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. For the truth of the conclusions of physical science, observation is
the supreme Court of Appeal. ...” (Sir Arthur Eddington, The Philosophy
of Physical Science.)

ABSTRACT

In this paper we shall review the theoretical and experimental results
obtained on simple magnetic model systems. We shall consider the Heisen-
berg, XY and Ising type of interaction (ferro and antiferromagnetic), on
magnetic lattices of dimensionality 1, 2 and 3.

Particular attention will be paid to the approximation of these model
systems in real crystals, viz. how they can be realized or be expected to
exist in nature. A large number of magnetic compounds which, according
to the available experimental information, meet the requirements set by one
or the other of the various models are considered and their properties dis-
cussed. Many examples will be given that demonstrate to what extent
experiments on simple magnetic systems support theoretical descriptions of
magnetic ordering phenomena and contribute to their understanding. It
will also be indicated in which direction there is a need and/or a possibility
for future work.
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§ 1. INTRODUCTION
1.1. Magnetic model systems

Most of the progress in theoretical and experimental investigations on
critical phenomena has resulted from the introduction of a large variety
of lattice models. In that way theoretical physicists have been able to
obtain exact or approximate solutions for the behaviour of thermodynamic
quantities near phase transitions, calculations that would otherwise not
have been possible, due in most cases to the insurmountable mathematical
problems associated with cooperative phenomena. In these model
systems the magnetic interaction is more or less simplified, while the
dimensionality of the lattice may be varied. As an illustration, consider
the interaction Hamiltonian

H=—2J Y [aSS87+b(S7S+8¥87)] (1.1)

>3]

where summation is taken over nearest neighbouring spins and J is the
exchange constant. If we put a=b=1 we obtain the Heisenberg model,
in which the interaction is wholly isotropic. The other extreme, the
anisotropic Ising interaction, is obtained by setting a=1 and b=0.
The third case a =0, b=1, is called the XY model, or the planar Heisenberg
model if one puts the additional requirement that the spins are constrained
to lie within the xy plane.

A useful concept in this connection is that of an order parameter, that
is a quantity which is a measure of the amount of ordering present in the
system below the critical point{. In magnetic systems the spontaneous
magnetization may be taken as the order parameter and it is readily seen
that in the Ising model this is a scalar quantity (one-dimensional vector),
since the magnetization can only point up or down. In the Heisenberg
and the planar Heisenberg model, the order parameter is a three and a
two-dimensional vector, respectively.

1 Throughout this paper we will denote by the symbol T, the (critical)
temperature at which the system undergoes a transition to long-range order.
We will not use different symbols for ferro and antiferromagnets (Curie and
Néel point).
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Apart from the dimension of the order parameter (spin-dimensionality)
one may choose a lattice of arbitrary dimensionality, the one, two and
three-dimensional lattices being the most frequently studied. In addition
the spin value may be varied ; the quantities S, in (1.1) denote spin
operators for quantum-mechanical systems with S=1%, 1, §, .. ., or they
represent classical vectors in the case of the classical models. The latter
are treated by replacing J in (1.1) by J'/S8? and allowing § to tend to
infinity.

Another variable quantity is the sign of the exchange constant J
which can be either positive or negative, giving rise to ferro or anti-
ferromagnetism, respectively. Also, intermediate models have been
studied in which the ratio of the constants ¢ and b in (1.1) can take any
value, e.g. Yang and Yang (1966), Dalton and Wood (1967). Further-
more one may extend the range of the interaction by including interac-
tions with next-nearest (or still further) neighbours, in this way obtaining
information about the influence of further neighbour interactions upon
the critical behaviour. Finally, also vector order parameters of a dimen-
sion higher than 3 have been studied, the limit of infinite spin-dimen-
sionality being equivalent to the so-called spherical model (Berlin and Kac
1952, Stanley 1968 c).

The original aim of theoretical physicists in devising these various
model systems was to get a better understanding of experimental observa-
tions. However, in studying lattice models of lower dimensionality
(d=1, 2), it appeared that certain features of thermodynamic quantities,
which were only minor effects in the behaviour observed at that time,
turned into gross features in the lower dimensional systems. At first
this was a little distressing, since one had hoped that the models would
not be oversimplifications of reality so that the main characteristics of
the phase transition would remain preserved. But one has come to
understand the origin of these effects and in fact the comparison of results
obtained for different models has proven to be most rewarding, as it
elucidates the way in which, for instance, the lattice dimensionality or
the type or range of the interaction influences the general features of a
phase transition. Moreover, during the last decade the situation in some
way is reversed in that experimental physicists are now supplying
theorists with data which may be compared with models that at first
sight are most unorthodox. Partly by accident, but in most cases by
carefully choosing magnetic substances from the immense reservoir of
compounds offered by chemistry and metallurgy, experimentalists have
been able to find materials whose properties resemble quite closely those
predicted for various theoretical models. TIndeed, to such an extent that
one sometimes wonders how artificial and unphysical such a model has
to be, in order to prevent the discovery of an approximation in the
laboratory !

It is the aim of this paper to describe how the conditions set by particu-
lar models have been met experimentally and to survey the information

A2
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available, the experimental results having for most part been obtained
during the past ten years. Theoretical calculations will be mentioned in
connection with the experiments. The reader who is interested in the
details of the theory is referred to the reviews of Domb (1960), Fisher
(1965 b, 1967), Stephenson (1971) and the book by Stanley (1971).
In addition there are the series edited by Rado and Suhl (* Magnetism ’)
and by Domb and Green (‘* Phase Transitions and Critical Phenomena, ).
Among the reviews which give more emphasis to the experimental data
relevant to the present paper, we mention those of Domb and Miedema
(1964), Huiskamp (1966), Heller (1967), Kadanoff ef al. (1967) and
Wielinga (1971). Lastly we point to the work of Keffer (1966), who has
given an extensive review of spin waves in theory and experiment.

It must be emphasized that, although we shall be concerned only with
magnetic systems in this paper, many of the Hamiltonians described
above also allow for an interpretation other than a magnetic one. For
instance, the Ising Hamiltonian may be used to describe the liquid—gas
transition in a lattice gas, as well as the spontaneous phase separation
observed in binary fluids and the ordering in alloys. The XY model is
the magnetic analogue of a quantum fluid and is therefore of relevance to
the theory of superfluidity and superconductivity.

The layout of this paper is as follows. In the remainder of this intro-
duction we shall discuss briefly the effects of lattice dimensionality and
the type of interaction. We shall recall how these may be understood in
a qualitative way by considering spin-spin correlations. In § 2 we will
indicate how general rules can be given for finding compounds that
approximate a particular model system. In the next section a collection
of the hitherto discovered examples are tabulated with a short account
of their individual properties, e.g. quantitative information (if available)
about the deviations from the ideal model which evidently will be met
in any experimental system. To give a full account of all the publications
of the many workers in the field of magnetic transitions clearly is an
impossible task and therefore we have aimed merely to offer the in-
terested theoretician a guide to the available data, supplying simul-
taneously to the experimentalist a survey of the existing theoretical work
and of the extensive range of compounds already discovered. Accord-
ingly, we want to apologize beforehand to those investigators whose work
has not been included in the present review, through oversight or lack of
space.

