

Plotting with gnuplot

Xiaoxu Guan High Performance Computing, LSU September 28, 2016

Overview

- What is gnuplot and what can gnuplot do for us?
- Fundamental concepts in gnuplot
- Plot functions, curves, points, ...
- Built-in functions and functions user defined
- Customize axes, labels, and legends
- Other types of 2D plots
- Gnuplot with data files
- Borders and multiple plots
- Customize postscript plots
- Three-dimensional and contour plots
- Further reading

What is gnuplot?

- Gnuplot is one of the open-source cross-platform plotting systems;
- Note **gnuplot** is NOT a **GNU** project;
- It was written in C/C++, and other languages;
- Gnuplot is mostly a **command-line** driven plotting program;
- It supports many output formats of figure: (E)PS, PDF, SVG, ${\rm I\!AT}_E\!{\rm X},$ PNG, \ldots
- Gnuplot is an implementation and a scripting system as well;
- It supports both batch and interactive modes;
- Gnuplot is a backbone of many other GUIs tools: Maxima, GNU Octave, Kayali, ...;
- It can be called by Perl, Python, Ruby, Fortran 95, ...;
- It has widely been used to create publication-quality figures;

Fundamental concepts in gnuplot

- Remember that gnuplot is a command-line driven program.
 It can also be thought as a scripting system;
- All the commands are case sensitive. They may be abbreviated as **short** as they are not ambiguous;
- Like shell scripting, gnuplot uses **#** as comments;
- Gnuplot reserves the backslash (\) as the character of line continuation;
- Plot on a **canvas**:

```
set terminal { <type of terminal> <options> }
```

```
set size x,y
```

```
set output "file.name"
```

• Type of **terminals**: png, jpeg, postscript, pdf, latex, pslatex, epslatex, svg, x11, and many others;

Fundamental concepts in gnuplot Different terminals may have different settings; set terminal postscript portrait size 6, 4 \setminus enhanced monochrome "Helvetica" 16 set output "figure1.ps" # size in inch # absolute size set term png size 600, 400 # scale factors set size 0.5, 0.4 # size in pixel set output "figure2.png" set term pslatex color dashed dl 4 15 set size 1.0, 2.0 # size in inch set output "figure3.tex" set term pdf color rounded linewidth 4 set output "figure4.pdf" # size in 5 inches by 3 inches Use help command within gnuplot; **Information Technology Services**

LSU HPC Training Series, Fall 2016

& TECHNOLOGY

• **plot** is the primary command for 2D figures;

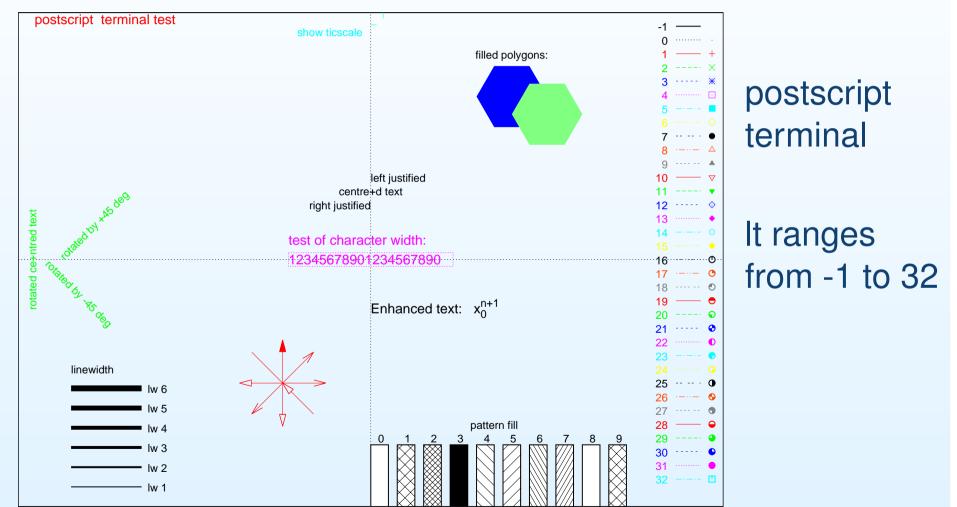
plot <ranges> <iteration> \
 <function> | "<datafile>" datafile-modifiers \
 axes <axes> <title-spec> with <style> ...

set xrange [a:b]
set yrange [c:d]

