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Superconducting Circuits and Quantum Information∗

J. Q. You and Franco Nori

Superconducting circuits can behave like atoms making transitions between two levels. Such
circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics
experiments on a silicon chip.

Quantum bits, or qubits, form the heart of quantum-
information processing schemes. Because of the quantum
parallelism and entanglement that arise from the super-
position of states in two-level qubit systems, researchers
expect eventual quantum computers to tackle tasks, such
as factoring large numbers and simulating large quantum
systems, that no ordinary computers can do in a practical
time frame.

Quantum computing involves preparing, manipulating,
and reading out the quantum states of a many-qubit sys-
tem. So it is desirable to have qubits that can be indi-
vidually controlled. Moreover, they should be scalable;
that is, simply adding more qubits should create a larger
circuit capable of more complex calculations. Solid-state
qubits satisfy these requirements.

Fortunately, very small solid-state devices can behave
quantum mechanically. As the size of a bulk conductor
becomes increasingly smaller, its quasi-continuous elec-
tron conduction band turns into discrete energy levels.
An example is a quantum dot, in which electrons are
confined to a small semiconducting or metallic box or
island composed of millions of atoms. The problem is
that the electron states of that island quickly decohere
as the microscopic degrees of freedom strongly interact
with the environment. A bulk superconductor, in con-
trast, is composed of many paired electrons that condense
into a single-level state. This superconducting state in-
volves macroscopic degrees of freedom and thus exhibits
better quantum coherence. By reducing the size of the
superconductor, one can reduce the coupling of the super-
conducting state to the environment and thereby further
improve the quantum coherence.

Various experiments on superconducting circuits have
demonstrated as much [1, 2, 3, 4, 5] and those schemes
are regarded as promising candidates of qubits that can
process quantum information (see Physics Today, June
2002, page 14). Not surprisingly, there is a deep anal-
ogy between natural atoms and the artificial atoms com-
posed of electrons confined in small superconducting is-
lands. Both have discrete energy levels and exhibit coher-
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ent quantum oscillations between those levels—so-called
Rabi oscillations. But whereas natural atoms are driven
using visible or microwave photons that excite electrons
from one state to another, the artificial atoms in the
circuits are driven by currents, voltages, and microwave
photons. The resulting electric and magnetic fields con-
trol the tunneling of electrons between the superconduct-
ing island and nearby electrodes. The effects of those
fields on the circuits are the analogues of the Stark and
Zeeman effects in atoms.

Box 1. Parameters of Superconducting
Qubits

Charge Charge-flux Flux Phase

EJ/Ec 0.1 1 10 106

ν01 10 GHz 20 GHz 10 GHz 10 GHz

T1 1 − 10 µs 1 − 10 µs 1 − 10 µs 1 − 10 µs

T2 0.1 − 1 µs 0.1 − 1 µs 1 − 10 µs 0.1 − 1 µs

The ratio of two energy sclaes—the Josephson cou-
pling energy EJ and the charging energy Ec— deter-
mines whether the phase or the charge dominates the
behavior of the qubit. Moreover, a low enough tem-
perature T (kBT smaller than the level splitting of the
qubit) prevents the qubit states from thermally smear-
ing.

The values listed in the table are approximate orders
of magnitude from recent experiments with different ci-
cuits. Here, hν01 is the level splitting of the qubit (that
is, the energy-level difference of the two lowest states
E1 − E0), which depends on the applied bias. T1 is
the average time that the system takes for its excited
state |1〉 to decay to the ground state |0〉. T2 represents
the average time over which the qubit energy-level dif-
ference does not vary. The relaxation and decoherence
times, T1 and T2, are strongly affected by the envi-
ronment of the artificial atom. The readout visibility
V , defined as the maximum qubit population difference
observed in a Rabi oscillation or Ramsey fringe, can
reach more than 96% [1]. The coherence quality factor
Q = πT2ν01 is roughly 105, the number of one-qubit
operations achievable before the system decoheres [2].

Differences between quantum circuits and natural
atoms include how strongly each system couples to its
environment; the coupling is weak for atoms and strong
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for circuits, and the energy scales of the two systems dif-
fer. In contrast with naturally occuring atoms, artificial
atoms can be lithographically designed to have specific
characteristics, such as a large dipole moment or partic-
ular transition frequencies. That tunability is an impor-
tant advantage over natural atoms.

