Computational Physics

Ordinary Differential Equations

Numerically

Ordinary Differential Equation (ODE)

y' = f(x, y)

 $y(x_0) = y_0$ Initial (border condition)

To solve ODE, means to find y(x) - aka Cauchy problem

Approximate Methods:

- analytical
- graphical
- numerical

Picard Method is an iterative method, and gives approximate solution in the analytical form

y' = f(x,y) $\int_{y_0}^{y} dy = \int_{x_0}^{x} f(x, y) dx$ $y(x_0) = y_0$ $y(x) = y_0 + \int_{x_0}^x f(x, y) dx$ $y(x_0) = y_0 + \int_{x_0}^{x_0} f(x, y) dx = y_0$ **for** $x = x_0$: $y_1(x) = y_0 + \int_{x_0}^x f(x, y_0) dx$ *let* $y = y_0$: aka $y_2(x) = y_0 + \int_{x_0}^x f(x, y_1) dx$ Iterative procedure Method of successive iterations Convergence method $y_n(x) = y_0 + \int_{x_0}^x f(x, y_{n-1}) dx$ Cut-and-try method

© Y. Lobanov, Moscow State Pedagogical University, 2021

3

*y*₀

Picard Method is an iterative method, and gives approximate solution in the analytical form **Example** $y_n(x) = y_0 + \int_{x_0}^x f(x, y_{n-1}) dx$

$$y' = \frac{dy}{dx} = x^2 + 3y$$
 \longrightarrow $y_1(x) = y_0 + \int_{x_0}^x f(x, y_0) dx$

 $y(x_0=0)=2$

$$y_1(x) = 2 + \int_0^x (x^2 + 3 \cdot 2) dx = 2 + \frac{x^3}{3} + 6x$$

$$y_2(x) = 2 + \int_0^x \left(x^2 + 3 \cdot \left(2 + \frac{x^3}{3} + 6x \right) \right) dx = 2 + 6x + \frac{x^4}{4} + 9x^2 + \frac{x^3}{3}$$

$$y_3(x) = 2 + \int_0^x \left(x^2 + 3 \cdot \left(2 + 6x + \frac{x^4}{4} + 9x^2 + \frac{x^3}{3} \right) \right) dx = \cdots$$

Euler Method is an iterative method, and gives approximate solution in the graphical and table form

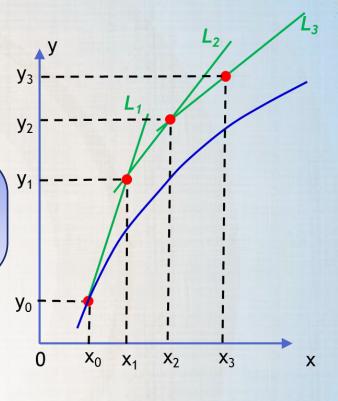
$$y' = f(x,y)$$

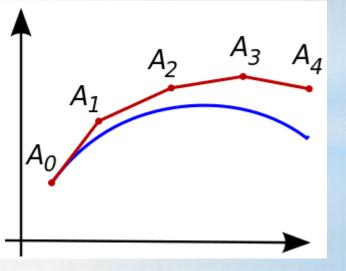
$$y(x_0) = y_0$$

$$y_{k+1} = y_k + \Delta y_k$$

Introduce step $h: x_i = x_0 + i \cdot h$

Tangent line L₁: $y = y_0 + f(x_0, y_0) \cdot (x - x_0)$ **for** $x = x_1 : y_1 = y_0 + h \cdot f(x_0, y_0)$ $\Delta y_0 = h \cdot f(x_0, y_0)$ **Tangent line L₂:** $y = y_1 + f(x_1, y_1) \cdot (x - x_1)$ **for** $x = x_2 : y_2 = y_1 + h \cdot f(x_1, y_1)$ $\Delta y_1 = h \cdot f(x_1, y_1)$





5

Euler Method is an iterative method, and gives approximate solution in the graphical and table form

Example

h = 0.2

y' = cos y + 3x y(x₀ = 0) = 1.3 [0; 1] choose step

k	X _k	У _к	$\Delta y_k = h \cdot [\cos(y_k) + 3x_k]$
0	0	1.30	0.05
1	0.2	1.35	0.16
2	0.4	1.52	0.25
3	0.6	1.77	0.32
4	0.8	2.09	0.38
5	1.0	2.47	

$$\begin{cases} \Delta y_k = h \cdot f(x_k, y_k) \\ y_{k+1} = y_k + \Delta y_k \end{cases}$$

Euler Method is an iterative method, and gives approximate solution in the graphical and table form

$$\begin{cases} \Delta y_k = h \cdot f(x_k, y_k) \\ y_{k+1} = y_k + \Delta y_k \end{cases}$$