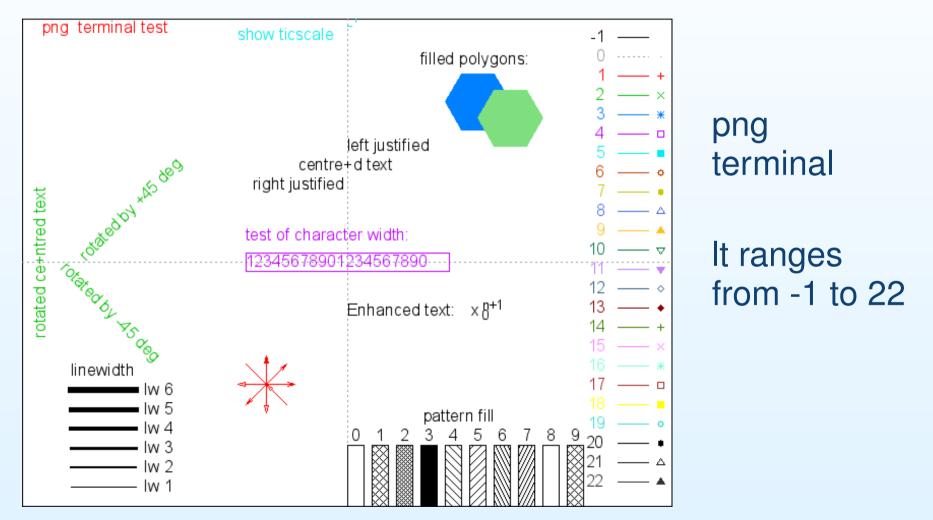
 Note that functions can be built-in or user defined (lt=linetype and lw=linewidth);

• Define two parameters a, b, and the function my_fun(x);

Built-in functions


 Gnuplot supports many built-in functions: 			
Function	Description		
$\log(x)$	log function of x in natural base (e)		
$\log 10(x)$	like the above, but in base 10		
rand(0)	generator of pseudo random numbers (real)		
sqrt(x)	\sqrt{x}		
a**b	a^b		
exp(x)	e^x		
sin(x)	$\sin(x)$		
tan(x)	$\tan(x)$		
abs(x)	$\operatorname{abs}(x)$		
sgn(x)	+1 if x > 0, or -1 if x < 0		
gamma(x)	$\operatorname{gamma}(x)$		

- How to control linetype, linewidth, or linecolor, ...:
- Again, this is terminal dependent: run command test;



- How to control linetype, linewidth, or linecolor, ...:
- Again, this is terminal dependent: run command test;

- How to control linetype, linewidth, or linecolor, ...:
- Line colors can be represented either in name or in hex;

plot sin(x) lc rgb "blue" lt 1 lw 4, \
 tan(x) lc rgb "#800000" lt 2 lw 2 # dark brown

 Gnuplot allows us to define user-specified line style (ls): it can be reused once defined;

```
set style line 1 lt -1 lc rgb "orange" lw 2
set style line 2 lt 0 lc rgb "red" lw 3
set style line 3 lt 1 lc rgb "cyan" lw 4
plot sin(x) ls 1 title "orange", \
    tan(x) ls 2 title "red",\
    tan(x)*sin(x) ls 3 title "cyan" \
    (x*x-x+2)*sin(x) ls 3 title "cyan"
```

• Note line color can also be a variable;

Information Technology Services LSU HPC Training Series, Fall 2016

p. 10/27

- What about point type or size?
- Again, it depends on terminals: run test;

plot sin(x) with points pt 2 ps 3
plot sin(x) with p pt 4 ps 3

How to add points on lines?

plot cos(x) with linespoints lt 1 lw 2 \
 lc rgb "blue" pt 2 ps 3
plot cos(x) with lp lt 1 lw 2 \
 lc rgb "green" pt 4 ps 2

• Generalize the definition of line style:

Customize axes, labels, and legends

- By default, gnuplot automatically draws axes, tics, labels, legends (also known as keys), etc;
- Gnuplot also allows us to customize them;

set xrange [1:200] ; set yrange [-1:1]

Control the axis tics:

set xtics 50 ; set ytics 0.2 # main tics
set mxtics 5 ; set mytics 2 # minor tics
set xtics add (1)
manually add label 1 on the x axis

• Control the length of tics:

set tics scale 2.5# main x and y tics scalesset xtics scale 2.5# main xtics scaleset ytics scale 2.5# main ytics scale