Josephson junctions—superconducting grains or elec-
trodes separated by an insulating oxide—act like non-
linear inductors in a circuit. The nonlinearity ensures
an unequal spacing between energy levels, so that the
lowest levels can be addressed using external fields. Two
important energy scales determine the quantum mechani-
cal behavior of a Josephson-junction circuit: the Joseph-
son coupling energy EJ and the electrostatic Coulomb
energy Ec for a single Cooper pair. EJ = IcΦ0/2π,
where Ic denotes the critical current of the junction and
Φ0 = h/2e is the magnetic-flux quantum. The charg-
ing energy Ec = (2e)2/2C for a Cooper pair, where C
is either the capacitance of a Josephson junction or an
island, depending on the circuit. In analogy to the usual
position-momentum duality in quantum mechanics, the
phase φ of the Cooper-pair wave function and the num-
ber n of Cooper pairs are conjugate variables and obey
the Heisenberg uncertainty relation ∆n ∆φ ≥ 1.

Box 1 summarizes the four kinds of superconducting
qubits realized in different regimes of EJ/Ec. The charge
qubit is in the charge regime Ec ≫ EJ , where the number
n of Cooper pairs is well defined and the phase φ fluc-
tuates strongly. The so-called flux and phase qubits are
both in the phase regime Ec ≪ EJ , in which the phase φ
is well defined and n fluctuates strongly. And the charge-
flux qubit lies in the intermediate regime Ec ∼ EJ , in
which charge and phase degrees of freedom play equally
important roles.

Charge and charge-flux qubits
The charge qubit is based on a small superconduct-

ing island known as a Cooper-pair box (CPB), which
is coupled to the outside world by either one or two
weak Josephson junctions and driven by a voltage source
through a gate capacitance (see figue 1a). To appreci-
ate how the CPB works, consider a plumbing analogy:
The box is like a tank that stores water—or in our case,
superconducting electrons in the form of Cooper pairs.
Those charges can be pushed in and out of the box us-
ing a pump (the voltage source) that moves the charges
through a valve (the Josephson junction) and into the
superconducting wire that acts as a large reservoir of
charges. Often that one junction is replaced by two that
are joined to a segment of a superconducting ring and
thereby form a symmetric superconducting quantum in-
terference device (SQUID). A magnetic flux Φext that
pierces the SQUID controls the rate at which the Cooper
pairs flow into and out of the box.

When the box’s offset charge, induced by the gate volt-
age Vg , is about the same as the charge of a single elec-

tron, only two charge states matter: |0〉 and |1〉, which
have either zero or one extra Cooper pair in the box. A
two-level quantum system thus describes the CPB (see
box 2), and the two energy eigenstates |±〉 are super-
position states of |0〉 and |1〉. The charge qubit can
be represented using either the charge states {|0〉, |1〉}
or the eigenstates {|+〉, |−〉}. When the gate-voltage-
induced offset charge ng (in units of 2e) increases from
0, the ground state of the system continuously changes
from |0〉 to |−〉. Similarly, the higher energy level |1〉
becomes |+〉 for increasing ng. At the degeneracy point
ng = 0.5, where the energy levels for |0〉 and |1〉 cross,
|±〉 = (|0〉 ∓ |1〉)/

√
2.

Box 2. Cooper-Pair Box
For the Cooper-pair box (CPB) shown schematically

in figure 1a, the Hamiltonian of the system is

H = Ec(n − ng)
2 − EJ cosφ , (1)

where Ec and EJ are the charging and Josephson
energies, respectively. The phase drop φ across the
Josephson junction is conjugate to the number n of ex-
tra Cooper pairs in the box. In the charging regime
Ec ≫ EJ , only the two lowest-lying charge states of
the box, differing by one Cooper pair, are important.
The gate voltage Vg controls the induced offset charge
on the box; ng = CgVg/2e, where 2e is the charge of
each Cooper pair and Cg the gate capacitance. Around
ng = 1/2, the system can be described like any two-level
atomic-physics-like system with the reduced Hamilto-
nian

H = ε(ng) σz − 1

2
EJ σx, (2)

where ε(ng) = Ec (ng − 1/2). The Pauli matrices
σz = |0〉〈0| − |1〉〈1| and σx = |0〉〈1| + |1〉〈0| are de-
fined in terms of the two basis states corresponding to
zero and one extra Cooper pair in the box. With a
two-junction superconducting quantum interference de-
vice, EJ becomes a very useful, tunable effective cou-
pling: EJ(Φext) = 2EJ0 cos(πΦext/Φ0), where EJ0 is
the Josephson coupling energy for each junction, Φext

is the external magnetic flux, and Φ0 the flux quantum.