As concerns the fundamental thermodynamic properties of 1, and 2 and
3-d (d =dimensional) lattices (e.g. specific heat, susceptibility, etc.), com-
parisons between theory and experiment will be found in § 3. The last
section is devoted to a number of special subjects, namely results obtained
from various theoretical approaches and their experimental verification.
In reading §§ 3 and 4, we think both theorists and experimentalists will
share the joy of seeing how extremely well theory and experiment have
been found to fit in many cases. Although there certainly remain a
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number of problems to be solved, one may say that a considerable amount
of understanding of the physics in these magnetic model systems has
already been reached.

1.2. Effects of dimensionality and type of interaction

Changing the dimensionality of a magnetic lattice has a dramatic
effect upon the thermodynamic properties. This can clearly be illustrated
by considering the specific heat behaviour. In fig. 1 are compared the
theoretical specific heats of the Ising model for a 1, 2 and 3-d lattice,
together with the molecular field (MF) prediction. We first remark
that the MF theory fails to account even for the behaviour of the 3-d
Ising model, which corresponds rather closely to what is mostly observed
experimentally. The MF prediction for the transition point is too high,
the specific heat shows a finite discontinuity instead of diverging, and is
furthermore characterized by the absence of the characteristic ‘ high-
temperature tail *. The latter is encountered in all the more sophisticated
models as well as experimentally, and is due to the presence of short-
range interactions above 7', that are not taken into account in the MF
theory. Neglect of the short-range order is in fact the reason why the

Fig. 1
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Theoretical magnetic specific heats O, of the S=1} Ising model for a 1, 2 and
3-d lattice. The chain curve has been obtained by Ising (1925), who
first performed calculations on the model that bears his name. The
2-d curve is also an exact result, derived by Onsager (1944) for the
quadratic lattice. The 3-d curve has been calculated by Blote and
Huiskamp (1969) and Blote (1972) for the simple cubic lattice from the
high and low-temperature series expansions of C,, given by Baker ef al.
{1963) and Sykes et al. (1972). TFor comparison, the molecular field
prediction (MF) has been included. R denotes the gas constant and 6
is the Curie—Weiss temperature (0= 228(S+1)J/k), which is the transi-
tion temperature according to the MF theory.
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MF model breaks down if we approach the transition point closely enough,
although it has been highly sucecessful in describing the overall properties
of (3-d) magnetic substances.

Secondly, one may see by comparing, e.g., the T,/0 and the high-
temperature tails that the relative importance of the short-range order
is greatly enhanced by lowering the lattice dimensionality. For the 2-d
Ising model there still occurs a transition to long-range order at a finite
temperature, reflected as a divergence in the specific heat, although 7', is
lowered further with respect to the MF prediction. However for the
chain model 7', has moved down to zero, and all of the entropy has to
be removed by short-range interactions, resulting in a broad Schottky-
type anomaly.

Clearly, the deficiency of the MF theory is more crudely exposed the
lower the dimensionality, and this is one of the reasons that makes these
1-d and 2-d systems such interesting objects of study. Moreover, since
we know that the origin of the deficiency lies in the introduction of an
effective field, which replaces the interactions of a magnetic moment
with its neighbours by an average taken over the entire system, it follows
that we may obtain a better understanding of the thermodynamic be-
haviour of magnetic substances by studying the correlations between a
given reference spin and its neighbours at a varying distance . In an
elucidating discussion, Fisher (1965 b) considered the static pair correla-
tion functions

I(T)=(828,75/48(8+1) (r=0,1,2, ... c0), (1.2)

where the brackets denote the expectation value and 1S(S+1) is just a
normalization factor. The qualitative behaviour of the T, as a function
of temperature for models possessing a finite transition point is sketched
in fig. 2 (@). Although exact results have been obtained only for the 2-d
Ising model (Kaufman and Onsager 1949, Fisher 1960 b), it can be
argued that most of the arguments given below will also have a more
general validity.

It is seen from fig. 2 (a) that, with the exception of the infinite range
correlation I', which vanishes at the transition pointt, all curves display
an inflexion point at T,. For the 2-d Ising lattice, singularities occur
of the form

T(T)=A+B|T-T,In |T-T,|. (1.3)

As A and B are constants, it follows that the curves have tangents with
an infinite slope at 7.

Now it turns out that many thermodynamic quantities may be related
to the I', in a simple way. For instance, we may take I as a long-range-
order parameter and in fact it can be shown that (S7S?> is proportional

T The self-correlation function I'y evidently forms another exception. This
is identical to unity in the models of interest in the present context.
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to the square of the spontaneous magnetization (My)t. Furthermore,
in the case of nearest-neighbour interactions only, we may write for the
magnetic energy

U o(T)= — Ngz|J |<8g*8>, (1.4)
from which we see that the magnetic energy is simply proportional to

I',(T). Here N, is the total number of magnetic spins, z is the number
of nearest neighbours and J is the exchange constant.

Fig. 2
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(2) Qualitative temperature dependence of the static correlation functions
T, (eqn. (1.2)). Plotted are I'; and I', (solid curves) and two functions
with intermediate r (broken curves). (b) Behaviour of the magnetic
energy, U, ~ —|T,], as well as of the product of the antiferromagnetic
parallel susceptibility and the temperature (C' denotes Curie’s constant),
xT|0~1—|T,|. The broken curve gives the behaviour of the square
of the spontaneous magnetization (M 2~Ty), which should be equal
to U,, according to MF theory. (c) Temperature dependence of the
magnetic specific heat, O, =0U /0T, as well as of the temperature
derivative of yT/C. The broken curve again denotes the MF result.
(d) Antiferromagnetic parallel susceptibility y/C versus the relative
temperature T/T, (in (@), (b) and (d) the position of T, has been indi-
cated by the open circles). (After Fisher 1965 b.)

+ Throughout this paper we shall adhere to this statement and shall not go
into the theoretical problems involved in establishing this relationship. Like-
wise, we shall disregard the subtle difference between long—long-range order
and short-long-range order. The interested reader may find a discussion of
these questions in the paper of Fisher and Jasnow (1971) as well as references
to earlier papers bearing on this subject,
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Suitably normalized, the behaviour of U (7) is that given in fig. 2 (b)
(solid curve), bearing in mind that U, is a negative quantity. By taking
the temperature derivative of this curve, the specific heat is obtained
(fig. 2 (¢)) and obviously this will rise logarithmically to infinity at 7',
if U, possesses a singularity of the form given by (1.3). Furthermore,
we observe that the presence of short-range correlations above 7', accounts
indeed for the appearance of a high-temperature tail in the specific heat.

The failure of the MF theory is now also readily traced, since in that
theory, in the absence of short-range correlations, U ~M2~T . The
corresponding results for the energy and specific heat are given by the
dashed curves in fig. 2 (b), (¢).