Customize axes, labels, and legends Sometimes we might want to draw tic marks outwards; set xtics scale 1.5 out # default is in • Control the axis labels (note offset): set xtics font "Times New Roman, 12" # font and size set xlabel "Number of cores" offset 0.0, 0.3 # specify the x-axis label # specify the y-axis label set ylabel "Speedup" Control the formats of labels: # format of y labels set format y "%3.1f" # y tics in \log_{10} set log y # y in 10^{k} set format y "\$10^{%01T}\$" Cancel it? (using unset) unset $\log y$ # cancel the \log setting of the y axis Information Technology Services

LSU HPC Training Series, Fall 2016

& TECHNOLOGY

Customize axes, labels, and legends

How to control keys (legends):

unset key # don't draw the keys
set key at -5, 0.8 # draw the keys at the coordinates
set key at 0, 1.5 spacing 0.9 samplen 2
draw the keys with specified line properties

• Add labels:

```
set label 1 at -1,0.2 "This is the first lobe"
set label 2 at 2,0.8 "T=0.4 a.u."
# define labels 1 and 2
```

Draw arrows:

set arrow 1 from 1,0.4 to 3.5, 2.9 \
nohead filled lt 2 lw 1 lc rgb "blue" back
set arrow 2 from -1,0.0.2 to 0.5, 4.0 \
head filled lt 2 lw 1 lc rgb "dark-green" back

Other types of 2D plots

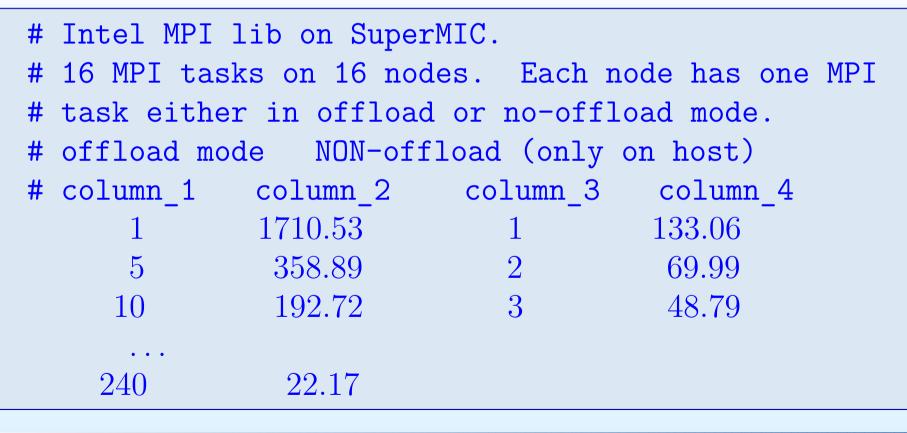
- Gnuplot supports many other types of 2D plots;
- Let's consider the polar plot:

```
set dummy t
set trange [0:pi*0.5]
set polar
plot 2-sin(t) lw 4
# define a dummy variable t and plot a function y(t)
```

 Gnuplot also supports bar plots, pie plots, error bars, loading binary figures, multiple axes, filling space between lines and other features;

```
plot "lsutiger.png" binary array=(128,128) ...
plot "myfigure" binary ...
```

• Let's see how gnuplot can handle data files;