Figure 2 shows the energy spectrum of the CPB for two
values of the ratio Ec/EJ . The regime near Ec/EJ = 5
is typical of many charge qubits studied in the literature.
Indeed, quantum coherent oscillations in circuits were
first demonstrated in this regime [1] and experimental
results showed that the qubit can be well approximated
by a two-level system.

When Ec/EJ = 1, both charge and flux degrees of
freedom play equally important roles. As shown in fig-
ure 2b, the two lowest levels are not well separated from
the higher levels. Because the qubit now operates in the
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FIG. 1: Superconducting qubit circuits and their potential energy diagrams. (a) A Cooper-pair box (CPB; blue) is driven
by an applied voltage Vg (green) through the gate capacitance Cg to induce an offset charge 2e ng = CgVg. A Josephson
junction, the barrier denoted by the ×, connects the box to a wire lead. Each junction has a capacitance and a Josephson
coupling energy EJ . The electrostatic energy of the CPB, Ec(n − ng)2, where Ec = (2e)2/2C, is plotted as a function of the
number n of excess electron pairs. The lowest energy states, |0〉 and |1〉 (in red), are degenerate at ng = 0.5, and are used as
the qubit state basis. Those states are coupled via the junction energy EJ , which controls the tunneling between them. (b) A
magnetic-flux “box” (blue) is the magnetic analogue of the electrostatic CPB. A magnetic bias simply replaces the electric bias:
A current-driven magnetic field pierces the box with a strength given by a mutual inductance M . Whereas an electric field
prompts stored electron pairs to tunnel into or out of the CPB, a magnetic field pushes magnetic flux quanta Φ0 into or out
of the superconducting quantum interference device (SQUID) loop. The adjacent potential energy diagram plots a Josephson
energy term (proportional to cos φ) and an inductive energy term—proportiona to (φ − φext)

2/2L, where L is the SQUID’s
inductance—as a function of the phase φ of the junction. The lowest energy states (red) are superpositions of the clockwise
and counterclockwise supercurrent states | ↓〉 and | ↑〉 that flow in the SQUID loop; ∆ here is the tunneling energy between
the supercurrent states. Those energy states are degenerate when the externally applied magnetic flux φext equals π. (c) A
three-junction flux qubit works like a magnetic flux box, except that one of the junctions has a slightly different capacitance
and coupling energy. The contour plot shows the potential energy as a function of two junctions’ phases. The two red dots
inside the potential wells correspond to the qubit basis states |↓〉 and |↑〉. (d) A current source biases the junction in a phase
qubit. Logic operations can be achieved by driving the qubit with a microwave field at frequency (E1 − E0)/h. Pulsing the
qubit with a microwave field at a frequency (E2 − E1)/h produces a transition from |1〉 to |2〉. One can then read the qubit’s
state by measuring the occupation probability of state |2〉.
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FIG. 2: Energy levels of a Cooper-pair box versus the
offset charge ng (in units of 2e, twice the charge of an electron)
that is induced by the gate voltage. (a) When Ec/EJ = 5,
typical conditions for the charge qubit, the two lowest energy
levels start to approach each other as the offset charge on the
box increases from 0 to 0.5. As ng slowly increases in that
range, eigenstates of the two levels change from charge states
|0〉 and |1〉 to |±〉, superpositions of |0〉 and |1〉. They become
pure charge states again at ng = 1. When ng is about 0.5,
the two lowest energy levels are well separated from the other
levels. (b) In the case where Ec/EJ = 1, the charge and flux
degrees of freedom play equally important roles.

intermediate regime between charge and flux, it is of-
ten specified as the charge-flux qubit. In contrast with
the eigenstates of the ideal charge qubit, the charge-flux
qubit’s two lowest eigenstates |±〉 are superpositions of
several charge states, instead of just |0〉 and |1〉. Thus
only {|+〉, |−〉} can be used as the basis states for the
charge-flux qubit. This qubit can exhibit coherent oscil-
lations with a long decoherence time [2]—on the order of
0.5 µs.