Another quantity that is closely related to the correlation functions is
the magnetic susceptibility. According to the fluctuation theorem of
statistical mechanics the susceptibility in the limit of zero field (initial
susceptibility) is given by

xT|C=1+ Y T(T), (1.5)

r#0

where (' denotes the Curie constant. For a paramagnetic system, all
I, (r#0) being zero, eqn. (1.5) simply states Curie’s law. For a purely
ferromagnetic system the sum in (1.5) contains only positive terms and
diverges at 7',. On the other hand, in the case of an antiferromagnetic
interaction the terms in the series are alternating in sign and it has been
argued by Fisher (1962) that one may replace the sum in (1.5) by

xT|C~1—{(T)|T(T)|, (1.6)

where the function f(7') accounts for all the omitted terms in the series.
It turns out that f(7) is of order unity at 7', and moreover is only very
slowly varying with temperature, so that in our qualitative picture we
may neglect its presence. It is then easily seen that

XT(C~1—|U (T (1.7)

This relation between the energy and the antiferromagnetic susceptibility
can also be derived from general thermodynamie arguments (Sawatzky
and Bloom 1962, Skalyo et al. 1967) and has been tested for a variety of
antiferromagnets (Fisher 1962, Wolf and Wyatt 1964, Skalyo et al. 1967).
Consequently, the curve for U, in fig. 2 (b) also represents the qualitative
behaviour of y7'/C (explaining the term °energetic susceptibility * for
the quantity ¥7'/C). Of much importance is the result for the suscepti-
bility itself depicted in fig. 2 (d), obtained by dividing x7'/C (fig. 2 (b))
by the temperature. One may observe that the relationship given by
(1.7) implies that the maximum of the antiferromagnetic susceptibility
must occur somewhat above T, whereas at 7', itself the temperature
derivative of the susceptibility reaches infinity, at least for the Ising
model, where the specific heat is predicted to diverge in two and three
dimensions. TFor the Heisenberg model C,, is expected to display a



Experiments on simple magnetic model systems 9

finite cusp at 7', for d=3, in which case 0y/07 will also remain finite,
passing through a maximum at 7. Although in this discussion the
parallel susceptibility is considered, a similar result has been obtained
for the perpendicular susceptibility (Fisher 1963). The difference between
T, and the temperature of the maximum 7' .. again reflects the presence
of short-range order above 1', and therefore will be enhanced by lowering
the dimensionality. Obviously, in the MF theory both temperatures
coincide.

Thus we have seen that the short-range-order effects are reflected
amongst other things in the specific heat tail and in the difference
Toox—T, The important quantity in this respect is the constant A4
in (1.3), since this gives the amount of magnetic energy that is still
present at T',. It will come as no surprise that for the Ising model Sykes
and Fisher (1962) found this amount to be about two to three times larger
for the 2-d than for the 3-d lattices.

We shall now illustrate the above arguments with a few examples. In
fig. 3 the theoretical specific heats of the Ising model in two and three
dimensions are once more compared, this time on a temperature scale
relative to 7', so that the enlargement of the high-temperature tail can
be seen more clearly. Quantitatively, the ratio of the areas under the
specific heat curve below and above 7', is 3-1 for the f.c.c. and 0-41 for the
quadratic lattice (see, e.g., Domb and Miedema 1964). In fig. 4 a similar

Fig. 3
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Theoretical specific heats of the S§=4 Ising model. Solid curve: square
(simple quadratic) lattice ; dotted curve: face-centred cubic lattice.
{After Domb 1960.)
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comparison is made for the antiferromagnetic susceptibility. Besides the
larger reduction of 7', for the 2-d lattice with respect to the MF prediction
6=228(S +1)J 3k, we observe the huge enlargement of the difference
T wax— T and also of the ratio x(7T',,¢)/x(T), on lowering the dimen-
sionality, in accordance with the qualitative arguments sketched above.
As a last example we show in fig. 5 the spontaneous magnetization of a
2-d and a 3-d Ising model. For the triangular lattice it is seen that
M (T) retains near saturation values up to much higher relative tempera-
tures as compared with the f.c.c. lattice. This is associated with a lower
value of the critical exponent 8 in the power law

MS(T)/MS(O)~(1—T/TO)ﬁ’ (1.8)

which describes the vanishing of the long-range order as 7' is approached
(for a definition of the critical exponents associated with the thermo-
dynamic functions see, e.g., Fisher 1967). For 3-d lattices S is about %,
whereas the 2-d TIsing lattices have B={ (compare with the MF predic-
tion B=1). We may once more use our qualitative picture by saying
that, since below 7', the correlation functions will very rapidly approach
the limiting I',, when studied as a function of r (with the exception of
the region very close to 7',), a high value of the constant 4 in the expression
of T'; (eqn. (1.3)) will imply a steeper I'; as well as a steeper I',, curve.
Concerning the behaviour in magnetic chains one can conclude from
the absence of long-range ordering at any finite temperature and from

Fig. 4
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Theoretical parallel susceptibilities of S=} Ising antiferromagnets. Full
curve : honeycomb lattice; dotted curve; simple cubic lattice ;
dashed curve: molecular field result y8/C=(1+7/0)~'. The open
circles denote the positions of 7',. (After Sykes and Fisher 1962.)
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the specific heat curve shown in fig. 1 that the energy must appear as a
smooth curve, possessing no singularities of the form given by eqn. (1.3).
Likewise for the antiferromagnetic susceptibility, although it will show a
broad maximum, it will not have a diverging temperature derivative as in
the case of a transition.

Fig. 5
1.0 T
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1
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ez T/ T

Theoretical spontaneous magnetizations of the §=4% Ising model. Full curve :
triangular lattice ; dotted curve: face-centred cubic lattice ; dashed
curve : molecular field prediction. (After Guttman et al. 1970.)

By comparing the specific heat behaviour of the Heisenberg model for
d=1, 2, 3 as shown in fig. 6 with the corresponding Ising curves (fig. 1),
it can be inferred that changing the type of interaction from the aniso-
tropic Ising to the isotropic Heisenberg form has the effect of enhancing
the short-range-order contributions. For the 3-d Heisenberg models,
which do possess a phase transition, this can be seen by comparing the
critical parameters (e.g. T'./0) with the corresponding values for the Ising
model (Domb and Miedema 1964). A similar qualitative picture for the
thermodynamic behaviour as given above will apply to the 3-d Heisenberg
model, except for the already mentioned indications obtained from the
analysis of series expansions (Baker e al. 1967 b) that the specific heat
remains finite at 7', although its derivative is still infinite on both sides
of T, so that the curve displays a sharp cusp. Accordingly the tempera-
ture derivative of the correlation functions will not diverge at T, so
that the I", must be of a different form than that given by eqn. (1.3).
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Specific heats of the S=} Heisenberg model in 1, 2 and 3 dimensions. The
1-d curve is the result for the antiferromagnetic chain obtained by Bonner
and Fisher (1964), from approximate solutions. The 2-d curve applies
to the ferromagnetic quadratic lattice and has been constructed by
Bloembergen (1971) from the predictions of spin-wave theory (7'/0 < 0-1),
from the high-temperature series expansion (7'/#>1), and from the
experimental data on approximants of this model (0-1<7'/6<1), to be
discussed below. The 3-d curve follows from series expansions for the
b.c.c. ferromagnet given by Baker et al. (1967 b). Also included is the
molecular field prediction.

