Introduction to SMath

Download: <u>https://en.smath.info/view/SMathStudio/summary</u>

Cloud version: https://en.smath.info/cloud/sheet/dM6gdQX2Gk

Menu Panel: File, Edit, View, Insert, Calculation, Tools, Pages, Help			
Toolbars (Side Panels):			
1.1.	Arithmetic		
1.2.	Matrices		
1.3.	Boolean		
1.4.	Functions		
1.5.	Plot		
1.6.	Programming		
1.7.	Symbols (α - ω)		
1.8.	Symbols (A - Ω)		

2. Symbolic (analytical) vs numerical solution:

-	$\frac{15}{35} \rightarrow \frac{3}{7}$	$\frac{1}{4} + \frac{7}{67} \rightarrow \frac{95}{268}$	$\frac{\sin(x)}{\cos(x)} = tg(x)$
$\int_{-2}^{2} \frac{x^2}{2} dx = 2.6667$	$\frac{15}{35} = 0.429$	$\frac{1}{4} + \frac{7}{67} = 0.354$	$\frac{x:=0}{\cos(x)} = 0$

3. Solving equations & simplifying formulas:

solve
$$(2 \cdot x = 7, x) = 3.5$$

solve $\left(x^2 + 2 \cdot x - 8 = 0, x\right) = \begin{bmatrix} -4\\ 2 \end{bmatrix}$
simplify $\left(x^2 + 2 \cdot x - 8\right) = simplify \left(2 \cdot (-4 + x) + x^2\right)$

- 4. Searching the help: *Examples*
- 5. Creating functions: $f(x) := x^2 + 2 \cdot x + 4$
- 6. Using the built-in functions: Insert \rightarrow Function

- 7. Arrays: create an array. Use built-in functions: *stack, augment, submatrix*.
- 8. Reading in from a file, writing to a file:

Insert \rightarrow Function \rightarrow File

- 9. Using the Programming tools:
 - 9.1. Add Line create the programmable part, also used as the operation brackets
 - 9.2. := assign a value
 - 9.3. If; otherwise conditional
 - 9.4. For; while -loops
 - 9.5. Break break of the loop; Continue move to the beginning of the loop, the loop index is increased.
 - 9.6. Try error trapping.
- 10. Practical exercises:
 - 10.1. Compute *z* for given values of *a*,*b*,*c*:
 - 1) $z = 4(a+b)^{1/2}/(ab-c)$, a = 0.317, b = 3.27, c = 4.7561 [change of precision may be needed]
 - 2) z = ln[(b+c)/(b-ac)], a = 0,0399, b = 4,83 c = 0,0721
 - 10.2. Modify 10.1. such that *a*, *b*, *c* are given as the vector $A = \begin{pmatrix} w \\ b \end{pmatrix}$.

10.3. Using Plot toolbar, plot:

- 1) $y = 2 \cdot \sin^2(x/2) x^{1/2}$
- Plot an array of data points [x_i;y_i] 2)
- Plot $\begin{cases} y1 = 2 \cdot \sin(x/2) x^{1/2} \\ y2 = 4 \cdot \sin^2(x/2) x \end{cases}$ 3)
- 4) Create a 3D-plot.
- * Create a parametric plot. 5)
- * Plot using polar coordinates $r = 2\varphi$ for φ [0; 6pi] 6)
- 7) * Animate a plot.

10.4.Create a vector in which A[i] = i.

10.5.Create a matrix in which A[i,j] = i*j.

10.6. Using the vector and matrix toolbar, solve a system of linear equations.

- 10.7. Using *Programming toolbar* create a vector in which A[i] = i for odd *i*, and $A[i] = i^2$ for even *i*.
- 11. Solving practical problems using the *Programming* toolbar:
- 11.1. Isolate the roots graphically or analytically, and solve by implementing the root-finding algorithms:
 - $x = (x+1)^3$ 1) using bisectional method & Newton's method;

 - (x-1)² = 1/x using *fixed point* method & *secant* method;
 x³+4.5x-7 = 0 using *false position* method & *fixed point* method;
 - $x^{4}-9x+3=0$ 4) using combined tangent-and-secant method.
- 11.2. Find out the maximal speed which can be gained by a locomotive with the motive force of 25 ton (1 ton of force = 9800 N) if the total mass of the cars is 2000 tons? Consider the friction force noting that $F_{fr} = A \cdot v + B \cdot v^3$. Assume that $A = 10^4 kg/s$, and $B = 30 kg \cdot s/m^2$. What power of the locomotive is? Find out how the speed would depend on the motive force and coefficients A, B?