
1

Structure of the Program:

Program Program_name;

Uses

Const

Type

Var

- name of the program

- modules (uses, crt,…)

– description of constants

– description of types

– description of variables

Procedure Procedure_name{({Var} x:type)}; -

Var

Begin

<body of the procedure>

End;

Description of a procedure, which could include

some arguments.

- May include embedded (nested) procedures

and functions

- Is executed by calling its name

Function Function_name({Var} x:type1):type2

Var

Begin

<body of the function>

Function_name≔z;

End;

Description of a function, which could include

some arguments.

- type of the result MUST be specified

- May include embedded (nested) procedures

and functions.

- A value MUST be assigned to the function

- Function is executed by calling its name or

- Its result is assigned to a variable

BEGIN

<body of the program>

END.

Main program body

Global and Local variables. Arguments for procedures and functions.

Procedures and functions operate with local and global variables. The values assigned to

variables can be changed. Local variables are available only to the procedure (function) in which

they are declared, or to embedded procedures (functions)

Procedure P1;

Function F1:type;

- no arguments used

- such procedures (functions) always do the same

operations applied to the variables listed in the

procedure (function) body

Procedure P2(x:type);

Function F2(x:type1):type2;

 - value-parameter(s) is (are) used as the

argument(s) of the procedure (function)

- the procedure (function) uses this value, but

does not change the variable to which this value

is assigned

Procedure P3(Var x:type);

Function F3(Var x:type1):type2;

- variable-parameter(s) is (are) used as the

argument(s) of the procedure (function)

- the procedure (function) uses this value and is

able to change the variable to which this value is

assigned

2

Syntactic constructions

While <condition>

 do

Begin

<loop body>

End;

Repeat

Begin

< loop body >

End

Until < condition >;

- loop can be embedded into the parent loop

- condition can be compound (complex), i.e. it

can include simple conditions combined by the

logic operators

For i≔x1 to (downto) x2 do

Begin

< loop body >

End;

Case X of

X1: Begin <…> End;

X2: Begin <…> End;

…

Xn: Begin <…> End;

Case (choice) operator:

In case if Х =

Х1 – <list of operators>

…

String data type

Var s:string; {length = 255}

 s1: string [20];

 s2: array [1..n] of string;

Functions:

length(s);

copy(s,n,m) – from s, m elements, starting from n

pos(s1,s2) – finds if s1 is included in s2, returns

position of the first inclusion

concat(s1,s2) - concatenation

read(s), write(s) – reading and writing

read(f,s), write(f,s) – reading (writing) from (to) file

Procedures:

Delete(s,n,m) – from s, m elements, starting from n

Insert(s1,s2,n) – inserts s1 into s2, starting from n

Str(n,s) – converts number n into string s

Val(s,n,k) – converts string s into number n, k – index

of the conversion error in case of erratic conversion,

k=0 if the conversion was correct

Symbol data type:

 Var c:char;

chr(x) – returns a symbol corresponding to the code x.

ord(ch) – returns a code corresponding to the symbol ch

Pred(cр) – returns the preceding symbol

Succ(ch)r – returns the next symbol

Recurrence – function or procedure addressing itself:

Function Factorial(n:integer):longint;

 Var i:byte;

 Begin

 if (n=0) or (n=1) then Factorial:=1

 else Factorial:=n*Factorial(n-1);

 End;

Debugging the program:

Debug → Add Watch <list variables which values you want to monitor during the debugging>

→ Watches

Execute the program step-by-step:

F7 – with access to the procedures and functions,

F8 – without access to the procedures and functions

3

One-dimensional arrays. Searching the array. Sorting the elements of the array.

One-dimensional array – a finite set of elements, each of them has its one value and position:

(A = [a1, a2,..ai,..an]). Each element can be addressed by the array name and position of that

element.

Declaring of an array of n elements of the same type:

Type MyArray = Array [1..10] of Integer;

Type DArray = Array [1..n, 1..m] of

Integer;

Var A: MyArray; Var A1: DArray;

- Type – syntax word;

- MyArray –name of the array;

- Description of the array;

Var B: array [1..10] of Integer;

Var B1: array [1..n, 1..m];

Const D: array [1..10] of integer = (a[1],

a[2],…a[n])

In order to output an array (on the screen or into a file) usually a loop is used,

organized as a procedure (function):

Procedure Print(A:mas);

Var i:byte;

Begin

For i≔1 to n do write(a[i]:2:2,’ ‘);

End;

write(x:2:2); - formatted output,

where number of integer and

fractional digits is fixed.

Methods of forming an array:

1) From the keyboard: for i:=1 to n do ReadLn(a[i]);

2) Reading from a file: for i:=1 to n do Read(f, a[i]); here f is a file variable of text

type, to which the file of interest is assigned:

f:text;

To “talk” to the file:

1) Connect the file to the file variable: assign(f, ‘filename.txt’);

2) Open file for reading/writing/adding:

- reset(f); - open for reading data from the file

 - rewrite(f); – open for writing data into the file

 - append(f); - open for adding data into the file

3) Close the file: close(f)

4) Logic functions, which determine end of the file / end of the line:

 eof(f), eoln(f)

3) Random array:

Randomize;

for i:=1 to n do a[i]:=x0+(Random(x1)); (a:=Random(x1)  a:=X, 0 ≤ X < x1).

4

Searching the arrays. Sorting the elements of the array. Efficiency of the sorting algorithms.

Searching in an ordered (presorted) array by the bisection method.

Simple methods of sorting an array.

1) Simple swap (bubble method)

- look through the array of n elements, if a[i] > (<) a[i+1], then swap their positions;

 - look through the array of n-1 elements: i:=1..n-1;

Number of comparisons N-i at each i step, total number of steps – N-1, hence

complexity of the algorithm is С = N*(N-1)/2 => C = O(N
2
)

2) Selection sort.

 - find max (min) element of the array, swap its position with the position of the first (last)

element of the array, now the max (min) element is on its position;

 - find next max (min) element, put it on its position;

Number of comparisons : 1-st run – N-1, 2-nd run – N-2,…,hence

complexity of the algorithm is С = N-1 + N-2 +…+1 = N*(N-1)/2 => C = O(N
2
)

3) Insertion sort.

- assume, that a part of the array containing i-1 elements at the i-step is presorted;

 - take element on the i-position and put it on its position in the presorted part of the array;

complexity of the algorithm is C = N*(N-1)/2 => C = O(N
2
)

Methods of fast sorting

1) Sort by merging

2) “Fast sort” of Hoare (Hoare, 1960)

3) Heap sort.

Some standard functions

Some standard types of data

Function Result
 Name of the

type

(Identifier)

Size

(bytes)
Value range

sqr(x)

sqrt(x)

sin(x), cos(x),

arctan(x)

abs(x)

exp(x)

int(x)

frac(x)

round(x)

trunc(x)

a mod b

a div b

x
2

x
1/2

|x|

e
x

integer part of the value

fractional part of the value

rounding the number

truncating the fraction

residue from division

(division remainder)

integer division (quotient)

 Integer types

Byte 1 0..255

Shortint 1 -128..127

Integer 2 -32768..32767

Word 2 0..65535

Longint 4 -2147483648..2147483647

Real types

Real 6 2.9×10
-39

 – 1.7×10
38

Single 4 1.5×10
-45

 – 3.4×10
38

Double 8 5×10
-324

 – 1.7×10
308

Extended 10 3.4×10
-4932

 – 1.1×10
4932

Logic type

Boolean 1 {true; false}

Symbol type

Char 1 all symbols presented in ASCII