The enhancement of the importance of the short-range-order effects
also follows from the fact that in the case of the Heisenberg model a
lowering of the dimensionality to 2 is already sufficient to prevent the
onset of long-range order at a non-zero temperature (Mermin and Wagner
1966). The thermodynamics of the 2-d Heisenberg model will therefore
to a certain extent resemble the behaviour found in the chain models ;
to a certain extent because there is a possible difference following from
the analysis of series expansions of the susceptibility (Stanley and Kaplan
1966), in which indications were found for the existence of non-zero
transition points at which the ferromagnetic susceptibility diverges.
Thus, although the chain models as well as the 2-d Heisenberg model
cannot sustain a spontaneous magnetization at any finite temperature,
the latter would distinguish itself by possessing a transition to a phase
with an infinite susceptibility. We will return to this intriguing problem
later. At this point we merely remark that since the 2-d XY models
have been found to possess similar properties as the 2-d Heisenberg model,
the anisotropy evidently must be of the Ising form to enable a transition
to long-range order to occur in a 2-d lattice.
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Finally we mention the influence of the spin value and the interaction
range on the properties of a magnetic system. By studying the critical
parameters as a function of S one finds that the short-range-order effects
are enhanced by lowering S (e.g. Domb and Miedema 1964, Fisher 1967).
Evidently the fact that a system is quantum-mechanical, in the sense that
it has a finite spin value, also increases the deviations from the MF theory.
As concerns the range of the interaction, it has been proven by various
workers (see, e.g., Fisher 1967) that the MF theory becomes exact in the
limit of an infinite interaction range. Intuitively this may be understood
by considering the failure of the effective field concept in the case of
short-range interactions, as outlined above. Indeed, the validity of the
MF theory in the infinite-range limit can easily be inferred from the
qualitative picture obtained with the aid of the correlation functions.
From the fact that the MF approximation amounts to replacing the inter-
action of a given spin with its neighbours by an average taken over the
whole magnetic system, one may understand why the MF theory becomes
exact in the limit z—o0 (Brout 1965), that is if one has an infinite number
of equivalently interacting magnetic neighbours.

§ 2. APPROXIMATION OF MAGNETIC LATTICE MODELS TN REAL CRYSTALS
2.1. General remarks

In the following sections we shall classify the various model systems
considered according to the dimension of the magnetic lattice and the
type and sign of the exchange interaction. Concerning the magnetic
lattice dimensionality, d, it is clear that experimentally only d <3 can
possibly be achieved. In real crystals a low magnetic dimensionality
is approximated when the magnetic atoms interact predominantly with
neighbours that are arranged in clusters (d=0), in chains (d=1), or in
planes (d=2). In this paper we shall restrict ourselves mainly to
d=1, 2, 3, because in our opinion the paper by Smart (1965) is still quite
representative as concerns the properties of isolated clusters of magnetic
atoms. As regards the type of interaction, we shall mainly be concerned
with the Ising and Heisenberg models, although a few examples of the
planar Heisenberg model have already been found (for a recent review
of the XY and planar models see Betts in ““ Phase Transitions and Critical
Phenomena ’, edited by Domb and Green, vol. 3, 1973).

The range of the interaction is in most experimental cases not confined
to nearest neighbours only, even when the presence of the long-range
dipolar forces is neglected. It is in this respect reassuring to recall a
well-established result of theoretical studies that, within a given dimension,
finer details as, e.g. critical indices, will probably not depend on the
number of nearest or further neichbours (Domb and Miedema 1964, Domb
and Dalton 1966, Dalton and Wood 1969, Griffiths 1970 b, Paul and
Stanley 1971 a, b), in any case much less than on the dimension itself. In
particular, when the number of further neighbours is not large and the
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interactions with these are much weaker than with the nearest, one may
expect the properties to be not essentially different from the nearest-
neighbour model. Both conditions seem to be fulfilled in most of the
experimental systems that will be discussed. Consequently, we will
adhere to a classification scheme of 3 x 3 x 2=18 types of model systems,
where the first factor 3 stands for the lattice dimensionality, the second
for the type (Ising, XY or Heisenberg) of the interaction, whereas the
factor 2 enters because the interaction can be ferro or antiferromagnetic.
The compounds considered have, furthermore, various spin values.

We finally remark that the data presented in this paper have all been
taken on smsulating magnetic compounds. The application of the
Heisenberg model, with its fully localized moments, to a magnetic metal
like Fe or Ni is unjustifiable for fundamental reasons. The agreement
that has nevertheless been found in some cases in our opinion does not
say anything about the applicability of the model, but rather it points
to the faet that certain features of the phase transition are common to all
the various order-disorder phenomena (magnetic and liquid-gas transi-
tion, binary mixtures ; see, e.g., Kadanoff 1970).

2.2. Type of interaction

In theoretical work one arrives at the Ising Hamiltonian simply by
putting b= 0 in eqn. (1.1), thus assuming an anisotropy in the exchange
interaction. In practice, however, anisotropic properties often arise not
so much from an anisotropy in the interaction mechanism (which may
even be wholly isotropic) but from other sources, such as the presence of
a crystal field or a magnetic dipolar field that couples the moments to a
certain direction in the crystal. It is well known that the former acts
via the orbital momentum. Quite generally the effect of the crystal
field is to produce a set of orbital levels for the single magnetic ion. At a
given temperature only the ground state and the excited states lower
than k7 will be occupied. For the magnetic properties one need there-
fore only consider the levels with energies not much larger than kT
For instance a rare-earth ion in an axial crystalline field may possess
strongly anisotropic properties. It is in this case essential that the
crystal field potential is not too large as compared with the spin orbit
interaction, which couples L and S to the total moment #, while, on the
other hand, the crystal field splittings must be relatively large as compared
to kT, As an example fig. 7 (@) shows the situation for Dy3+ for which
L=5,8=5and #=2% A purely axially symmetric crystal field would
split the 16-fold degenerate ®H,;, ground state into eight doublets, in
such a way as to produce a doublet with strongly anisotropic properties
lying lowest. At temperatures low compared to the separation of the two
lowest doublets, the magnetic moment can, in small fields, be directed only
parallel to the symmetry axis of the crystal field (z axis). Writing the
exchange constant between two Dy®+ ions, which is assumed to be isotropic
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Crystal field splitting of the ®H,;, lowest multiplet of Dy3+. (a) The situa-
tion that would arise from a purely axially symmetric crystal field.
(b) Level scheme as calculated by Griinberg et al. (1969) for Dy3+ in
dysprosium aluminium garnet. The arrows indicate levels that have
been observed experimentally.

in the true spin Hamiltonian, in terms of an effective spin 1 formalism,
one has to introduce an anisotropic interaction which is proportional to
the length of the real spin vector §. Meaningful approximate values for
the exchange constant, in comparing interactions of different ions or
different compounds, may be obtained by writing

7.=9.5+g, % J,=J(3g,5)?
(2.1)
g.=9.5+9. % J,=J(G9,5)?

where the indices S and L denote the relation of the g components to the
contributions of the spin and the orbital angular momentum to the
magnetic moment, respectively, and J is the isotropic exchange. In our
example ¢,%~20, g 5~0, from which it follows that J, ~100J while
J, ~0.

Of course, in theoretical treatments one may introduce the anisotropy
in a similar way ; namely, starting from the Hamiltonian of eqn. (1.1)
with @ =b =1 one may introduce additional terms to account for the effects
of the crystal field or the magnetic dipolar interactions, for instance a
term of the form DS,2, with D < 0 in the case of an uniaxial anisotropy of
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the Ising type, as discussed above. In this way one obtains what may
be called an anisotropic Heisenberg model and one may hope that for
large values of the anisotropy its behaviour will resemble that of the
Ising model. In fact, in comparing experiments on Ising-like substances
with theory it has proven in most cases to be unimportant whether the
anisotropic properties have been realized by an anisotropy in the exchange
or by single-ion anisotropy (note that in the latter case one can approximate
closely only the Ising models with S=1%). Nevertheless, one should bear
in mind that there is a fundamental difference between the two methods of
approach, leading in some problems to contrasting results, and we shall
have occasion to point this out below in connection with an example.
From the present discussion of the anisotropy, it may be gathered that
most of the anisotropic compounds that will be presented in the next
section are essentially of the anisotropic Heisenberg rather than of the
Ising type.

