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Abstract: The Scanning Tunneling Microscope (STM) was used at cryogenic temper-
atures soon after its invention in the early 1980s. However, it has only been a few
years since its full potential for studying superconductors has been developed. Here
we provide an introduction to cryogenic STM applied to superconductors and the su-
perconducting vortex lattice. We review STM basics, explaining how we measure the
superconducting density of states by atomic-scale tunneling.We also discussAndreev
and Josephson features in tunneling conductance and the direct visualization of ther-
mally inducedvortexdepinning, vortexmotionandvortexmelting. Finally,wediscuss
how to analyze large-scale vortex images, explaining calculations of angular and po-
sitional correlation functions and the displacement correlator, and show how these
characterize the degree of disorder in the vortex lattice.

Keywords: Scanning probe microscopy, Tunneling spectroscopy, vortex physics, su-
perconductivity.

1.1 Introduction

Tunneling spectroscopy is useful to the study of superconductors because it directly
provides the superconducting density of states. In junctions formed by two supercon-
ductors, Tunneling spectroscopy also shows the coupling of the Cooper pair wave-
functions through the Josephson effect. During the 1960s and 1970s, many Tunneling
spectroscopy experiments were performed. These used layers of an insulating mate-
rial to form a tunnel barrier for electron transport between the two electrodes. The
experiments were often quite conclusive, providing strong experimental support for
the Bardeen Cooper and Schrieffer (BCS) theory through the measurement of the su-
perconducting gap and of the electron-phonon pairing interaction in many different
materials (see for example [1]).

The invention of the ScanningTunnelingMicroscope (STM)by [2] opened the door
to tunneling experiments at atomic level, having vacuumas the tunnel barrier. The su-
perconducting tunneling conductance was first measured using an STM by [3] in the
technologically important material Nb3Sn. Subsequent tunneling conductance mea-
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30 | 1 Atomic Size STS of Vortices

surements using STMwere done in the cuprates by [4] and [5]. With an STM, one can
also perform scanning tunneling spectroscopy and obtainmaps of the tunneling con-
ductance as a function of the position with atomic resolution. This makes the STM
at low temperatures the only instrument able to map the superconducting density of
stateswith a spatial resolution far below the superconducting coherence length ξ . The
Abrikosov vortex lattice was first observed using an STM by [6], with a spatial resolu-
tion that exceeded considerably all other vortex visualization techniques.

The key constructive element of the STM is the piezoelectric ceramic, which lit-
erally plays the role of a finger touching the nanoworld. In fact, when the STM was
invented, people immediately realized the potential of the idea behind it, developing
a whole set of new methods to probe matter at the nanoscale by tracing other probes
as a function of the position, as for example the force between a tip and the sample.
Very soon after the invention of the STM, [7] developed the atomic force microscope,
which is todaywidelyused inphysics, chemistry andbiology.Differentprobesmeasur-
ing magnetic fields at the surface were also developed, in particular with more recent
advances in nanometric fabrication. Detailed images of vortex lattices have been ob-
tained using magnetic force microscopy, scanning SQUID microscopy, and scanning
Hall microscopy. These efforts are reviewed in [8, 9] and [10].

Fig. 1.1: Superconducting vortex in 2H-NbSe2 imaged using STM at length scales of the order of
several hundred nm (bottom) and at atomic scale (top). The figures show maps of the zero bias con-
ductance acquired at 0.1 K and 0.03 T. There is a strong spatial variation of the superconducting
density of states at all length scales, including at atomic distances. Figure adapted from Ref.[11].
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As so often, opening a new window into smaller length scales provides informa-
tion that could not have been anticipated previously. For example, the features in the
superconducting density of states at length scales well below the superconducting
coherence length ξ shown in Figure 1.1. This does not conform with the conventional
view of superconductivity being homogeneous below ξ .

In this tutorial we explain the main concepts needed to design and understand
this and other STM experiments in superconductors. We start by introducing the dif-
ferences between macroscopic and atomic size tunneling and the role of the distance
between tip and sample in normal and superconducting phases. We then discuss the
results obtained frommaps of the superconducting properties as a function of the po-
sition at different length scales, ranging from subnanometer to micrometer scales.

We focus mostly on work performed by our group.We also mention work by other
groups whenever needed to explain concepts. But we do not aim at providing a com-
plete reference list. For this, we refer to the reviews by [12, 13] and [14].

1.1.1 Formalisms to treat atomic size tunneling

One of the reasons for the success of STM is that the requirements to obtain atomic res-
olution on a surface are not as stringent as onemay think a priori. One needs of course
an atomically flat surface. But the tip can be totally blunt at nm length scales, mostly
because the tunneling current depends exponentially as a function of the distance be-
tween both tunneling elements. Thus, the tunneling current decreases exponentially
and only the outermost tip’s atom provides a sizeable tunneling current.

Furthermore, the vacuum tunneling problem can be understood in simple terms
for most purposes. Tunneling experiments are based on the quantum mechanical
overlap between tip and sample’s electronicwavefunctions, which is in general nearly
impossible to calculate accurately. The nature of the tip’s atom involved in tunneling
is not known, it may be an atom of the tip’s material (often Pt or Au) but it might well
also be an atom picked up from the surface during the scanning process. Even less
is known about what kind of electronic orbitals couple together. It turns out that, for
most practical processes, the details of the quantum mechanical overlap between tip
and sample’s electronic wavefunctions do not matter. [15] found that the resulting
tunneling current at zero bias voltage and zero temperature is simply proportional to
the Fermi level local density of states of the sample at the position of the tip. They
used a perturbative treatment of the tunneling current, valid when the overlap be-
tween wavefunctions is small, or, for practical purposes, when the tip is sufficiently
far apart. Their treatment is based on Bardeen’s transfer Hamiltonian formalism and
requires knowing the shape of the tip and sample wavefunctions. [16] and [17] assume
an s-wave tip wavefunction and find that the STM experiment provides a spatial map
of the electronic density of states at an energy fixed by the bias voltage. The current
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versus bias voltage can be written as

I(V) ∝ ∫NS(E)NT(E − eV) (f(E) − f(E − eV)) dE (1.1)

where NS(E) is the sample’s density of states, NT(E) is the tip’s density of states and
f(E) the Fermi function. The derivative of I(V) is the convolution of NT(E)NS(E) with
the derivative of the Fermi function. The tunnelingmatrix elements are part of the pro-
portionality factor. Their energy and spatial dependence are oftenneglected, although
generally this is not true. The energy scale for the superconducting gap is typically
far below the energy scales of localized states within the junction and of the energy
rangewhere the density of states of the tip NT(E) varies. Therefore, for most purposes,
the tunneling conductance maps NS(E) of superconductors with enough accuracy at
atomic scale.