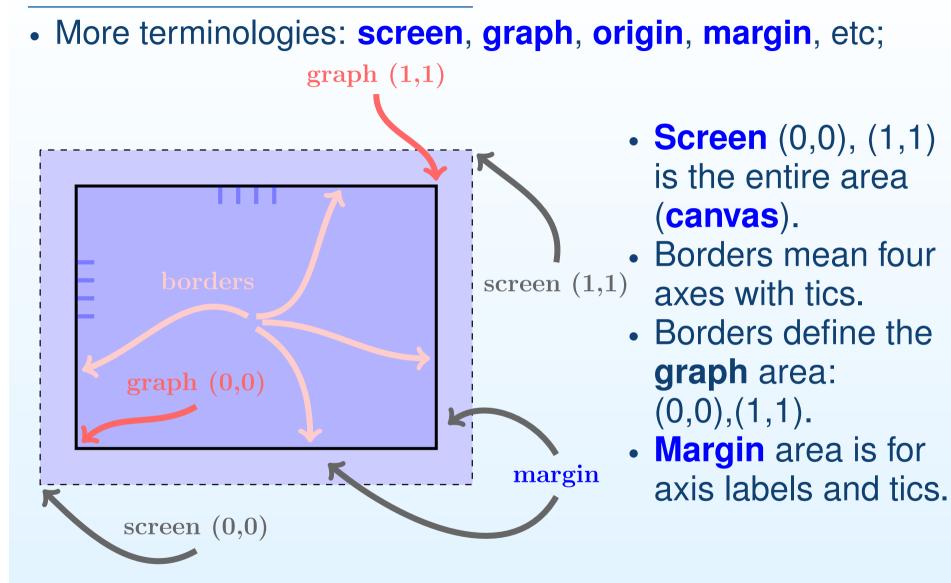
Gnuplot with data files

- For 2D plots, the textual data file can be in the format of multiple columns. Both floating numbers and scientific notation (1.4E-2 or 2.6e+10) are recognizable;
- Add # in your data files whenever necessary for comments;

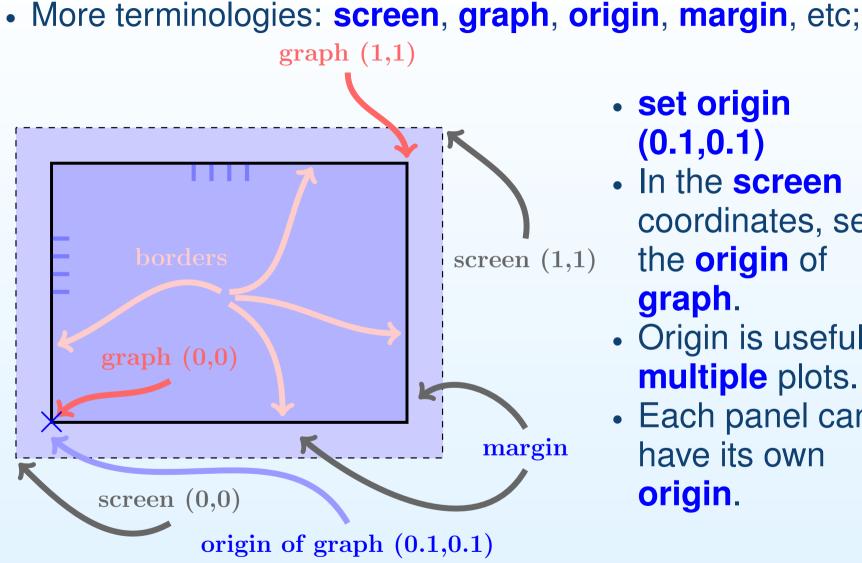
Gnuplot with data files

- What we want is to plot the speedup $(S_n = T_1/T_n)$ against the number of threads on MIC and CPU;
- Column index starts from 1;

```
tmic = 1710.53 ; tcpu = 133.06
plot "timing.dat" using 1:2 w l lt 2 lw 3
plot "timing.dat" u 1:(tmic/$2) w l lt 2 lw 3
```


- Multiple lines on the same plot. If necessary, we can use the same or other data files;
- Gnuplot supports the **path** in filename as well;

```
tmic = 1710.53 ; tcpu = 133.06
plot "timing.dat" u 1:(tmic/$2) w l lt 2 lw 3, \
"" u 3:(tcpu/$4) w l lt 3 lw 2 \
pt 2 ps 3  # add points
```

• What about the origin?

- set origin (0.1, 0.1)
- In the screen coordinates, set
- the origin of graph.
 - Origin is useful to multiple plots.
 - Each panel can have its own origin.

- Borders in gnuplot mean four axes;
- Gnuplot allows us to control four borders using mask values;

set border <options> # define borders

• Mask values: bottom is 1, left 2, top 4, and right 8.

unset border	# important!			
set border 3	# draw bottom and left axes (3=1+2)			
set border 7	# draw bottom, left, and top axes $(7=1+2+4)$			
set border 15	# same as the default			
show border				

Note the above setting has nothing to do with tic marks;

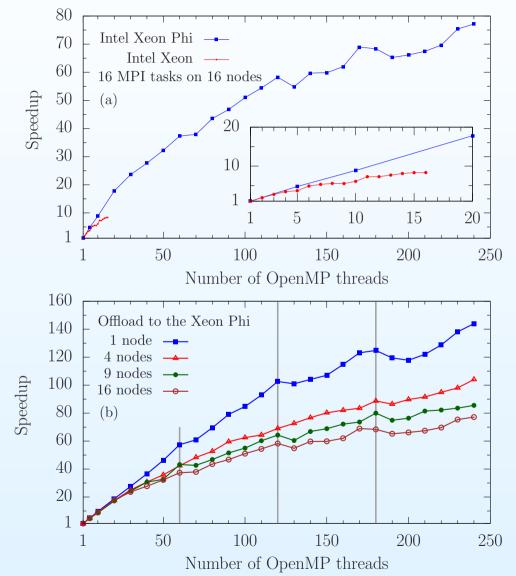
set	xtics	nomirror	# turn off x tics mirror
set	ytics	nomirror	# turn off y tics mirror