Flux qubit

The phase degree of freedom becomes dominant in the
so-called flux qubit. As sketched in figure 1c, the pro-
totypical flux qubit consists of a superconducting loop
with three junctions, and the Josephson coupling energy
is much larger than the charging energy for each junction.
When a magnetic field is applied through the loop, a
clockwise or counterclockwise supercurrent is induced to
decrease or increase the enclosed flux such that the flux-
oid, which combines the Josephson phase φ with the total
magnetic flux (both external Φext and induced Φind), is
quantized: (Φ0/2π)φ + Φext + Φind = m Φ0 , where m is
an integer. The two circulating supercurrent states can
form the basis states for the qubit. Five years ago, a
one-junction flux qubit of the type sketched in figure 1b
was fabricated and its spectroscopic features were demon-
trated [3]. Flux qubits can come in one- or many-junction
flavors; the one-junction case requires a relatively large
loop inductance, which makes the qubit more susceptible
to magnetic-field noise.

For a description of the energy spectrum that arises in
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FIG. 3: Energy levels of a three-junction flux qubit
versus reduced magnetic flux f = Φext/Φ0. Φext is the exter-
nal magnetic flux and Φ0 the flux quantum, h/2e. (a) The
energy-level diagram shows only six levels, the two lowest of
which are used for the qubit. (b) An enlarged view of those
levels near f = 1/2 (green rectangle) illustrates what happens
as the reduced magnetic flux varies around that value. Away
from f = 1/2, the two eigenstates approach the clockwise-
and counterclockwise-circulating supercurrent states |↓〉 and
|↑〉; at f = 1/2, they are maximal superpositions of the two
circulating supercurrent states. The potential energy mini-
mum shifts from the right-hand side of the double well for
f < 0.5 to the left-hand side for f > 0.5, where |↑〉 becomes
the minimum-energy state.

a multi-junction flux-qubit system, see figure 3 (figure 1c
pictures the corresponding circuit). In the vicinity of
f = Φext/Φ0 = 0.5, |−〉 and |+〉, the two lowest levels
(the qubit levels), are well separated from other higher
levels, and are superpositions of the clockwise and coun-
terclockwise supercurrent states |↓〉 and |↑〉. For f < 0.5,
|−〉 and |+〉 approach |↓〉 and |↑〉; for f > 0.5, |−〉 and
|+〉 approach | ↑〉 and | ↓〉. At f = 0.5, the states are
given by |−〉 = (|↑〉 + |↓〉)/

√
2 and |+〉 = (|↑〉 − |↓〉)/

√
2.

As in the case of the charge qubit, one can use either
{|↑〉, |↓〉} or {|−〉, |+〉} to equivalently represent the flux
qubit. For the past five years researchers have studied
the three-junction flux qubit, and in 2003 first observed
its quantum coherent oscillations [4].

Phase qubit
The so-called phase qubit usually uses a large current-

biased Josephson junction, as pictured in figure 1d. The
bias current produces a tilt to the Josephson potential;
the Josephson potential itself is proportional cosφ. That
tilt reduces the number of bound states in the potential-
energy well. The ratio EJ/Ec is orders of magnitude
higher in the phase qubit than in other qubit types.

The circuit’s potential energy diagram illustrates a
third energy level not widely separated from the two low-
est levels used for the qubit. The small energy spacing
means that appreciable qubit-state leakage to that third
level can occur. However, the problem can at least partly
turn into an advantage when it comes to measuring the
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FIG. 4: Coupling qubits. (a) Two charge qubits (blue)
coupled by a mutual capacitance Cm between the two boxes.
(b) Two charge qubits coupled by a shared inductance L; each
box (blue) is connected to two Josephson junctions instead
of one. (c) Two three-junction flux qubits coupled by the
common inductance L. (d) Two phase qubits coupled by the
mutual capacitance Cm between them.

phase qubit’s actual quantum states. The state of the
third level can easily tunnel out of the potential well and
thus be used for determining the occupation probabil-
ity of the qubit levels. Alternatively, one can read out
the qubit state by tilting the potential to allow tunnel-
ing directly from |1〉. Independent research groups have
experimentally demonstrated the quantum coherent os-
cillations in phase-qubit circuits [5].