1.1.2 Electronic scattering and Fermi wavelength

Most superconductors are good metals. Tunneling into an atomically flat metal can
also be understood as tunneling into a Fermi sea of free electrons, or a Fermi liquid in
the presence of interactions. Actually, this is a classical problem of STM. In practically
all discussions about STM imaging, there is a dichotomybetween tunneling into local-
ized atomic orbitals and tunneling into the Fermi sea of free (or interacting) electrons.
Both points of view lead to radically different images (Figure 1.2a,b and c). Tunneling
into atomic orbitals provides the atomic positions at the surface. Tunneling into the
Fermi sea, by contrast, provides flat images often with no atomic resolution. In ex-
change, disturbances to the Fermi sea in the form of defects, step edges or impurities
appear as wave-like patterns, whose periodicity is given by the Fermi wavelength λF.
The STMcanbe used to trace these patterns as a function of the energy and tomeasure
the dispersion relation for occupied and empty electronic states.

An isolated charge in a free electron system is screened away by changes in the
local electron density. This is described in the simplest waywithin the Thomas–Fermi
approximation. Taking into account Blochwavefunctions leads to Friedel oscillations,
which quite often provide the actual answer of a free electron system to an impurity
(see for example the book of [18]). Ideally, scanning over a free electron gas with a
metallic tip provides flat and featureless images, because the electronic density of the
sample is independent of the position. Close to a scattering center, such as an impurity
or a step edge, Friedel oscillations produce variations in the local electronic density
at the surface. These oscillations are detected in an STMand their energy dependence
provides the corresponding dispersion relation. Surfaces of simple metals such as Au
or Ag have been extensively studied for example by [19], [20] and [21]. Defects having
a preferred orientation, such as step edges or structured impurities (e.g., dimers or
chains), provide patterns with higher densities of states along certain directions. The
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Fig. 1.2: In (a) and (b) we show a schematic view of different tip wavefunctions, eventually leading
to different corrugations in the STM images. The sample is represented by the light gray rectangle
and the outgoing atomic wavefunctions by the dark orbital-like features. The tip is represented by
the dark gray triangle. The wavefunction of the atom at the tip apex is shown in black. The dashed
line gives the signal sent to the feedback loop that maintains a constant current between tip and
sample. The corresponding periodicity provides the atomic lattice. In (c) we schematically discuss
the situation found in metals with strongly delocalized electron wavefunctions. The bulk electron
wavefunctions are scattered at the surface at step edges, leading to oscillations in the density of
states (dark structures on top of the sample’s surface) with a wavelength of λF. Scanning the tip over
the surface then provides periodic structures with wavelength λF.

energydependence thengives the electronic dispersion relationalong thesedirections
only. If impurities or defects are point-like, the conductance images provide directly
the reciprocal state shape of the electronic dispersion relation (see for example [22]).

In Figure 1.3a we present cartoon pictures of possible patterns observed at the
surface. On the top left panel of Figure 1.3a we show a circular pattern created by a
point-like impurity in a system with a circular Fermi surface. In the top right panel we
show the pattern formed by a step edge located in the middle of the panel (x = 0) in
a system with a spherical Fermi surface. In the bottom left panel we show patterns by
two perpendicular step edges. In the bottom right panel we show the pattern obtained
by a point-like impurity in a system with a square Fermi surface with sides along the
x- and y-axis of the figure. In Figure 1.3b we represent the dispersion relation of a
hole band. The energy dependence of the surface patterns for the case of a spherical
Fermi surface are shown in the bottom panels in reciprocal space. There are circular
features with higher intensity at the wavevectors given by the dispersion relation at
E = eV, where e is the electron charge and V the applied bias voltage. The size of the
k-space feature decreaseswith increasing energy in a hole band, and the opposite can
be expected for an electron band.
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Fig. 1.3: In (a) we represent schematically the expected local density of states in real space at the
surface of metals with a defect or impurity in 2D color maps. The value of the density of states is
given by the color scale (white being the highest). We show four different cases in (a), a point-like
impurity (upper left panel), a linear defect (upper right panel), two perpendicular linear defects
(lower left panel) and a strongly anisotropic, square fold, Fermi surface (lower right panel). In (b) we
represent (thicker line) schematically a dispersion relation in the top panel and the reciprocal space
patterns expected for varying energies in the bottom panels.

The intensity of the observed modulations is given by the imaginary part of the Green
function, which in turn includes the bare electron dispersion relationmodified by cor-
relations. Kinks in the band structure, van Hove singularities or places with strong
electron-phonon scattering provide modified intensities at the relevant energies. This
can be dramatic in some systems, such as the cuprate superconductors, where most
of the scattering comes from a set of wavevectors connecting parts of the Fermi sur-
face with an enhanced electronic density of states (see for example [23] or [12]), or in
the pnictide superconductors, where the nematic electronic properties provide pre-
ferred scattering along certain directions (see for a review [13]). Conversely, knowing
in advance the band structure and character of the impurity can be useful to locate an
impurity embedded in the material, as shown by [24].

1.1.3 Tunneling with multiple conductance channels

A magnetic impurity embedded in a metal often produces a Kondo effect at low tem-
peratures. The Kondo mechanism quenches the spin of the impurity by producing a
singlet state with an electronic cloud surrounding the impurity (see for example the
book of [18]). Therefore, tunneling into a Kondo impurity occurs in two channels in
parallel, one into the free electron cloud and another one into the localized magnetic
state of the impurity. The two tunneling conductance channels interfere. The result is
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a tunneling density of states that can be described by a Fano lineshape (see [25]). The
density of states is a dip in the case of dominant tunneling into the bound state, or a
peak in the case of dominant tunneling into the free electron cloud, as schematically
shown in Figure 1.4. The Fano anomaly occurs around single magnetic impurities. It
has been studied by [26] andmore recently in experiments with isolated molecules on
metal surfaces by [27]. The Fano anomaly has been also observed in electronic systems
having multiple bands crossing the Fermi level with very different effective masses,
such as heavy fermions (see for example [28–30] or [31]).

Fig. 1.4: In (a) we show a cartoon picture of the density of states of a band structure consisting of
heavy (black) and light (light gray) bands in the sample (left side of the junction). Tunneling occurs
from the tip (right side of the junction) which has a simple one band density of states. Eventually,
tunneling can occur into each of the bands separately, in which case, there will be interference be-
tween tunneling into localized states and into the continuum. The result is a Fano anomaly, shown in
(b). For this scheme, we use an energy width of the localized states of Γ = 5 meV and E0 = 0 meV.
The relative strength of tunneling into the resonant state is given by q. For large q, tunneling is into
the resonant state, providing a near-Lorentzian shaped tunneling conductance. For low q, the phase
shift due to tunneling into the resonant state produces destructive interference and a dip.

1.1.4 From tunneling into contact: Normal phase

When a normal metal tip is moved from tunneling distance to the sample, the wave-
functions overlap. Upon increasing the connection among both electrodes, there
comes a point where the wavelike nature of transport is totally lost. Then, the conduc-
tance is given by Sharvin’s formula which provides the tunneling conductance when
transport is in the ballistic regime. Transport is classical, but the contact radius a is
far below the electronic mean free path. In between, there is an interesting regime,
where the conductance occurs just through a single atom. [32] showed that the chem-
ical nature of the contacting atom determines the precise value of the conductance,
which is amultiple of the quantum of conductance σ0 = 2e2

h , with e being the electron
charge and h Planck’s constant (see for example [33] or [34]).
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1.1.5 From tunneling into contact: Superconducting phase

Let us consider the situation where two electrodes made of the same superconduct-
ingmaterial are slowly moved into contact at zero temperature. When both electrodes
are separated in the tunneling regime, single quasiparticle tunneling is possible only
for applied voltages larger than two times the superconducting gap of the electrodes
(i.e., eV > 2∆, see Figure 1.5a). For voltages below 2∆, Andreev reflection provides a
conduction mechanism. It involves multiple crossings of the tunneling barrier, as we
discuss below. Thus, the Andreev current is further exponentially suppressed with re-
spect to the usual quasiparticle tunneling. The Andreev current is found using Bogoli-
ubov equations, which are the equivalent of the Schrödinger equation for electrons in
normal metals for superconductors (see for example the book by [35]).