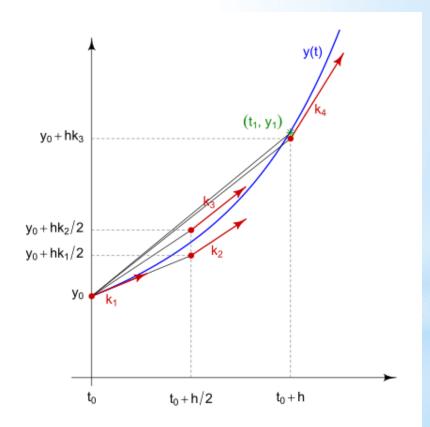
$$\begin{cases} y_{k+1}^* = y_k + h \cdot f(x_k, y_k) \\ y_{k+1} = y_k + h \cdot \frac{f(x_k, y_k) + f(x_{k+1}, y_{k+1}^*)}{2} \end{cases}$$

Runge - Kutta Method is an iterative method, and gives approximate solution in the graphical and table form

Introduce step $h : x_i = x_0 + i h$ y' = f(x,y) $V(x_0) = Y_0$ $y_{i+1} = y_i + \frac{1}{6} \cdot (k_1 + 2(k_2 + k_3) + k_4)$ $k_1^{(i)} = h \cdot f(x_i, y_i)$ $k_{2}^{(i)} = h \cdot f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{1}^{(i)}}{2}\right)$ $k_{3}^{(i)} = h \cdot f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{2}^{(i)}}{2}\right)$ $k_4^{(i)} = h \cdot f(x_i + h, y_i + k_3^{(i)})$

Runge - Kutta Method is an iterative method, and gives approximate solution in the graphical and table form

*k*₁ is the slope at the beginning of the interval, using *y* (Euler's method); *k*₂ is the slope at the midpoint of the interval, using *y* and *k*₁; *k*₃ is again the slope at the midpoint, but now using *y* and *k*₂; *k*₄ is the slope at the end of the interval, using *y* and *k*₃.



Runge - Kutta Method is an iterative method, and gives approximate solution in the graphical and table form

Example 1

y' = y(1 - x)y(0) = 1[0;1] $y' = x + y (x)^{1/2}$ y(0) = 0[0.0;0.6]

Example 2

To do:

✓ Training tasks
 ✓ Physics tasks (simple ones)
 ✓ Physics tasks (advanced ones)