A phase qubit can also be configured into a circuit
similar to what’s shown for the magnetic-flux box in fig-
ure 1b by biasing the junction using a flux threading the
loop instead of using a current. Such a flux-biased phase
qubit works with levels in a tilted well, as depicted in
figure 1d.

Coupling qubits
Two-qubit operations are required for quantum com-

puting. A natural way to couple circuit-based qubits to
build logic gates is to use capacitors and inductors. Fig-
ure 4 illustrate a few circuit configurations that could do
the job.

Recent experiments have shown quantum coherent
oscillations in two capacitively coupled charge qubits
and demonstrated a working controlled-NOT (CNOT)
gate [6]. However, controlling the interbit capacitive cou-
pling is a difficult problem [7]. An alternative is to cou-
ple charge qubits via an inductance [8], which produces
a flux-controllable interbit coupling and can be conve-
niently used to achieve a CNOT gate (see box 3).

An inductance can also couple flux qubits. Because

the Josephson coupling energies in the flux qubits are
stronger than those in the charge qubits, the circulating
supercurrents in the qubit loops are larger. Therefore,
a much smaller inductance produces a relatively strong
interbit coupling [9]. Recently, coupling flux qubits with
mutual inductances was experimentally realized [10].

Two phase qubits can be similarly coupled using a mu-
tual capacitance, an experimental achievement made by
researchers [11]. Again, the lowest two levels for each
phase qubit are not widely separated from the third one.
That means that energy levels beyond the qubit are also
involved in the coupling and relatively serious qubit-state
leakage can occur for the two-qubit gate. Achieving con-
trollable interbit coupling is still a challenge in general
for any type of qubit.

Box 3. Controlled-NOT Gate
For the two inductively coupled qubits shown in fig-

ure 4b, when the gate voltage is shifted to the degen-
eracy point ngi = 1/2 (i = 1, 2) for each qubit, the
Hamiltonian of the system becomes

H = −E∗

J1 σ(1)
x − E∗

J2 σ(2)
x + χ σ(1)

x σ(2)
x ,

where E∗

Ji slightly deviates from EJi and the interbit

coupling χ is controllable via the external fluxes Φ
(i)
ext.

This 4×4 Hamiltonian has four eigenvalues with corre-
sponding eigenstates |+, +〉,|+,−〉,|−, +〉, and |−,−〉,
where |±〉 = (|0〉 ∓ |1〉)/

√
2. The Hamiltonian also

has the interesting property that its eigenvalues change
with the interbit coupling, but the corresponding eigen-
states remain unchanged. Because the energy levels of
those four eiegenstates are not equally spaced, a mi-
crowave field applied to the coupled qubits through ei-
ther gate capacitance can be tuned to make transitions
only between states |−, +〉 and |−,−〉. When a π pulse
from such a field is applied, those states flip to produce
a CNOT gate: |+, +〉 −→ |+, +〉, |+,−〉 −→ |+,−〉,
|−, +〉 −→ |−,−〉, and |−,−〉 −→ |−, +〉. That is,
the state of the second qubit is flipped if the first qubit
state is |−〉, and the second qubit is not affected if the
first qubit state is |+〉. (See reference [8].)

Cavity quantum electrodynamics

A quantized electromagnetic field can coherently ex-
change energy with a two-level system, usually in a tiny
laser cavity. This energy exchange between the field and
the system, called Rabi oscillations, occurs at a rate ν
proportional to the strength of the system-field coupling.
Among such coherent processes, the most elementary one
involves the interaction of a two-level system with a sin-
gle photon. The exchange of energy between the system
and the photon is observable in the “strong coupling”
regime, when the period 1/ν of the Rabi oscillations is
much shorter than both the decoherence time of the two-
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level system and the average lifetime of the photon in
the cavity. The strong-coupling limit has been achieved
for a variety of atoms interacting with the light field in
a cavity and forms the basis of a subject called cavity
quantum electrodynamics (QED).

In principle, any type of two-level quantum system can
substitute for the atom, and the charge qubit, as a macro-
scopic quantum system, is a natural candidate. Indeed,
we and the Yale group proposed schemes to process quan-
tum information by coupling a charge qubit with a quan-
tized microwave field. One approach took advantage of
magnetic coupling through a SQUID loop [12] and the
other exploited the control given by the gate voltage and
capacitive coupling [13].