In an S-S junction, the Andreev conduction mechanism implies multiple reflec-
tions through the junction. For eV < 2∆, electron-like excitations of electrode 1 cannot
enter into thegap regionof electrode 2 as a single quasiparticle. However,we canfinda
hole-like quasiparticle with opposite wavevector and spin in the same electrode. This
produces a Cooper pair in electrode 2 and a current with 2e flows through the junc-
tion (Figure 1.5b). The hole-like quasiparticle is reflected into electrode 1 within the
region of occupied electron-like states of electrode 1. This was first discussed by Blon-
der, Tinkham and Klapwijk (BTK) in experiments in macroscopic N-S junctions ([36]).
The appendix of that paper shows the procedure needed to obtain the current-voltage

Fig. 1.5: In this image we show the behavior of a typical superconductor-superconductor junction
when tip and sample are sufficiently close to show in-gap conductance. In (a) we show a single
particle tunneling process for bias voltages above 2∆. In (b) we show in-gap conductance due to a
process crossing the tunneling barrier twice through Andreev reflection. In (c) we show the process
crossing the tunneling barrier three times.
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characteristics of N-S junctions for any tunneling barrier. An extension of the BTK for-
malism to superconductor-superconductor (S-S) junctions was later made by [37].

A more detailed analysis of the S-S situation takes into account all quasiparticle
bound states. The formalism developed by [38, 39] leads to results that reproduce
exactly the experimental observations in junctions involving a controlled amount of
conduction channels. In Figure 1.5c we show schematically an example of multiple
Andreev reflection processes. For eV < 2∆ multiple Andreev reflections occur in
both electrodes 1 and 2. The smaller eV is compared to ∆, the larger is the number of
Andreev reflections needed to obtain an Andreev current. For example, in the cases
shown in Figure 1.5 we obtain one single quasiparticle transmitted in case (a), two
in (b) – in the form of a Cooper pair, and three in (c) – in the form of a Cooper pair
and an excited quasiparticle. For a current to flow from one junction to the other, the
transmission probability must be multiplied at each barrier crossing. For a junction
with transmission τ, the processes shown in Figure 1.5(b) and (c) have transmissions
τ2 and τ3, respectively. Thus, unless τ is close to one, the contribution of Andreev
reflection processes to the tunneling current is small. For a typical STMmeasurement
in tunneling regime, with tunneling resistance of 10MΩ, the transmission is about
10−3 (τ = (1/σ0×10MΩ)−1). It is thus difficult to observe Andreev reflection processes
in the tunneling limit, although it is not impossible by measuring carefully enough
and at short tip-sample distances, as discussed by [40].

With the STMwe can control tip to sample distance, from high resistance tunnel-
ing conditions down to atomic contact between the electrodes (tip and sample). As
the tip is moved towards the sample, the transmission through the tunnel barrier τ
increases. In Figure 1.6 we present a series of current-voltage and conductance curves
(I − V and dI/dV − V) obtained when a Pb tip is moved towards a Pb sample. Similar
results have been discussed by [34, 41]. We observe features in the curves for V < 2∆
when the resistance of the junction is decreased towards contact. Atomic contact is
reached when the transmission equals a single quantum channel with spin degen-
eracy, τ = 1, that is, when the resistance approaches the inverse of the quantum of
conductance 1/σ0 = RQ = h/2e2 = 12.9 kΩ.

For a single quantumchannel, eachvalue of the transmission τ is uniquely locked
to a single current versus bias voltage curve. Thus, from the experimental curves we
can obtain, with high precision, the number of quantum channels and their transmis-
sion τi, as first shown by [32].

The conductance curves shown in Figure 1.6 also present a feature at zero bias.
This feature is the signature of the Josephson effect due to Cooper pair tunneling be-
tween both electrodes. [42] calculated the critical current of the Josephson junction
IC in a short constriction at zero temperature and found IC = (πσN∆)/2e, where σN is
the conductance of the junction in the normal state. Its value for quantum contacts
with a small number of conducting channels was calculated by [43]. Available exper-
iments provide TC values smaller than expected in calculations that usually do not
take into account the actual properties of the junction, namely thermal broadening,
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Fig. 1.6: Typical experimental results obtained using a superconducting tip and sample of the same
material (Pb). In (a) we show the normalized current versus bias voltage curves. The inset shows the
behavior close to zero bias, which clearly shows the Josephson effect. In the main figure, A, B and C
provide sets of curves for different resistances of the junction (large contact, atomic size contact and
tunneling, respectively). In (b) we show the tunneling conductance within the superconducting gap.
In (c) we show the tunneling conductance in the three regimes A, B and C.

capacitance to ground and high frequency shunt. For instance, the Josephson current
decreases considerablywhen the thermal energy kBT is above the Josephson coupling
energy EJ. EJ is given by EJ = ∆h/(8e2RN), where RN is the junction’s resistance and
∆ the superconducting gap. When RN is higher than 1MΩ, EJ is of the order of an mK
in most superconductors. If EJ ≈ kBT, the superconducting phase dynamics are dom-
inated by thermal fluctuations and the Josephson current appears as a reduced peak
centered at small finite voltage instead of a sharp zero bias feature. [44] could reduce
phase slippage by increasing damping through resistors and capacitors located close
to a break junction. However, this is difficult to implement in an STM set-upwhere the
prime requirement is imaging. [45] recently analyzed electromagnetic coupling of the
Josephson junction to high-frequency electromagnetic modes of the tip. This provides
relevant clues to better understand the Josephson signal in an STM. More recent work
by [46] uses a high Tc superconductor to increase the value of the critical current, com-
bined with a method allowing us to measure the topography at high bias voltage and
at the same time the Josephson signal in the I-V curves at much smaller bias voltages.

In summary, the tunneling conductance curves obtained using superconducting
tips provide significant advantages in studying both superconducting and normal
samples. In the tunneling regime, the conductance curves are considerably sharp-
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ened at the bias voltage of the superconducting gap of the tip. For superconducting
samples, there are additional features located at the bias voltage corresponding to the
gap difference at finite temperatures. This improves measurements of the gap of the
sample versus temperature. Coming closer to the contact regime, it is also possible to
study Andreev reflection and the Josephson current as a function of the position.

