogan and Schmalian
obtain when τ → 0 is obviously incorrect. It suffices, for example, to note that in the
absence of a gauge field, A = 0, system (4.36), (4.37) supports the solution with an ax-
ially symmetric vortex in ∆1, and constant ∆2 = √ατ/β2. Clearly, this is not a solution
of (4.34), (4.35), even approximately for small τ. This is symptomatic of a fundamental
problem with (4.36), (4.37): this system has no direct coupling between the conden-
sates ∆1, ∆2, while such coupling is a fundamental property of (4.34), (4.35). Remark-
ably, Kogan and Schmalian actually state that ∆1(r) = ∆2(r) but seem unaware that
it directly contradicts their equations. In particular the absence of coupling between
∆1, ∆2, obviously directly contradicts their claim that for all solutions ∆1(r) = ∆2(r),
near Tc. This and other claims, such as the phase locking in [81], should follow from
mathematical equations. It is not enough to simply assert behavior, particularly when
the underlying model of the system contradicts one’s assertions.

The claimed equivalence between (4.34), (4.35) and (4.36), (4.37) is mathemati-
cally nonsensical. It is a trivial andwell-known fact that anexpansion in a single small
parameter τ = (1 − T/Tc) yields a single GL equation (see e.g., [18, 88, 89]). However,
the authors of [81, 82] did not even recover that well-known result in the τ → 0 limit.
A comment on this was written in [18, 89]. Moreover, as was pointed out in [18, 89] if
taken at face value, (4.36), (4.37) imply results in direct contradiction of the Landau
theory of phase transitions. In the originalmodel (4.34), (4.35) the Josephson term is a
singular perturbation that breaks symmetry down to U(1). The model has three mas-
sive modes: two coherence lengths and the Josephson length. In the limit τ → 0 there
can be only one divergent length scale, while the other length scales stay finite at Tc.
In the U(1) two-band system the gaps in the vortex solution have a similar profile near
Tc or at strong coupling because there is a subdominant with much shorter coherence
length and small amplitude that is associatedwith a certain linear combination of the
fields. This can be demonstrated by explicit calculation [18, 23, 89] and this is the rea-
son why similar gap profiles should be observed in experiment on such systems [87].
In contrast, Kogan and Schmalian’s system gives the opposite behavior: three inde-
pendently divergent length scales in the limit τ → 0, since (4.36), (4.37) are coupled
by the vector potential only, the mass of the Leggett mode also would vanish.

It is interesting to follow Kogan and Schmalian’s derivation of (4.36), (4.37), to
identify exactly where the error occurs. They first solve (4.34) to find ∆2 in terms of ∆1
and its derivatives

∆2 = 1
γ
(a1∆1 + b1|∆1|2∆1 − K1Π2∆1) (4.38)

then use this to eliminate ∆2 from (4.35), yielding a fourth-order PDE for ∆1 alone,

a󸀠1∆1 + b󸀠1|∆1|2∆1 + ⋅ ⋅ ⋅ + K󸀠
1Π

4∆1 = 0 (4.39)
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whose coefficients, a󸀠1, b
󸀠
1, . . . , K

󸀠
1 depend in a known way on ai , bi , Ki , γ. Of course,

system (4.38), (4.39) is exactly equivalent to (4.34), (4.35). They then note that indeed
the same procedure works with the roles of ∆1 and ∆2 reversed: solve (4.35) for ∆1 in
terms of ∆2, and eliminate ∆1 from (4.34). This yields the system

∆1 = 1
γ (a2∆2 + b2|∆2|2∆2 − K2Π2∆2) (4.40)

a󸀠2∆2 + b󸀠2|∆2|2∆2 + ⋅ ⋅ ⋅ + K󸀠
2Π

4∆2 = 0 (4.41)

which, like (4.38), (4.39), is equivalent to (4.34), (4.35). They then perform two proce-
dures. First they truncate (4.39) and (4.41) to second order, by making assumptions
about which terms dominate at small τ. This yields equations (4.36) and (4.37). If
executed properly the assumption of one small parameter should yield a single GL
equation and one cannot deduce any information about the second mode and sec-
ond coherence length. Second, andmore important, they completely forget about the
equations (4.38), (4.40), as though these relations no longer hold.What results is a sys-
tem of equations, (4.36), (4.37), whichhave absolutely no relationshipwith the original
system (4.34), (4.35).

In summary, system (4.36), (4.37) tells us precisely nothing about the behavior of
the solutions of (4.34), (4.35) or behavior of two coherence lengths or relative behavior
of the gaps near Tc.