Evidently, practical cases are more complicated than the idealized
picture in fig. 7 (@). A more realistic situation is shown in fig. 7 (b),
which gives the energy levels for the lowest multiplet of Dy3* in dys-
prosium aluminium garnet as calculated by Griinberg et al. (1969).
What remains, however, are the strongly anisotropic properties of the
lowest doublet (g, ~18, g, ~0-5, Faulhaber and Hufner (1969) and Ball
et al. (1962)), so that at temperatures well below the separation of the
two lowest levels which is about 80 K (7', ~2-5 K, Keen et al. 1967), the
Ising requirement for the effective spin } is quite accurately fulfilled.

As regards the transition metal ions, many Co?* compounds have also
been found to be strongly anisotropic. The situation differs from that
in the rare earths in that the crystal field is now stronger than the spin—
orbit coupling and the orbital contribution to the magnetic moment
may be quenched. Figure 8 (@) shows the energy levels of the cobalt
ion in CoCsyCl; in which compound the crystal field has a small axial
distortion from tetrahedral cubic symmetry. The cubic crystal field
splits the sevenfold degenerate L =3 multiplet into two triplets and an
orbital singlet, the latter lying lowest. Since the spin degeneracy is
fourfold, this results in a quartet with g values slightly different from 2-0
(g8 =20, g-=0-4). In addition, the axial component of the crystal
field produces a splitting of about 10 K, the doublet S= + § being lowest
(fig. 8 (b)). Since the magnetic ordering occurs below 1 K (T',=0-52 K,
Wielinga et al. 1967), it can be described within the Ising model with
effective spin 4 and ¢,=7-2,¢9, ~0, 9,5=6,J,=9J.

For many other cobalt salts, e.g. for Co?* in octahedral cubic symmetry,
the anisotropy of the lowest doublet is not as complete as in the two
examples treated. The reason is that in an octahedral cubic field the
orbital levels are reversed so that the lowest-lying level is an orbital
triplet. However, what is reassuring in this respect is that theoretical
investigations (see, for instance, Dalton and Wood 1967, Griffiths 1970 b)
have shown that the intermediate cases, even for say J /J 6 ~ 05, will
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still show a critical behaviour that is nearly identical to the fully aniso-
tropic case. This means that compounds like K,CoF,, where the lowest
doublet according to Folen et al. (1968) is described by g, =63, g% =4-9,
g, =31, 9,5=24, and in agreement with (2.1) J,/J, =0-24, may still be
considered as good approximations of the Ising model (Breed et al. 1969),
at least for temperatures not too far above 7',.

Fig. 8
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Crystal-field splitting of the lowest multiplet (L =3, S=3) of Co?* in CoCs,Cl,.
(a) Energy level scheme in a cubic and in a tetragonal crystal field.
The numbers indicate the orbital multiplicity for the cubic and the spin
degeneracy for the tetragonal case. (b) Splitting of the lowest level
(quartet) by the axial component of the crystal-field and field-dependent
splitting of the resulting doublets. The arrows are actually observed
transitions, as reported by Beljers ef al. (1964).

In the literature one also finds a large number of Fe?t compounds
(FeCl,, FeCl, . 2H,0) and Ni** compounds (Ni(CN),NH,C,H,) mentioned
as Ising-like materials. However, a word of caution is needed here
because in these materials the crystalline field anisotropy and the magnetic
interaction are often of the same order of magnitude. As a consequence,
at high temperatures these Fe?t and Ni?t compounds will behave like
Heisenberg compounds with §=2 and S=1, respectively, whereas at
low temperatures they become strongly anisotropic. Hence a comparison
with theoretical models is made difficult, since, for instance, part of the
heat capacity anomaly is due simply to the crystalline field splittings

A.P. B
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(Schottky anomaly is the absence of interaction). Clearly one meets the
complication that the effective spin quantum number must be considered
as being temperature dependent. Therefore, many of these compounds
may be described by the Ising model as far as their low temperature
properties (T < 7T',) are concerned and to a considerable extent, the critical
behaviour may also be well described within the Ising model. However,
as regards their magnetic and thermal properties over the full temperature
range, they will differ strongly from the predictions of the Ising model
with the appropriate spin value. A beautiful example of such a situation
is given in fig. 9 which shows the specific heat of FeCl, . 4H,0, drawn from
data of Friedberg et al. (1961) and Raquet and Friedberg (1973). Here
the Schottky anomaly, having its maximum at 3 K, could be clearly
resolved from the lattice specific heat as well as from the sharp peak at
about 1 K, which is due to a transition to antiferromagnetic order.

Fig. 9
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Specific heat of FeCl, . 4H,0 drawn from data obtained by Friedberg et al.
(1961) and Raquet and Friedberg (1973). The peak near 1 K is only
partly shown, the highest value of the specific heat measured being above
6 cal/mol K.

The above discussion of the anisotropy has of necessity been very brief.
The dissatisfied reader will find more thorough treatments in the review
papers of Kanamori (1963), Wolf (1970) and Baker (1971 a), or in the
extensive literature on paramagnetic resonance.

Next we will try to indicate how materials possessing highly isotropic
interactions as required by the Heisenberg model can be found in Nature.
Obviously, this condition is more difficult to be met, in view of the many
possible sources of anisotropy existing in real crystals. It is evident that
one must start with ions possessing a very small single-ion anisotropy.
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In principle it would then be sufficient to find compounds in which the
magnetic ions occupy sites of cubic symmetry. Unfortunately, however,
this does not work out in practice whenever the crystal field energy can
be sufficiently lowered by a distortion from cubic symmetry, which is
quite often the case (Jahn-Teller effect). It is for this reason in particular
that S-state ions are preferable, for which crystal field splittings play
only a minor role (Mn?t, Fe3+, Gd%+, Eu?t). Of course it always remains
advantageous to have a cubic crystal structure.

We would like to point out that in the literature it is mostly forgotten
to incorporate in the above group of  spin only ’ ions the large assembly
of free radicals. In these materials one (or more) of the electrons does
not partake in the bonding, so that they have spin only ’ magnetic
moments with §=1% and a fully isotropic g value. Since S-state ions
with §>$% generally will have some crystal field splittings through
mixing with other states, free radical compounds are clearly rather
attractive. A disadvantage, however, is the difficulty of preparing
samples, in particular single crystals, while also the structure and con-
centration of the magnetic moments in radical compounds is not always
known sufficiently well.

Another widely exploited possibility of realizing an isotropic interac-
tion is offered by Cu2?+ compounds. A free Cu?* ion has L=2 and S=1,
but, as in the case of Co2+ in Cs;CoCl;, the orbital moment may be nearly
quenched by the crystal field. At the temperatures of interest, generally
only two levels are populated (Kramers’ doublet) with g values not much
different from 2.

Taking CuK,Cl, . 2H,0 as an example we have g, =238, g =206
(Ono and Ohtsuka 1958), where the anisotropy in ¢ is predominantly an
orbital contribution. Consequently, the anisotropy in the exchange
arising from single-ion Cu?* properties and corresponding to (¢5)? is
very small.