1.2 Mapping the superconducting condensate at the length
scales of the coherence length and below

1.2.1 Gap structure and atomic size tunneling

The tunneling conductance maps of a conventional s-wave superconductor are ex-
pected to be essentially featureless at zero magnetic field, because the superconduct-
ing gap is spatially homogeneous in the absence of vortices, currents or pair-breaking
centers. However, STM experiments in many superconductors show tunneling con-
ductance maps with atomic-scale features in the superconducting density of states.

To explain this we need to remember that atomic orbitals of tip and sample cou-
ple to provide the tunneling conductance in an STM. The tunneling matrix elements
depend on the energy and vary with the atomic termination. If the superconducting
gap varies strongly over the Fermi surface, the local variations in the tunneling ma-
trix elements canmodify the contribution of different parts of the Fermi surface to the
tunneling density of states N(E).

Afirst attempt to account for atomic-scale changes in the superconducting density
of states of 2H-NbSe2 was made by [11]. The Ansatz was a simple anisotropic super-
conducting gap and a spatially anisotropic tip. The anisotropic superconducting gap
is found by using a tight-binding description of the electronic properties of 2H-NbSe2
that captures a fewbasic properties of thismaterial, such as a hexagonal Fermi surface
with two sheets, one at the center of the Brillouin zone (Γ) and the other at the corners
K and K’ (Figure 1.7[a]). Only the Nb atomic orbitals are taken into account. Although
the surface consists of Se atoms, it is expected that the main anisotropic features are
related to theNb atomic d orbitals. The considered orbitals are dxy anddx2−y2 that form
two four-fold shapes rotated by 45°, as shown in Figure 1.7b. The anisotropy of the tip
is modeled by an ellipse (Figure 1.7b). The angle between the long axis of the ellipse
and the line joining the center of the ellipse and the atomic positions is θ0.

When varying the position of the tip over the sample, θ0 varies, resulting in an
atomic size modulation of the density of states. The resulting density of states (Fig-
ure 1.7c) depends on the angle θ0. The corresponding spatialmodulationhas a six-fold
symmetry and is located in k-space at the atomic positions. The experiment indeed
shows tunneling conductancemapswithatomic size variationsmainly at thebias volt-
ages where the gap anisotropy produces a finite tunneling conductance. Thus, the en-
ergy dependence of the peaks of the Fourier transformof the conductancemaps shows
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Fig. 1.7: In (a) we show a strongly simplified model for the Fermi surface of 2H-NbSe2. In (b) we show
main d-like atomic orbitals on the surface. The ellipse represents an anisotropically shaped tip, with
a long axis turned by an angle θ0 from the surface atomic lattice. In (c) we show the obtained local
density of states as a function of the angle θ0. In (d) we show the bias voltage dependence of the
size of the six vortex lattice Bragg peaks from the Fourier transform of the tunneling conductance
maps.

a maximum at these bias voltages. When comparing this variation (Figure 1.7[d]) with
the results of the model (Figure 1.7[c]), we see that these qualitatively coincide – the
largest spatial variation is found at the smaller gap edge.

A spatially anisotropic tip was also considered by [47]. These authors find that the
tunneling conductance maps can show atomic size modulations revealing the spatial
anisotropy of the electronic properties of the sample, such as those caused by elec-
tronic nematic order. They find that such modulations might disappear in the topo-
graphic maps. In the topographic maps, the feedback signal required to maintain a
constant tunneling current over the surface is shown. That is, topographic maps pro-
vide maps of a quantity related to some extent to the current I at the bias voltage V.
I is the conductance integrated from the Fermi level up to E = eV. Spatially varying
features in the density of states that show some dependence on energy can be consid-
erably reduced by the integration.
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More recently, density functional theory calculations by [48] provide local densi-
ties of states that vary spatially at atomic size. The authors find that the decay of the
tunneling current I with distance strongly varies depending on the contribution to I
from different parts of the Fermi surface.

Present efforts aim at obtaining the connection between density functional calcu-
lations and variations in the contributions to the superconducting tunneling conduc-
tance.

1.2.2 Gap structure from Fermi sea oscillations

The scattering intensity of surfaceoscillations is alsomodifiedby the superconducting
gap opening (Figure 1.8). The intensity can follow, in principle, the superconducting
density of states, i.e., it increases at the gap edge and disappears within the supercon-
ducting gap. Tracing the oscillations with energy and momentum thus directly pro-
vides the reciprocal space structure of the superconducting gap. This has been done in
several systems, including simple s-wave superconductors for example in Pb by [49],
cuprates by [50] and heavy fermions by [51].

1.2.3 Gap structure and vortex shape

A vortex is a singularity at which the superconducting order parameter vanishes only
at a single point in the plane perpendicular to the magnetic field. A vortex spans the
reciprocal space gap structure into the real space, because the shape of the vortex
depends on the size of the superconducting gap along the angular directions in the
plane perpendicular to the magnetic field. In Figure 1.9, we schematically present one

Fig. 1.8: In (a) we show schematically a hole band above (dashed line) and below (solid line) the su-
perconducting transition temperature Tc. In (b) we show the Fourier transform of scattering surface
waves on point impurities. Within the superconducting gap, scattering vanishes. At the quasiparti-
cle peaks, the scattering wavevectors are spread and the intensity increased.
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Fig. 1.9: In (a) we show a cartoon picture of the spatial variation of the superconducting order pa-
rameter as a function of the position in a vortex core (line). Andreev levels are marked as horizontal
dashed lines. In (b) we show a cartoon of possible vortex core shapes. For materials with, from left
to right, electronic properties with square, hexagonal and circular symmetry. The gray scale rep-
resents the conductance, with σmax the conductance at the vortex core and σmin the conductance
outside the core.

particularly useful way to understand vortex cores. The Andreev reflection process oc-
curs at any N-S interface. Inside a vortex, there is no “true” normal phase, just a point
where the superconducting order parameter vanishes. However, the spatial variation
of the superconducting order parameter allows the creation of Andreev states inside
the vortex core (Figure 1.9). [52] first discussed these Andreev states. They form be-
cause of multiple Andreev reflections, in a similar way as the resonant states formed
at an S-S junction discussed above. The circular symmetry of the vortex problemgives,
however, a different distribution of theses states as a function of the position and the
energy. [52] found that they are located at energies separated by ∆2

EF where ∆ is the su-
perconducting gap and EF the Fermi energy. Measurements by [53] showed the energy
levels as peaks in the density of states at the vortex core center. When going out of the
vortex core, these peaks are shifted towards higher values, as expected by theory. The
order of magnitude of the lowest lying level can be obtained by a simple zero point
energy argument. One finds that ϵ0 ≈ ℏ∆

2mℏvFξ ≈ ∆
2kFξ , with vF the Fermi velocity and kF

the Fermi wavevector. We can then use the BCS relation ξ = ℏvF
π∆ to find ϵ0 ≈ ∆2

2EF .
In the presence of small amounts of scattering by impurities or defects, the vortex

core states are notwell defined and the density of states becomes featureless inside the
vortex core. For not too large scattering, the density of states can be linked to the spa-
tial dependence of the superconducting order parameter through a relation first found
by de Gennes. Recently, this was used to find the spatial dependence of the order pa-
rameter in the vortex core. As shown by [54], the result is that the spatial variation of

Unauthenticated
Download Date | 10/10/17 9:41 AM



1.3 Mapping the superconducting condensate at large scales | 43

the order parameter within a vortex is universal and does not depend on the particu-
lar properties of the material. This holds for two-band superconductors, in particular
when interband scattering is strong.