The paper [84], develops an elaboration of (4.36), (4.37), in which the fields ∆j are
claimed to be expanded in a power series in τ = 1 − T/Tc

∆j = ∆(0)j + ∆(1)j + ⋅ ⋅ ⋅ (4.42)

where ∆(0)j is the term of order τ 1
2 and ∆(1)j is the term of order τ 3

2 (note that the results
are inconsistent by symmetry in different order in τ and also the two-band GL expan-
sion is not a τ-based expansion and cannot be carried in a single small parameter in
general). Since the procedure is based on Kogan and Schmalian’s construction, the
above criticism applies equally to these works. Although the analysis is incorrect for
multiband superconductors, as shown above, let us take their final system of equa-
tions at face value and analyze it purely from a mathematical viewpoint.

The system obtained is (they consider only the case where there is no gauge field
and absorb K into a choice of units).

−∇2∆(0)j + α∆(0)j + βj∆(0)j
3 = 0 , (4.43)

−∇2∆(1)j + (α + 3βj∆(0)j
2)∆(1)j = fj (4.44)

where fj is a polynomial expression in ∆(0)j and its derivatives (up to fourth order).
The first thing to note is that this is not a fourth-order system of PDEs: ∆(0)j is already
fixed by solving a second-order PDE (4.43), and given this, one solves another second-
order PDE for ∆(1)j . The second thing to note is that (4.44) can be economically and
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instructively written
Lj∆(1)j = fj (4.45)

where Lj is the (formally) self-adjoint linear operator obtained by linearizing (4.43)
about its solution ∆(0)j . Now, a linear PDE of this form will have a solution if and only
if fj is L2 orthogonal to the kernel of the operator Lj, that is,

∫
ℝ3

fjkd3x = 0 for all k such that Ljk = 0 . (4.46)

While this condition holds automatically if the kernel is trivial (the only solution of
Ljk = 0 is k = 0), in the current context, this is highly unlikely, as we now argue.

Given a solution ∆(0)j of (4.43), one would expect it to lie in a finite dimensional
family of solutions, obtained, for example, by translating and rotating the given solu-
tion. But for every one-parameter family of solutions ∆(0)j (t)of (4.43), there is a function
in the kernel of Lj, namely

k = ∂t∆(0)j (t)|t=0 . (4.47)

To see this, just substitute ∆(0)j (t) into (4.43) and differentiate with respect to the pa-
rameter t, using the fact that each ∆(0)j (t) solves (4.43).

Hence, generically the right hand side fj of (4.44) must satisfy a large number of
nontrivial integral constraints, or else the system has no solution. Furthermore, if fj
does satisfy the constraints, the solution ∆(1)j is generically not unique, since one can
add to it any k in the kernel of Lj.

It should also be emphasized that, since (4.43), (4.44) is derived from (4.36), (4.37),
it, also, has nomathematical relationship to the original system (4.34), (4.35) nor with
themicroscopic theory of two-band superconductors. It is also physicallymeaningless
in general to justify two-band field theories by expansion in a single small parame-
ter τ. Also, in contrast to false claims in [83] it contradicts other standard schemes
of Ginzburg–Landau expansion in systems with different pairing channels [90] and
basic symmetry-based aspects of the theory of second-order phase transitions. The
conclusion of independent divergence of coherence lengths, that contradicts basic
principles of the theory of the phase transitions, leads to the construction of incor-
rect phase diagrams in [86], and the erroneous claim that there necessarily appears
a Bogomol’nyi point near Tc. The necessary condition for a Bogomol’nyi point in this
kind of theory is to generate masses of the normal modes. As discussed above the de-
generate coherence length is a direct consequence of the mathematical error in Kogan
and Schmalian’s calculations. In real two-band superconductors, the masses of nor-
mal modes as functions of interband coupling or temperature never cross but rather
form avoided crossing [18, 23, 89], unless there is a special symmetry of the model.
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4.11 Conclusion

We briefly outlined the basic concepts and gave a brief account of some of the works
on type-1.5 superconductivity that takes place in multicomponent systems. In gen-
eral, a superconducting state is characterized by multiple coherence lengths ξi, (i =
1, . . .,M) arising from multiple broken symmetries or multiple bands. The type-1.5
state is the regime where some of the coherence lengths are larger and some smaller
than the magnetic field penetration length: ξ1 ≤ ξ2. . . < λ < ξN ≤ . . . ≤ ξN (here
we absorbed the factor 1/√2 into the definition of coherence lengths). Among various
unconventional properties that the system acquires in this regime is nonmonotonic
intervortex interaction potential. In that state vortices can have long-range attractive,
short-range repulsive interaction leading to a macroscopic phase separation into do-
mainsofMeissner and vortex states in an applied external field. This phase separation
can also be accompanied by different broken symmetries in vortex clusters andMeiss-
ner domains. This regime leads to unconventional magnetic, thermal and transport
properties.
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