Training tasks

Solving ODE Numerically

1. $y' = 3 + 2x - y$ $y(0) = 2$, $x \in [0; 1]$, $h = 0.2$	21. $y' = 3 + 2x + y$ $y(0) = 2$ $x \in [0; 1]$ $h = 0.2$
2. $y' = y - 3x$ $y(1) = 0$ $x \in [1; 2.2]$ $h = 0.3$	22. $y' = 2y - x$ $y(1) = 0$ $x \in [1; 2.2]$ $h = 0.3$
3. $y' = 1 - x + y$ $y(1,1) = 0$ $x \in [1.1; 1.6]$ $h = 0.1$	23. $y' = -x + y$ $y(1,1) = 0$ $x \in [1.1; 1.6]$ $h = 0.1$
4. $y' = y - 7x$ $y(3) = 3$ $x \in [3; 5]$ $h = 0.5$	24. $y' = y - 7x + 2$ $y(3) = 3 x \in [3; 5]$ $h = 0.5$
5. $y' = 5 - y + x$ $y(1) = 1$ $x \in [1; 5]$ $h = 1$	25. $y' = 5 - y + x$ $y(1) = 1$ $x \in [1; 5]$ $h = 1$
6. $y' = y - 2x + 3$ $y(0) = 4$ $x \in [0; 1]$ $h = 0.2$	26. $y' = y - 2x + 3$ $y(0) = 4$ $x \in [0; 1]$ $h = 0.2$
7. $y' = 4 - x + 2y$ $y(0) = 1$ $x \in [0; 1.2]$ $h = 0.3$	27. $y' = 4 - x + 2y$ $y(0) = 1$ $x \in [0; 1.2]$ $h = 0.3$
8. $y' = -8 + 2x - y$ $y(1) = 3$ $x \in [1; 3]$ $h = 0.4$	28. $y' = -8 + 2x - y$ $y(1) = 3$ $x \in [1; 3]$ $h = 0.4$
9. $y' = 2y - 3x$ $y(4) = 0$ $x \in [4; 6]$ $h = 0.5$	29. $y' = 2y - 3x$ $y(4) = 0$ $x \in [4; 6]$ $h = 0.5$
10. $y' = x - 2y$ $y(-1) = 1$ $x \in [-1; 2]$ $h = 0.6$	30. $y' = x^2 - 2y$ $y(-1) = 1$ $x \in [-1; 2]$ $h = 0.5$
11. $y' = 7 - xy$ $y(-2) = 0$ $x \in [-2; 0]$ $h = 0.5$	31. $y' = 5 - x - 2y$ $y(1) = 2$ $x \in [2; 4]$ $h = 0.5$
12. $y' = 2x + y$ $y(2) = 2$ $x \in [2; 3.5]$ $h = 0.5$	32. $y' = y + 3x - 2$ $y(1) = 2$ $x \in [1; 2]$ $h = 0.2$
13. $y' = 5 + x - y$ $y(2) = 1$ $x \in [2; 4]$ $h = 0.5$	33. $y' = y - 2x$ $y(1) = 2$ $x \in [1; 2.2]$ $h = 0.3$
14. $y' = y + 5x - 1$ $y(0) = 2$ $x \in [0; 3.2]$ $h = 0.8$	34. $y' = 1 - x + y$ $y(1,1) = 1$ $x \in [1.1; 1.6]$ $h = 0.1$
15. $y' = y - 5x + 1$ $y(0) = 2$ $x \in [0; 3.2]$ $h = 0.8$	35. $y' = y - 7x$ $y(3) = 1$ $x \in [3; 5]$ $h = 0.5$
16. $y' = 1 - x + y$ $y(0) = 1$ $x \in [0; 2.5]$ $h = 0.5$	36. $y' = x^2 + 0.1y^2$, $y(0) = 0.7$, $x \in [0; 2]$ $h = 0.1$
17. $y' = y - 5x$ $y(-1) = 1$ $x \in [-1; 1]$ $h = 0.4$	37. $y' = 0.1x^2+2xy$, $y(0) = 0.8$, $x \in [0; 2]$ $h = 0.1$
18. $y' = x + 2y$ $y(0) = -1$ $x \in [0; 2]$ $h = 0.4$	38. $y' = x^2 + y^2$, $y(0) = 0.7$, $x \in [0; 2]$ $h = 0.1$
19. $y' = x + y + 2$ $y(1) = 1$ $x \in [1; 3]$ $h = 0.5$	39. $y' = xy + y^2$, $y(0) = 0.6$, $x \in [0; 2]$ $h = 0.1$
20. $y' = 3x + 4y$ $y(2) = 1$ $x \in [2; 5]$ $h = 0.5$	40. $y' = 2x + 0.1y^2$, $y(0) = 0.2$, $x \in [0; 2]$ $h = 0.1$

Physics tasks

- 1. A charge of 10^{-9} C was transposed to a conductor, however, the latter loses the charge due to some electrostatic leakage. The leakage rate is proportional to the charge on the conductor at the moment. During the first second dq_{1s} = 10^{-10} C has leaked. What charge would be present on the conductor after $\Delta t = 10$ s?
- 2. A motorboat having speed of 40 km/h in a still water would slow down to 6 km/h once its engine is shut off during 20 s. Assuming friction force of the water proportional to boat's speed, find the boat speed after 2 min of inertial motion. Assume friction force to be $av+bv^3$. Guess reasonable values of a,b.
- 3. A point mass (m = 1 g) is moving rectilinearly, and the force is proportional to time t and inversely proportional to the velocity. At t=10 s, v = 0.5 m/s, $F = 4 \cdot 10^{-5}$ N. Find v(t=60 s).
- 4. A point mass is moving rectilinearly under effect of a force proportional to t^3 , where *t* is time (at $t_0=0$, $v=v_0$). There is also friction force proportional to *vt*. Assuming reasonable proportionality coefficients, find v(t).
- 5. Find time needed for a body to cool down from 100 °C to 25 °C if the ambient temperature is 20 °C, and 10 min were required for it to cool down from 100 °C to 60 °C.
- 6. Potential difference measured across a coil changed from 2 V down to 1 V within 1 s. Find the current after 10 s if $I_0 = 17$ A. Coil resistance is 0.12 Ω , inductance is 0.1 H. Assuming that $\varepsilon = \varepsilon_0 \cdot \sin(\omega t)$, find current in 20 s from the beginning of the measurement.
- 7. A circuit consists of a power supply with e.m.f. ε , inductance *L* and resistance *R* connected in series. Assuming linearly increased ε , find current at t=10 s. L = 0.10 H, R = 50 Ω , *I*(t=0)=0 A. Note that potential difference across a conductor with resistance and inductance is $\Delta \varphi = L \frac{dI}{dt} + RI$.