1.3 Mapping the superconducting condensate at large scales

Vortex matter is the generally accepted denomination for the ensemble of quantized
flux lines that forms in many superconductors when submitted to external magnetic
fields. The existence of this matter was predicted theoretically by [55], which showed
that flux lines distribute forming a lattice. Ten years later this lattice was visualized in
magnetic decoration experiments by [56]. The first experiments showing large-scale
vortex imaging by STMwere made by [53] and showed a great deal of information on
the structure and behavior of the vortex lattice. From these pioneering experiments,
STM has evolved a lot. Now, the larger data acquisition rate and the development of
new analysis methods has significantly increased the possibilities of this tool. Present
day STM’s can acquire topographic and conductance images of micrometric size in
time scales ranging between a few seconds and minutes, with enough resolution to
identify individual vortices. The challenge is now to push the working playground of
the STM/S to the extreme conditions of high magnetic fields and very low tempera-
tures.

Large-scale imaging in STM/S opens the door to study dynamic phenomena, like
vortex melting and vortex creep, and to make quantitative statements about them by
viewing individual behavior within the lattice or calculating statistically relevant cor-
relation functions.

1.3.1 Techniques sensing the local magnetic field

The first large-scale vortex imagingwas performed using techniques thatmeasure the
local magnetic field. As mentioned in the introduction, there are several reviews cov-
ering scanning probe techniques of the local magnetic field. Magnetic decoration and
Lorentz microscopy are additional tools that have been widely used to study super-
conductors. Magnetic decoration consists of spreading magnetic particles on the sur-
face of a superconductor subject to a small magnetic field and then viewing the posi-
tions of these particles using a scanning electron microscope (see for example [56, 57]
or [58]). Lorentz microscopy uses the phase information of an electron wave trans-
mitted through magnetic fields. It was developed by [59] to observe flux lines and dy-
namics of vortices in superconductors under magnetic fields. When a superconduct-
ing thin film under a magnetic field is slightly tilted from a normal incident electron
beam (that is, a beam from a Transmission Electron Microscope), electrons passing
through vortices in the film are deflected by themagnetic fields of the vortices. By sim-
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ply defocusing the electronmicroscope image, the resulting pattern of the intensity of
transmitted electrons shows vortices as circular spots of bright and dark contrast fea-
tures. The time resolution is limited by the properties of the scanning electron beam.
This tool was first used to study vortex dynamics by direct visualization.

When increasing themagnetic field, themagnetic overlap between vortices is usu-
ally very large. The intervortex distance a is given by a ≈ 50

√H
nm,withH in T. Thus, for

fields of 100 Gauss, the intervortex distance is 500nm. The penetration depth inmany
type II superconductors is of the order of this value or larger, so thatmagnetic imaging
techniques usually lose their ability to view isolated vortices above a few hundreds of
Gauss.

1.3.2 Introduction to the vortex lattice with STM

It is useful to start by making a comparison between atomic scale and vortex lat-
tice measurements. In Figure 1.10a and b we show STM images of two isostructural
dichalcogenides 2H-NbSe2 and 2H-NbS2. The atomic lattice observed by STM in these
compounds is the chalcogen (Se or S) atomic lattice. These compounds consist of two
NbSe2 (or NbS2) blocks separated by a van der Waals gap. The largest inter atomic
distances occur between two layers of triangular chalcogen sublattices. The sample is
prepared by exfoliation, which occurs at the van der Waals gap, so that the surface
consists of the triangular chalcogen atomic lattices. In addition to the atomic lattices
an atomic superstructure appears for 2H-NbSe2 due to a charge density wave (insets
in the right panels of Figure 1.10). This kind of additional modulation is a sort of a
“trompe l’oeil” (or optical illusion) added to the atomic modulation in STM images. A
trained eye can detect even weak modulations in STM images.

At the vortex center, we observe a strong zero bias peak in the tunneling conduc-
tance (left panels of Figure 1.10a and b). Its evolution with bias voltage when leaving
the center of the vortex is similar in both compounds and follows the expected behav-
ior for the Caroli de Gennes and Matricon states discussed above. The vortex core has
a hexagonal shape in 2H-NbSe2 due to the influence of the charge density wave in the
in-plane shape of the superconducting gap.

Note that the observed differences in the shape of the vortices appear in the in-
dividual vortices but not in the lattices. Both are hexagonal, following the standard
theoretical prediction, and both are oriented with the crystalline lattice.

We should note that these anisotropic dichalcogenides are easily exfoliable in situ
at low temperatures. This has many advantages for STM, because the surface comes
out clean and usually free of defects. Unfortunately, this is not always the case. To
study superconductors with STM one needs high quality samples and in addition ad-
equate sample surface handling and preparation methods. Sometimes, the surface
can be stable under ambient conditions as for example in the work by [60] or [61], but
this is not generally true.
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Fig. 1.10: In the left panels we show the tunneling conductance versus bias voltage when leaving
the vortex center and in the rest of the panels we show vortex lattice images taken at different bias
voltages. In (a) we show results in 2H-NbSe2 and in (b) results in the isostructural 2H-NbS2 at 0.1 K
and 0.15 T. The bias voltage is marked for each image. In the insets of the right panels we show
topographic images made in each compound. The color code is adjusted to provide the value of the
conductance in each image and in the left panels, red is for vortex center and the other curves are
taken roughly equidistantly until reaching the intervortex superconducting density of states. Arrows
in the left panels mark the position of the Caroli de Gennes Matricon levels in each position. Image
adapted from [62].

The investigation of vortex matter with STM/S in cuprate superconductors has
been a challenge for several groups over the last decades (see the review of [12]). How-
ever, the lack of high quality single crystals was an important drawback for success in
many cases. Today, it seems that this problem has been solved and there are groups
thathaveaccess to excellent quality samples of thesematerials. It hasbeenargued that
the small coherence length enhances the negative effects of surface structural defects,
impurities and contamination. However, these difficulties have been overcome by sev-
eral groups and nearly the whole panoply of atomic-scale measurements, including
Fermi surface, impurity-induced pair breaking, vortex core imaging and Josephson
imaging has been made (see for instance work by [23, 46, 50, 63] and reviews by [12]
and [14]). Vortex cores are particularly small. Moreover, vortex core states produce
tunneling conductance curves quite similar to the tunneling conductance in between
vortices. Thus, it remains very difficult to see vortices and to do large-scale vortex lat-
tice maps in cuprates. Vortex cores usually provide features of larger sizes in other su-
perconductors, often with larger coherence lengths, such as the nickel borocarbides,
the iron-based superconductors or in thin films. These studies have been reviewed for
example in [14] and [13].
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1.3.3 Vortex lattice melting

Vortex lattice melting has been much discussed in cuprates, because their Tc is high
and the Levanyuk–Ginzburg LGi parameter large. LGi is the ratio between the super-
conducting condensation energy and the critical temperature (see [64] and [65]). In
high Tc superconductors, this ratio approaches one (contrasting values of the order
of 10−5–10−6 in usual low Tc superconductors), so that these materials are very sen-
sitive to thermal fluctuations. As reviewed for example by [66], [67] or [68], in a large
region of their temperature-magnetic field phase diagram, thermal energy becomes
larger than elastic or pinning energies, producing thermally induced vortex motion.
The formation of a vortex liquid suppresses the zero resistance state that makes su-
perconductors so attractive for technological applications. That is why much effort
has been invested to understand vortex lattice behavior across the melting transition
through macroscopic transport and thermodynamic properties.