In a more recent experiment, Ref. 14 carried out those
proposals by using a gate capacitor to couple the photon
to a Cooper-pair box, an accomplishment coined “circuit
QED” because it translated the cavity QED concept onto
a solid-state chip (see Physics Today, November 2004,
page 25). The researchers reached the strong-coupling
regime using a quasi-one-dimensional transmission-line
resonator. In contrast to cavity QED, where atoms move
around and only briefly interact with the field, circuit
QED uses a charge qubit that is fixed on the chip. More
important, the dipole moment that couples the two-level
system with the quantized field can be as much as 105

times larger for superconducting charge qubits than for
alkali atoms.

The experiment can take different forms. Other roups
have modified it by replacing the cavity with a ha-
monic oscillator formed by a Josephson junction (or
SQUID) and a nanomechanical resonator [15]. Future
ways to exploit superconducting qubits include, for ex-
ample, preparing Schrödinger cat states of the cavity
field by means of its coupling to a SQUID-based charge
qubit, and the exciting possibility of generating nonclas-
sical photon states using a superconducting qubit in a
microcavity [16]. Clearly, the experiments are opening
new research directions.

Noise and decoherence
Although superconducting circuits exhibit good quan-

tum coherence, they still experience significant levels of
noise due to their coupling to the environment. For
charge qubits, the dominant source of decoherence is 1/f
noise, which is presumably due to background charge
fluctuations—trapped charges in the substrate and oxide
layers of the Josephson junctions, for instance. For flux
and phase qubits, 1/f noise again seems to be dominant,
but its origins are less clear. When the CPB operates in
the charge-flux regime, the decoherence of the qubit is
significantly reduced [2]. Moreover, the decoherence can
be suppressed at the degeneracy point by tuning the mag-
netic and electric fields [2] so that the influence of both
flux and charge noise sources vanishes to first order.

To try to understand the decoherence problem, re-

searchers have used phenomenological theories including
the spin-boson [17] and spin-fluctuator [18] models in
which a collection of spectrally distributed harmonic os-
cillators and a set of particles that fluctuate randomly in
a double-well potential, respectively, describe the noise.
Such models capture some typical features of decoherence
in superconducting qubits. Nevertheless, understanding
the microscopic mechanisms of 1/f noise requires fur-
ther work—for instance, developing microscopic theories
beyond phenomenological models. Such understanding
is important not only for quantum computing, but also
for revealing the underlying physics. The problem has
proven to be quite difficult, however.

What lies beyond
Decoherence is a major obstacle to superconducting

quantum computing; the efficient and nondissipative
readout of qubit states, however, is also crucial and will
play a central role in future developments. Thus, it is still
too early to say which type of qubit might win the race
of quantum computing. While unveiling the microscopic
mechanism of 1/f noise, one could develop novel meth-
ods to actively suppress the effects of the noise. Also, to
increase both decoherence time and readout efficiency of
the system, one can optimize the qubits by varying the
circuit parameters and could couple two or three qubits
with optimal designs; a three-qubit circuit could be used
to test some simple quantum algorithms, such as the
Deutsch algorithm, one of the simplest that illustrates
the nature of quantum parallelism.

So far, all quantum states on the so-called Bloch
sphere—a geometrical representation of the states of a
two-level system— can be addressed; spin-echo tech-
niques, borrowed from nuclear magnetic resonance, can
reduce the effect of 1/f noise; and readout efficiency
greater than 96% and a coherence quality factor of ap-
proximately 105 can be achieved, albeit not in the same
circuit. When techniques for manipulating two or three
qubits become well established, the next step will be to
build circuits with a larger number of qubits, increased
readout efficiency, and lower decoherence. Such condi-
tions would allow quantum computing with supercon-
ducting qubits.

But even if no quantum computing is ever achieved
with superconducting circuits, they still provide re-
searchers with tools to test fundamental quantum me-
chanics in novel ways. For example, these artificial atoms
can be used to simulate atomic physics using quantum
circuits; researchers have already observed Rabi oscilla-
tions and Ramsey interference patterns that are manifest
during the phase evolution of a superconducting qubit.
Moreover, the device can also test Bell inequalities, pro-
duce Schrödinger-cat states, and simulate the Einstein-
Podolsky-Rosen experiment. The quantum engineering
of macroscopic entangled states will surely play a central
role in several future technologies.
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