Borders are drawn on the top of all plot elements (default);

- On the same canvas, draw multiple plots on several panels;
- We may organize plots in terms of m × n (# rows × # cols) panels. Each panel may be customized separately;

set multiplot	# only once			
set origin 0,0	# for the canvas or a panel			
# the first panel				
set origin 0.5/5.	0, -1.5/3.5			
set lmargin O	# left margin			
set rmargin O	<pre># right margin</pre>			
set tmargin O	# top margin			
set bmargin O	<pre># bottom margin</pre>			

the second panel set origin 0.5/5.0, 0.0/3.5



• • •

• The output of the script **multiplot.gpl**:

- The terminal is **pslatex**.
- Define a canvas first on which all panels will be drawn.
- Generally, we can use set multiplot to organize multiple panels in any way we want.
- Each panel can have its own origin, size, and margins, etc.

 The data file needs to be **blocked** and each block separates by a blank line:

 $x_1 \ y_1$ z_{11} $x_1 \ y_2$ z_{12} $x_1 \ y_3$ z_{13} . . . $x_1 y_{\max} z_{1\max}$ [blank line] $x_2 \ y_1$ z_{21} $x_2 \ y_2$ z_{22} $x_2 \ y_3$ z_{23} . . . $x_2 y_{\text{max}} z_{2\text{max}}$ [blank line]

- A blank line between blocks.
- Whitespace between columns.
- The sequence of columns is irrelevant.
- It is better to use the terminal of postscript (or other vector terms).
- In most cases, contour plots are more useful.
- The gnuplot command is splot <options>

. . .

- Gnuplot supports "heat map" plot;
- Color mapping is used to represent one of the columns;

```
set term postscript enhanced color rounded 21
set pm3d map
set size square
```

• The **splot** syntax:

```
splot "myfile_1.dat" u 1:2:3
splot "myfile_2.dat" u 2:1:3
splot "myfile_3.dat" u 2:1:$3/1.e-4
splot "myfile_4.dat" every 2 u 2:1:($3)/1.e-4
```

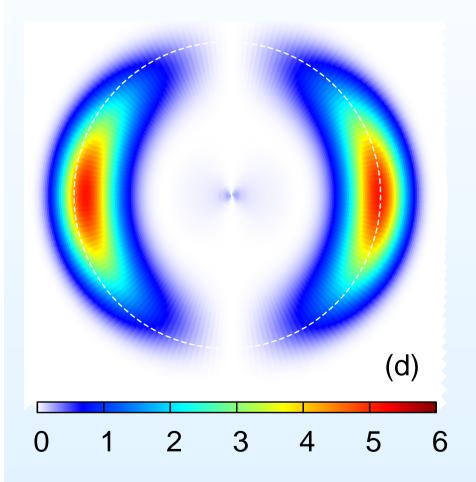
• Control **colorbox**:

set colorbox horizontal user \
origin 0.2,0.11 size 0.62,0.015

also vertical

Information Technology Services LSU HPC Training Series, Fall 2016

p. 24/27


- We now know how to control the position and orientation of colorbox, etc;
- Let's consider the color scheme: palette;
- Some useful examples of palette:

```
set palette rgb 21,22,23 # hot (black-red-yellow-white)
set palette negative rgb 21,22,23
set palette rgb 33,13,10
    # rainbow (blue-green-yellow-red)
set palette rgb 34,35,36
    # AFM hot (black-red-yellow-white)
```


The output of map3d.gpl:

- set multiplot
- set size square
- set pm3d map
- unset border

. . .

. . .

- set colorbox ...
- set palette defined
- splot 'map3d.dat'
 every 2 u
 - (\$1)*sin(\$2) :
 - (\$1)*cos(\$2) :
 - (\$3)/(\$1)/(\$1)/1.e-4

LSU INFORMATION TECHNOLOGY SERVICES

- Gnuplot homepage: http://www.gnuplot.info
- Not So FAQs: http://lowrank.net/gnuplot/index-e.html
- Also a good one: http://www.gnuplotting.org

Questions?

sys-help@loni.org