STM provides insight into the microscopic mechanism behind the formation of
a vortex liquid through direct imaging. [69] imaged the melting transition of a two-
dimensional (2D) vortex lattice in an amorphous superconducting thin film, showing
a continuous three-step processwith intermediate phases appearing before the forma-
tion of the isotropic vortex liquid. The observed behavior can beunderstoodwithin the
scenario described by the 2D melting theory developed by [70, 71], [72] and [73] (BK-
TNHY theory). The vortex images show the solid, hexatic and liquid phases expected
within 2D melting. In addition, there is another intermediate phase characterized by
the presence of smectic-like one-dimensional (1D) vortex arrangements that coexists
with the hexatic phase just before the isotropic liquid is formed. Calculations of the
vortex lattice melting in 2D superconductors (see [74]) also show such linear vortex
arrangements.

STM images of isotropic vortex liquid do not give any spatial contrast and instead
show a homogeneous value for the conductance as a function of the position, because
thermally induced vortex motion is much faster than the scanning rate of the STM.
Images of the liquid are featureless and are difficult to distinguish from images of
the normal phase. As shown in Figure 1.11, to identify the isotropic liquid, authors
compare the temperature dependence of the spatially averaged normalized conduc-
tance at zero bias with the amplitude of the Bragg peaks in the Fourier transform of
the tunneling conductance maps. Before the formation of the isotropic vortex liquid,
vortex positions are identified in the conductance maps as usual, by tracing the zero
bias conductance as a function of the position. The corresponding Fourier transform
shows Bragg peaks with nonzero amplitude. With increasing temperature, the nor-
malized conductance at zero bias outside vortex cores continuously increases due to
thermal broadening. As a consequence, the spatially averaged conductance value in-
creases while the Fourier amplitude of the Bragg peaks decreases. In the isotropic liq-
uid phase, conductance maps show no contrast at all giving zero Fourier amplitude.
Still, we find a superconducting signal in the tunneling data (upper right panel in Fig-
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Fig. 1.11: Main panel shows the temperature dependence of the spatially average tunneling con-
ductance at zero bias (black circles) and the amplitude of Bragg peaks appearing in the Fourier
transforms of vortex images (empty circles). Vertical dashed arrows show the position where the
formation of isotropic vortex liquid (Tmelting) and normal state (Tc) occurs. Upper left panels show a
vortex image before the formation of the isotropic vortex liquid at 1.2 K and the corresponding tun-
neling conductance found inside (black) and outside (gray) vortex cores. Right upper panels show a
conductance map obtained in the isotropic liquid phase at 3 K and the tunneling conductance curve
observed over the whose area.

ure 1.11). The isotropic liquid is then identified as the temperature rangewhere the zero
bias conductance is below the value of the normal phase but the Fourier amplitude in
the conductance maps is zero at the position of the vortex lattice Bragg peaks.

Of relevance is also the direct visualization of vortex de pinning. [69] showed that,
when increasing temperature in a vortex lattice distorted at 0.1K due to pinning, the
lattice becomes more ordered well below the melting temperature. Thermally acti-
vated vortex motion is thus important to understand the behavior of the vortex lattice
in a large part of the phase diagram.

1.3.4 Vortex lattice creep

Distorted vortex lattices at 0.1K show, however, practically no thermal motion. At
such low temperatures, two orders of magnitude below Tc, the balance between elas-
tic energy and pinning determines the static and dynamic behavior of the vortex lat-
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tice. STM directly visualizes this competition, and can be used to identify elastic and
plastic vortex motion. To produce vortex motion, a Bean critical state can be gener-
ated in a zero field cooled sample (magnetic field is applied at low temperatures). One
can then produce vortex motion by subsequently changing the magnetic field in very
small steps.

In a pioneeringwork, [75], unveiled the dynamical behavior of the lattice in irradi-
ated and pristine samples of 2H-NbSe2. This work wasmade at 4.2K, so that tempera-
ture still played an enormous role. However, some features relevant to the competition
between pinning and elastic energies were identified. In irradiated samples, the dis-
ordered lattice has a few vortices that are strongly pinned to the defects produced by
irradiation.When changing the magnetic field, vortex motion sets in. Pinned vortices
remain static, but the vortices in-between them flow, highlighting plastic deforma-
tion of the lattice. The deformation is anisotropic, following the local orientation of
the vortex lattice. By contrast, pristine samples of 2H-NbSe2 show much more con-
tinuous changes of vortex positions. The lattice moves along the direction of one of
it’s main axes. There is a periodic modulation in the longitudinal velocity with a fre-
quency corresponding to the time needed to travel a distance equal to the intervortex
distance a0 (Figure 1.12). This is the so-called washboard frequency. It shows that the
periodic vortex lattice is driven through randomly disordered pinning centers, see [77].

More recently, similar experiments were made in a 2D vortex lattice in an amor-
phous superconducting thin film at 100mK (see [76]). In this work the pinning dis-
order was provided by variations in the sample’s thickness which produce changes
in vortex energy per unit length. The pinning centers were not point like, but modu-

Fig. 1.12: a) (Figure adapted from [75]) Longitudinal velocity of the vortices shown in the upper right
panel. The velocity oscillates as a function of time with period a0. Data are taken in a pristine 2H-
NbSe2 single crystalline sample. b) Magnetic field versus accumulated distance of 12 vortex trajecto-
ries in an amorphous W-based thin film, data from [76]. The lower bottom inset shows the distance
dependence of the pinning force fp = JcB, where Jc is the critical current density. Authors distinguish
two types of vortex motion: modulated vortex motion (shading in blue) where vortices travel small
distances following paths modulated with lattice periodicity and small vortex avalanches (shading
in red) consisting of collective large jumps producing vortex rearrangements.
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lations of the thickness along disordered, meander-like lines. The hexagonal lattices
were slightly distorted and oriented in such a way as to conform to the immediate
surrounding of linear pinning centers. Vortices close to linear pinning centers moved
along them. Vortices in between pinning centers moved in bundles. The motion was
well defined. Individual vortex trajectories showed that vortices travel small distances
while the bundle becomes gradually distorted. Here, the vortex paths are modulated
with the lattice periodicity due to a washboard potential, similar to the case of pris-
tine 2H-NbSe2 discussed above. Motion continued until the lattice got very distorted.
The accumulated stress was then suddenly released through large collective jumps,
which produced rearrangements of the vortex positions and gave a more ordered vor-
tex lattice. Authors identified two different processes. A continuous periodic motion
in which stress is accumulated at each step of the magnetic field, distorting the lattice
within the hexagonal bundles. And plastic motion through small vortex avalanches
that release stress.