Highly isotropic single-ion properties also exist in a number of Ni%+
and Cr® compounds. Again the orbital moment is nearly completely
quenched, resulting in a triplet (§=1) and a quartet (S = $), respectively,
as the only levels populated at the relevant temperatures and g values
which are approximately equal to the spin-only value 2. Axial crystal-
field splittings that may nevertheless occur are generally small, so that
if the transition temperature happens to be well above 1 K, also Ni2+
and Cr?+ compounds may be considered to be quasi-Heisenberg magnets-
Note that the same arguments would have made the interaction in
CoCs,Cl; of the Heisenberg type, if the transition temperature would
have been much larger than 10 K instead of being well below 1 K.

In conclusion we would like to sum up the possible sources of anisotropy
that may ° spoil ’ the Heisenberg interaction. We have already mentioned
the single-ion, or crystal-field anisotropy, and also the anisotropy arising
from dipolar interactions. Apart from contributing to the anisotropy
the latter also influences the range of the interaction (see below). Other

B2
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sources are: biquadratic exchange interactions, electric multipole
interactions, virtual phonon exchange and the superexchange mechanism
itself. Of these the dipolar contribution can be simply calculated ;
its relative magnitude depends on the crystal structure and on the con-
centration and magnitude of the magnetic moments. Electric multipole
interactions, as produced by aspherical charge distributions, and virtual
phonon exchange thus far have only been shown to be large for some of the
rare earths and for actinide compounds (see Wolf 1970, Baker 1971 b).
The anisotropy occurring from the superexchange mechanism, which
sensitively depends on the type of intervening nonmagnetic anion and
on the relative positions of the atoms in the crystal (the overlap of wave-
functions), can be very large and difficult to predict, as for example in
magnetic complexes such as [Fe(CN)g]>~ in K;Fe(CN),. For this complex
the exchange does not at all correlate with the g values ; Ohtsuka (1961
a, b) found J,/J, ~1-25, whereas g,/g, ~0-4. However, in the case of
fairly ionic compounds, to which class most of the materials discussed
below belong, an anisotropy in the exchange other than simply derived
from single-ion anisotropy has been observed in a few cases only.

Finally, as concerns the planar Heisenberg model, one expects this to
be realized whenever the anisotropy is such as to produce a strong
preference for an alignment within an easy plane. An example is CsNiF,,
in which, in the absence of an exchange interaction, the crystal-field
splittings result in a singlet and a doublet, the former lying lowest.
Since the exchange energy is comparable in magnitude with the level
separation, a magnetic ordering with effective §=1 is found, in combina-
tion with a large uniaxial anisotropy of the form DS,? (with D>0),
restricting the spins in a planar configuration (Steiner 1971). More
generally, the planar model will be approximated whenever the anisotropy
is of orthorhombic symmetry, with the distinction between the hardest
and the easy axis much greater than between the next preferred and the
easy axisy.

As we have mentioned in the introduction the difference between the
XY and the planar model is that in the former only an anisotropic
exchange (a=0 in eqn. (1.1)) is required, whereas in the latter one puts
the additional restriction that the spins lie within a plane by adding the
term DS,2 (D> 0) to the XY Hamiltonian. In view of the above dis-
cussion, it is clear, that the experimental examples will approximate the
planar, rather than the XY model. Note however that, in theoretical
treatments, for S=1 a term of the form DS.?2 is simply an additive
constant, since S, is then a multiple of the unit operator.

+ In what follows we will often use the term anisotropy field, which is the
effective field H , associated with the anisotropy (gupH ,=2DS). In the case
of an anisotropy of orthorhombic symmetry we will differentiate between the
anisotropy H ! within the easy plane formed by the preferred and next pre-
ferred axes (in-plane anisotropy), and the anisotropy H,™ between the easy
axis and the hardest direction (out-of-plane anisotropy).



Hxperiments on simple magnetic model systems 21

2.3. Interaction range

Within a given dimension one prefers to have a well-defined number of
interacting magnetic neighbours. We have already mentioned this
problem in §2.1. As far as exchange interactions are concerned, the
ratio of the interaction between next nearest (J,) and nearest neighbours
(J,) may in principle be arbitrarily small, because the superexchange
interaction depends critically on the mutual separation » of the magnetic
atoms, viz. like 19 or even more rapidly (see, for example, Bloch 1966,
and Hutchings et al. 1968). As the interaction is of such a short range,
this leads to the rule of thumb that each additional intervening anion
reduces the exchange interaction with at least a factor 102. However,
in practice the presence of additional long-range dipole-dipole interac-
tions (varying only as r—3) will make the above argument of limited value.
Considering the experimental data for the exchange constants (for a
given ion and varying exchange path) and estimating the dipolar contribu-
tion, one must conclude that apart from accidental cancellations the ratio
Jo/J; will in most cases be of the order of 10~2, in particular if the number
of anions along the two paths is different. Examples are KMnF,, for
which Pickart et al. (1966) report a ratio of 0-03, and KNiF; and K,NiF,,
for which Yamaguchi and Sakamoto (1969) found 0-005 and 0-01, res-
pectively. Tt is also obvious from the above that if one prefers to have
the short-ranged exchange forces to be the predominant interaction,
only those crystals are of interest in which the exchange path between
the nearest neighbours involves not more than one or two intervening
atoms since otherwise the superexchange may become comparable in
strength with the dipolar interaction. We also point out that in the
dipolar interaction the total magnetic moment enters. Hence, ions
with a large orbital contribution to the moment, like most of the rare
earths, will have relatively large dipolar contributions. On these grounds
the pure S-state ions, the free radicals and those transition elements in
which the orbital contribution is quenched are preferable if one wants to
diminish the effects of long-range forces. That these may markedly
influence the characteristics of the phase transition has already been
mentioned at the end of § 1.2. Perhaps superfluously it is noted that the
dipolar interactions cancel in the case of a cubic structure.

The reader will find, in what follows, that with a few exceptions we
have restricted ourselves in this paper to the nearest-neighbour-only
models, treating the interactions of a longer range—if perceivable—as
unwanted by-effects.

2.4. Dimension of the magnetic lattice

The experiments on low-dimensional magnets described in this paper
have all been performed on 3-d crystals. Obviously, Nature can provide
only approximations of the ideal low-dimensional magnetic structure ;
it is even more striking how extremely good these approximations can be
made in practice.
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There are a number of reasons which may cause the lack of an appreciable
magnetic interaction between neighbours along one or more spatial
directions in a crystal, the most obvious being the extremely short range
of the superexchange interaction. Since the magnetic and the crystal-
lographic lattice need not be identical, this property may be utilized by
choosing a lattice in which the distance between the magnetic ions along
a given direction is much longer than along the other ones. The magnetic
ions may, for instance, be largely separated along certain axes by putting
non-magnetic atoms in between them. In addition a lower dimensionality
may be a consequence of the fact that both signs of the superexchange
interaction do occur, depending on path lengths and bond angles. This
offers the possibility of an accidental cancellation of the interaction in a
given direction, if there exist different bonds in that direction.

Structure of the cupric acetate monohydrate molecule, Cu(CH;CO0O0), . H,0.
(From Van Niekerk and Schoening 1953.)