1.3.5 Commensurate to incommensurate transitions in nanostructured
superconductors

A particular case of vortex pinning occurs in the presence of periodic pinning centers.
This kind of pinning is relevant when the intervortex distance a0 is of the same order
as the period of the pinning landscape d. The vortex lattice is commensurate to the pe-
riodic structure when a vortex lattice parameter is an integer multiple of the period of
the pinning landscape. In this situation the lattice is generally ordered and free from
topological defects. Conversely, the lattice is incommensurate to the periodic pinning
centers when no lattice parameter is an integer multiple of the periodic pinning land-
scape. Thismight occur when both lattices are rotated to each other by an angle that is
not related to the main symmetry properties of each lattice (that is, 180° for the linear
array and 60° for the hexagonal vortex lattice). Incommensurate lattices are generally
disordered. The amount of disorder depends on the strength of the periodic pinning
potential. When the pinning potential is strong, groups of dislocations form along the
linear features, separated by d. In weak pinning potentials, the disorder might be dis-
tributed over the whole vortex lattice. Commensurate to incommensurate transitions
appear when a0 is changed by varying the magnetic field. These considerations are
generic to any combination of an elastic periodic lattice embedded in a periodic pin-
ning potential and have been analyzed in totally different fields, such as colloids and
optical lattices.

Over the last decades, a number of experimental and theoretical works have stud-
ied the response of the vortex lattice in the presence of periodic nanostructures with
periodic arrangements of different symmetries, square or triangular. Nanostructures
with different features such as holes or dots and shapes such as triangles, squares,
hexagons or circles have been analyzed (see e.g., [79]). One-dimensional (1D) linear
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Fig. 1.13: (a) STM topography of a 1 × 1.2 μm2 area of the nanostructured thin film. Red dashed lines
indicate the 1D modulation and inset shows the height profile along the blue dashed line. (b) Two
main configurations of the hexagonal vortex lattice to the 1D linear potential. The angle defined be-
tween one main axis of the vortex lattice and the direction of the 1D linear nanostructure θ changes
from 0° (right panel) to 30° (left panel). These provide, respectively, d = ma0 and d = n√(3)a0/2
with m, n integers, d the period of the 1D modulation and a0 the intervortex distance. The figure
shows the m = 1 (right) and n = 1 (left) cases. (c) Vortex lattice images taken in the area shown
in (a) showing commensurate configurations of the vortex lattice to the 1D surface modulation with
n = 1 at 0.05 T (left) and m = 5 at 0.25 T (right). Blue lines are the Delaunay triangulation. (d) Mag-
netic field dependence of θ at fields below 0.5 T. The vortex lattice oscillates between main com-
mensurate configurations shown in (b) with θ = 0° and θ = 30°. Figures adapted from [78].

modulations have been comparatively less studied. These are among the most inter-
esting cases because it is easy to control the orientation of the vortex lattice and the
ratio between the intervortex distance and the period of the potential. [80] define the
commensurability ratio p as p = d/a0, and the relative orientation between them,
given by the angle θ. Both parameters govern the coupling strength between the vor-
tex lattice and the 1D modulation.

So far it has remained very difficult to image vortex lattices in periodic pinning
potentials, because surface quality and corrugation modified the pinning landscape
away from the nanostructured geometries. [78] succeeded in creating a vortex lattice
in a well-defined 1D potential. The vortex lattice was imaged as a function of the mag-
netic field using STM. There are no additional pinning centers in their amorphous
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superconducting thin film. The sample is grown using the focus ion beam (FIB) de-
position technique and the 1D potential is provided by a smooth surface corrugation
created by the FIB during the fabrication process. The surface corrugation is below
1% of the total sample thickness and has a period of 400nm (Figure 1.13a). Authors
of this work find that the smooth 1D modulation of the thickness (red dotted lines in
Figure 1.13) acts as an effective pinning center in the low-field region (H < 0.4 T =
0.06Hc2) where the commensurability ratio p is below 5. Between 0.01 T and 0.4 T,
the orientation of the vortex lattice with respect to the linear surface modulation, θ,
changes as a function of the field. The lattice rotates between two configurations at
θ = 0° and θ = 30° that correspond, respectively, to matching conditions of the lattice
to the linear pinning potential given by d = n√3a0/2 and d = ma0, with n and m
being integers. A sketch of the configurations for m = n = 1 is shown in Figure 1.13b.
In the vortex lattice images authors identify, at some particular fields, vortex configu-
rations that clearly fulfil the matching conditions of the lattice to the periodic surface
landscape. For example, at 0.05 T the lattice is oriented parallel to the 1D modula-
tion with the intervortex distance satisfying d = n√3a0/2 for n = 2 (green hexagon
in Figure 1.13c, left panel). Whereas, at 0.25 T, θ = 30° with d = ma0 for m = 4
(yellow hexagons in Figure 1.13c, right panel). The discrete changes between the two
stable low-energy configurations at θ = 0° and θ = 30° are observed at the lowest
fields. In Figure 1.13c we show the magnetic field dependence of the relative orien-
tation between the lattice and the 1D potential given by the angle θ. Above 0.05 T,
the lattice does not re-orient sharply but its orientation oscillates smoothly. At higher
fields, above 0.4 T, the pinning due to the surface corrugation becomes negligible, be-
cause a0 becomes much smaller than d, a0 ≪ d and the elastic energy of the lattice
dominates the pinning potential.

1.3.6 Order-disorder transition

Very often, at high magnetic fields and/or high temperatures, close to the Hc2 line,
the vortex lattice disorders. The order-disorder transition is connected to the soften-
ing of the vortex lattice. The magnetic field becomes nearly homogeneous, so that
the strength of the intervortex interaction (which is of magnetic origin, see for exam-
ple [35]) decreases close to the Hc2 line. Then, the pinning strength overcomes the
vortex-vortex repulsive interaction and vortices adapt their position to the disordered
arrangement of pinning centers. A complete description of the order-disorder transi-
tion requires visualizing a large number of vortices at high magnetic fields, an ideal
playground for STM.

An important tool to quantify the degree of disorder in the vortex lattice is the
Delaunay triangulation (left panel in Figure 1.14a). It provides the bonds joining first
neighbors giving for each vortex its coordination number. In a perfect hexagonal lat-
tice, all vortices have six first neighbors, i.e., they all have a coordination number
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equal to 6. Vortices with a coordination number different from 6 are defects of the per-
fect hexagonal vortex lattice. The most common defects are isolated 5-fold or 7-fold
vortices, called disclinations, and bound pairs of them, called dislocations. A quanti-
tative description of the disorder in the vortex lattice can be found by calculating the
translational and orientational correlations functions, GK(r) and G6(r) (right panels
in Figure 1.14a). These quantify the distance dependence of the weakening of, respec-
tively, translational and orientational correlations in the vortex positions. GK(r) and
G6(r), are defined from the translational and orientational order parameters, ΨK(r)

Fig. 1.14: (a) Left panel shows Delaunay triangulation of a vortex lattice image taken at 1.2 T in the
region shown in Figure 1.13a. Right panel shows positional and orientational correlation functions,
GK (r) and G6(r). Red lines are fits to power law decays. (b) Actual vortex positions obtained from
(a) (magenta) and the calculated perfect hexagonal lattice (blue). The perfect hexagonal lattice has
been rotated and translated to minimize the average mean square deviation with respect to the
measured vortex lattice (see text for details). The gray scale corresponds to the spatial variations of
the relative displacement between them, u(r). This changes according to the histogram shown in
the top right panel of (b). Bottom right panel of (b) shows the relative displacement correlator B(r).
Red and dark lines are fits as described in the text.

Unauthenticated
Download Date | 10/10/17 9:41 AM



1.3 Mapping the superconducting condensate at large scales | 53

and Ψ6(r), as
GK(r) =< ΨK(r)Ψ∗

K (0) >= 1
6

6∑
l

1
n(r) n(r)∑

i,j
ΨKl (ri)Ψ∗

Kl
(rj) , (1.2)

ΨKl (ri) = eiKlri , (1.3)

G6(r) =< Ψ6(r)Ψ∗
6 (0) >= 1

n(r) n(r)∑
i,j

Ψ6(ri)Ψ∗
6 (rj) , (1.4)

Ψ6(ri) = 1
niN

niN∑
k
ei6θ(rik) , (1.5)

where r is the distance of any lattice site to the origin, n(r) is the number of vortex pairs
separated by a distance r, niN is the number of the nearest neighbors of the vortex i
as given by the Delaunay triangulation, Kl stands for each of the six main reciprocal
lattice vectors and θ(rik) is the angle of the nearest-neighbors bond between vortices i
and j with respect to the reference axis. The six main reciprocal lattice vectors K are
given by the position of the Bragg peaks in the Fourier transforms of the vortex lattice
images.

The envelope of GK(r) and G6(r) for a perfect hexagonal lattice is equal to 1 and
independent of the distance. The presence of defects in the lattice, such as disloca-
tions or disclinations, produces a decay with r. Slow decay following a power-law de-
pendence evidences quasi-long range order. Fast exponential decaying correlations
evidence short range order.

The relative displacement correlator B(r) is defined as B(r) = ⟨[u(r) − u(0)]2⟩/2.
u(r) = r − rp is the displacement of each vortex at r relative to its position in the
perfect lattice rp. Within a Gaussian disorder potential, B(r) is related to GK(r) by
B(r) = e−K2B(r)/2.

To calculate B(r) requires generation of a perfect hexagonal lattice. This is com-
pared to the real vortex arrangements so that deviation between them given by⟨|u(r)|2⟩ is minimized with respect to translation and rotation to obtain the best
match between the two arrangements. Figure 1.14b (right panel) shows the real vortex
positions (magenta) and the calculated perfect hexagonal lattice that minimized de-
viations with respect to them (blue) for the vortex lattice image shown in Figure 1.14a.
The positions for the perfect lattice obtained after minimization are used to compute
the histograms and maps of the relative displacement, u(r), shown, respectively, in
the right panel and as the color code in the map shown in the left panel. The relative
displacement correlator B(r) is shown in the bottom inset in Figure 1.14b. The distance
dependence of B(r) is used to distinguish among different possible crossover effects
when increasing distance. Generally speaking, at short distances we find the random
manifold regime with B(r) ∼ r−2ν. Here vortices explore many minima in the energy
landscape but dono compete against eachother, i.e., each vortex sees an independent
random potential. At larger distances the vortex periodicity starts to play a role, and
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Fig. 1.15: (a) Vortex lattice images obtained in an amorphous superconducting thin film at 0.1 K.
Vortices with five and seven nearest neighbors are identified by green and orange points. Disloca-
tions formed by five and seven nearest neighbor pairs of vortices are identified by black triangles,
pairs of dislocations by black rectangles and isolated disclinations by black circles. Figure adapted
from Ref.[78]. (b) Vortex lattice images obtained in LiFeAs at 1.5 K. Vortices with five nearest neigh-
bors are marked by blue triangles, with seven nearest neighbors by red squares and others by green
stars. Figure adapted from [81]. c) Vortex lattice images obtained in Co0.012NbSe2 at 1.8 K. Triangles
are vortices with five nearest neighbors and squares with seven. Figure adapted from [82].

B(r) grows more slowly following a logarithmic dependence in the so-called asymp-
totic regime. The exponents characterizing the dependence of B(r) in the different
regimes depend on the type of disorder and the dimensionality of the vortex lattice.

The work of [78] characterizes the order-disorder transition in detail for a 2D vor-
tex lattice. The disorder potential is not due to pinning centers, but to scale-invariant
quasi-random potential from the correlations resulting from an incommensurate ar-
rangement of the vortex lattice and the 1D modulation.
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Figure 1.15a shows three representative vortex lattice images obtained across the
transition. The ordered vortex lattice at low fields becomes gradually disorderedwhen
increasing the magnetic field. Authors find that the transition occurs in two steps and
determine the critical exponents from the distance dependence of correlation func-
tions directly obtained from the vortex positions. Uncorrelated long-range disorder
produced by the linear surface corrugation drives the transition. For the first time, the
local disorder potential and the disorder in the vortex lattice have both been identified
separately using STM imaging.

The order-disorder transition has been also observed in crystalline superconduc-
tors. The origin for the disorder potential could not be determined and is probably pin-
ning by randomly distributed impurities or defects. Figure 1.15b and c show triangu-
lated vortex lattices as a function of magnetic field in, respectively, LiFeAs by [81] and
Co0.012NbSe2 by [82]. In LiFeAs, disorder in the latticemight be produced bynative de-
fects in the crystalline structurewhen the lattice softens close toHc2. In Co0.012NbSe2,
disorder in the vortex lattice images is correlated with macroscopic magnetization
measurements.

1.4 Conclusions

The STM is useful to understand relevant concepts of condensed matter physics by
making vivid and visual images. It is a looking glass into a landscape that provides in-
sight by showing electronic behavior at length scales from atomic to the macroscopic
regime. Incrementing the amount of data points in images is one of the key issues to
obtain such an insight. Another one, providing access to electronic behavior, is to do
microscopy in a controlled very low-temperature environment.
We have shortly reviewed how to obtain atomic-scale information about the super-
conducting gap by using atomic-scale spectroscopy and spectroscopy on electronic
wavefunctions scattered by defects.We have then shown the results obtained at scales
of the order of the superconducting coherence length, highlighting the appearance of
localized states inside vortex cores. Finally, we have addressed the features of the vor-
tex lattice up to micron length scales and have given techniques needed to analyze
large-scale images of vortex matter.

We consider that one relevant challenge is now to control, in situ, the electronic
properties of the sample. For example, to be able to tune a superconductor through
a quantum phase transition by measuring as a function of the magnetic field or by
applying a gate voltage – and explore the multiple length scales expected in there.

Another relevant challenge is to obtain real-time visualization of ultrafast pro-
cesses. This can be seen as quite far fetched today. We believe however that it might
be possible to design pump-probe like STM experiments for low temperatures. Such
experiments can provide real-time imaging of vortex motion or electronic relaxation.
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