The structural low dimensionality is best illustrated with a few examples.
A zero-dimensional magnetic system, or in practice an assembly of nearly
isolated clusters of magnetic atoms, is for instance approximated in copper
acetate. Figure 10 gives the structure, as reported by Van Niekerk and
Schoening (1953). The two copper ions are very close together, their
separation (2:64 A) being only slightly larger than in the copper metal.
Following Smart (1965), one may describe the structure by saying that
each pair of Cu?t ions is enclosed in a cylindrical cage, with four acetate
molecules along the sides and a water molecule at each end. The ex-
change will in this case be due mainly to direct overlap, in agreement with
the observed antiferromagnetic sign of the interaction, The number of
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magnetic atoms forming a cluster may of course vary. For example, a
tri-nuclear cluster is found in the compound Cry(CHZ;C00),0Cl . 5H,0
(Figgis and Robertson 1965, Uryt and Friedberg 1965).

Similar geometrical arguments explain the 2-d character of the copper
compounds with general formula (C,H,, ,;NH;),CuCl, (=0, 1, 2,3 ...).
These salts may be looked upon as being derived from (NH,),CuCl, and
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Crystal structure of (C,H,NH,),CuCl, (from De Jongh ef al., 1969). Part of
the propyl ammonium groups and H atoms have been omitted for the
sake of clarity.



24 L. J. de Jongh and A. R. Miedema on

consist of ferromagnetic Cu?t layers, separated by two layers of non-
magnetic alkyl ammonium groups. This may be seen in fig. 11 where
the structure of the compound with n =3 is given, drawn after crystallo-
graphic data of Barendregt and Schenk (1970). By varying =, the distance
between Cu2t ions from neighbouring layers is increased from 9-97 A
(n=1) to 25:8 A (n=10), while the configuration within the copper
layers is not appreciably changed (the Cu-Cu distance within the layer
being about 5-25 A). A nice feature of such a series of compounds is
that one may study the various properties of interest as a function of the
inter-layer distance and thereby make extrapolations to the ideal 2-d
system (Bloembergen et al. 1970, De Jongh and Van Amstel 1970).
Concerning the magnetic interaction J' between the layers we may
distinguish between the dipolar coupling and the superexchange inter-
action. The former has been calculated by Colpa (1972 b) to be smaller
than 10-% of the exchange J within the layer, for all values of n larger
than 3. The superexchange between the layers may only be estimated ;
using the rule of thumb just mentioned (§ 2.3) one obtains J' & 10-3-10-20J
for n=1-10. For comparison, the measured interlayer coupling J’ for
the cases n=0 and 2, was found to be |J'/J|=3-2x 107 and 8-5x 1074,
respectively (De Jongh et al. 1972, Bloembergen and Franse 1972,
Lécuyer et al. 1972).

Unequal magnetic lattice parameters assisted by a symmetry argument
lead to 2-d antiferromagnetism in the K,NiF, structure. Since the Ni
ion can be replaced by Mn, Fe, Co and likewise K by Rb or Cs and F by
Cl, quite a lot of examples have become known in recent years. As
shown in fig. 12, the tetragonal K,NiF, structure can be looked upon as
being derived from the cubic (perovskite) KNiF, structure by adding an
extra layer of KF between the NiF, sheets. By this simple fact a 3-d
antiferromagnetic lattice is transformed into a magnetic layer structure.
It is of importance that the interaction within the layer is antiferro-
magnetic, since this causes a cancellation of the interaction between
neighbouring layers in the ordered state, as was first pointed out by
Legrand and Plumier (1962 a, b). This may be understood by observing
that the neighbouring planes are shifted over a,/2, by/2 (a,=b,) with
respect to each other. In the case of antiferromagnetic order within the
layers the spin in the centre has in the adjacent planes an equal number
of neighbours with spin up as with spin down ; there will be no net inter-
action, at least as far as the static properties (at 7'=0) are concerned.
In that case the interaction in the third dimension is with the next-
nearest layer and the interplanar superexchange interaction has to take
place via four intervening anions, so that it may be expected to be 10—6
of the intralayer exchange. The dipolar coupling between next-nearest
layers has been calculated by Colpa (see Colpa 1972 a) to be of the order
of 10-7-10-8 ot J for the various compounds. Asis shown by the Ba,ZnF
structure (Von Schnering 1967) the interlayer distance can be increased
further by the addition of still more non-magnetic layers. In this
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compound the Zn atom may also be replaced by Fe, Co, Ni or Cu (with
the exception of the copper compound, they are also tetragonal).

Fig. 12
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Comparison of three related crystal structures, two of which are 2-d in magnetic
respect. In the middle the cubic perovskite structure of KNiF,, on
the left the tetragonal K,NiF, unit cell. On the right the structure of
Ba,ZnFy (Von Schnering 1967). These crystal structures offer the
possibility of comparing the 2-d and 3-d properties of compounds which
are quite similar in other respects.

We remark at this point that the above-mentioned symmetry argument,
that has been repeated by many authors including ourselves, is of itself
insufficient to explain the fact that experimentally 2-d behaviour has
been observed over nearly the whole temperature range, in particular
also in the paramagnetic regime where there is no long-range antiferro-
magnetic orderf. It would indeed fail completely if the superexchange
interaction J” between central spins and corner spins itself was not much
smaller than J, regardless of any symmetry considerations. For instance,
it J'~.J, the behaviour would certainly be 3-d. As we see it now the
correct argument would go as follows. Since the interaction J’ involves
three ligands it will likewise be much smaller than J (at least a factor 104
by the reasoning given above). Accordingly at high temperature the
only correlations that come into play are those within the layer. As a

1 The authors acknowledge stimulating correspondence and discussion with
D. D. Betts and R. P. van Stapele on this subject.
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consequence of the pronounced 2-d character the amount of short-range
order established at a given temperature k7/|J| will be relatively much
larger than in a 3-d system. As the temperature is lowered the correla-
tion length becomes sufficiently large that substantial clusters of anti-
ferromagnetically correlated spins exist within the layer. The symmetry
argument will then tend to reduce the effect of the coupling J’. This in
turn enhances the two-dimensionality, etc., leaving ultimately in the
case of complete order the interaction between next-nearest neighbouring
layers (along the ¢ axis) as the only interlayer coupling. By this argu-
ment one may understand why these systems show a very nearly pure
2-d behaviour over the whole range of temperatures (see below), except for
an extremely small region around the transition temperature (|7 —7',]|/
T,<104!). Tt is pointed out in conclusion that similar (partial)
cancellations because of symmetry can also be found in other structures,
for instance in compounds that consist of nearly isolated antiferromagnetic
chains.

A lowering of the dimensionality which is not just simply related to
the mutual separation of the magnetic ions is illustrated by the following
examples. In fig. 13 a projection of the unit cell of Cu(NH,),SO, . H,0
is shown, as determined by Mazzi (1955). The 1-d properties of this
structure originate from the difference in exchange paths connecting the
Cu?t jons. Since the superexchange interaction via the oxygen ion is
more favourable than that via the two NHj groups it is not surprising
that the crystal behaves as an assembly of nearly isolated magnetic
chains (running along the ¢ axis), with |J'/J| being about 5x 103,

Tig. 13

Projection of the unit cell of Cu(NH,),SO,.H,0 on the bc plane. (After
Mazzi 1955.)
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Rather difficult to conceive at first sight is the 1-d magnetic character
of KCuFy, since, according to Okazaki and Suemune (1961 a), the crystal
structure is very nearly cubic (perovskite : KNiF, in fig. 12). However,
the distortion of the fluorine octahedron surrounding the Cu?* ion has
extreme consequences for the magnetic interaction. As shown in fig. 14,
taken from Hirakawa ef al. (1970), a special alignment of the wave-
functions of the dy orbitals of the Cu2t ion is produced, in such a way that
there is a strong overlap through the intervening fluorine ions along the
¢ axis and practically no overlap along the @ axes. Accordingly, the
interaction in the ¢ plane is a factor 102 weaker than the antiferromagnetic
exchange along the ¢ axis.

We remark that quite generally, it is considerably more difficult to
realize a quasi 1-d system with a very small interchain interaction,
than a quasi 2-d system with a very small interlayer coupling. This

The alignments of the dy-orbitals of the Cu?+ ion in KCuF, according to
Hirakawa ef al. (1970). The positions of the fluorine anions F, ,, are
also shown. The 1-d behaviour arises because there is hardly any
overlap of the wave functions along the a-axes (actually there exist
two different types of alignments, of which the one shown has been
found to possess the most pronounced 1-d properties).
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arises because in the former case the interaction within a erystallographic
plane has to be minimized, in the latter only along one crystallographic
axis.

As examples of to a certain extent accidental low dimensionality one may
consider all those cases in which a lower dimensionality cannot be inferred
a priori from the crystal structure, but is instead deduced from the observed
magnetic and thermal behaviour. The compound CuNO, .2}H,0,
for instance, has properties that clearly indicate the presence of nearly
isolated pairs of Cu?+ jons, although such a clustering is not obvious from
the crystal structure (Friedberg and Raquet 1968, Bonner et al. 1970).
As a second example we may mention the pronounced difference in
magnetic behaviour of the two isomorphous cobalt compounds CoCs,;Cly
and CoCsgBr;.  According to Wielinga ef al. (1967) and Mess ef al. (1967),
the properties of the chloride can be described by a 3-d Ising antiferro-
magnetic model, whereas those of the bromide are in good agreement
with predictions for the quadratic Ising lattice. Apparently, the inter-
action for the nearest neighbours along the tetragonal axis in the quasi
simple cubic lattice of magnetic atoms is cancelled in the case of the
bromine compound.

§ 3. EXAMPLES OF SIMPLE MAGNETIC MODEL SYSTEMS IN REAL ORYSTALS

3.1. Chain structures
3.1.1. Introduction

As has already been mentioned above, the study of low-dimensional
magnetic systems has been quite rewarding for theoretical physicists,
since they provided the means of obtaining exact solutions of cooperative
phenomena. Most of the existing exact results have in fact been acquired
on chain models and we have thought it worth while to give a short
review, prior to a discussion of the experimental results.

For the Ising chain, calculations of the energy, the specific heat and the
susceptibility are available for §=1, 1, 3 (Ising 1925, Obokata and Oguchi
1968, Suzuki ef al. 1967). Katsura (1962) has solved the energy, specific
heat and perpendicular susceptibility of the XY chain (transverse coupled
chain). The thermodynamic behaviour of the classical (S = co) Heisenberg
model in one dimension has been calculated by Fisher (1964) (see also
Stanley 1969 b). In the case of the S=} Heisenberg chain an exact
result for the magnetization curve at zero temperature was obtained by
Griffiths (1964 a). For temperatures 7'>0 approximate solutions for
the thermodynamic behaviour have been derived by Bonner and Fisher
(1964) and Griffiths (1962), by calculating the properties of closed rings
containing an increasing number of spins and subsequently extrapolating
to the infinite chain. In the temperature region above k7T'/J ~0-5 the
results found in this way are in close agreement with those obtained by
Baker et al. (1964), from Padé approximant analyses of high-temperature
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series expansions. Results for the Heisenberg chain with §>} have
been reported by Weng in his thesis (1969).

Fig. 15
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Theoretical heat capacities of a number of magnetic chains with S=4. (a)
and (b) correspond to the Ising and the XY model, respectively (ferro
and antiferromagnetic). Curves (c) and (d) are for the antiferromagnetic
and ferromagnetic Heisenberg chain, respectively. For the references,
see the text.

The thermodynamic behaviour of 1-d systems is governed by the
intrinsic property common to all of them, namely the absence of long-range
order at any non-zero temperature. That the Heisenberg and XY chains
cannot sustain a spontaneous magnetization for 7'> 0 has been rigorously
proven by Mermin and Wagner (1966). For the ferromagnetic Ising
chain there is a simple argument due to Landau (Landau and Lifschitz
1958), which we reproduce here because of its elucidating nature (see also
Fisher 1973). The argument may be put in the following way. Suppose
we have a line of IV spins that are ordered in parallel. Consider the change
in the free energy F'=U —1'S, where U is the internal energy and § is the
entropy, when this alignment is broken by reversing the direction of the
tirst L spins. If we are dealing with short-range forces, the change in
energy will be simply the amount AU lost across the interface between
the up domain and the down domain and AU will be independent of N.
On the other hand, there will be an entropy change since there are N
possible choices of L, so that AS=kT In N. We have therefore

AF=AU—kT In N, (3.1)
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from which it follows that for any 7 >0 and sufficiently large N the
change in free energy will be negative, so that the system will break up
spontaneously into oppositely aligned segments. Moreover it is seen
that a finite system may become completely aligned if only 7’ is made
small enough, and also that the argument will no longer work when long-
range interactions are considered (Thouless 1969), because in that case
AU becomes dependent of N.

Fig. 16
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Theoretical curves for the perpendicular susceptibility of the S=1 Ising (a)
and XY (b) chain model. The values for x,(0) at T=0 are Nyg2up?
2z|J | and Ng?ug?/mz|J|, respectively. For the references, see the text.

As a consequence of the absence of long-range ordering in the ideal
infinite 1-d system, the entropy has to be removed in short-range order
processes. This is reflected in the specific heat and the susceptibility,
both of which display broad maxima, occurring at temperatures of the
order of the exchange interaction along the chain. In figs. 15-18 we
have reproduced the specific heat and susceptibility curves of the
Heisenberg, XY and Ising models, which all show this characteristic
feature. These curves have been taken from the references cited above.
Only antiferromagnetic susceptibilities have been shown. For the
ferromagnetic models the susceptibility diverges as 7' approaches zero.
The divergence is exponentially fast for the Ising models (Suzuki et al.
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Fig. 18
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1967) and of the power-law form 7" for the Heisenberg models, with »
equal or nearly equal to 2 (Fisher 1964),

The comparison of the curves obtained for the various chain models
can also illustrate the difficulties that may arise when the experimenter,
on the basis of a limited amount of data, must make a choice between
them to fit his experiment (with J/k as the adjustable parameter). In
some cases the choice may be an obvious one, for instance on the basis
of the considerations as sketched in § 2. But more often than not a
choice will be not wholly justifiable unless measurements of more than
one thermodynamic quantity are available. As a warning we mention
here that the specific heat and the susceptibility of isolated pairs of
magnetic atoms exhibit similar broad maxima (Smart 1965) as those of
figs. 15-18, and also that the result of a weak antiferromagnetic inter-
chain coupling on the (diverging) susceptibility of an assembly of ferro-
magnetic chains may well yield a curve similar to those of figs. 16 and
18 (@), the maximum in y now occurring at the transition temperature
T, at which the inter-chain coupling drives the system into (long-range)
3-d ordering.

Obviously a determination of the magnetic structure with neutron
diffraction is a most valuable tool. On the other hand, one can go a long
way by simply combining specific heat and susceptibility measurements.
This may be inferred from table 1, in which numerical results for a number
of models have been collected. The height of the specific heat maximum
Chax> the ratio of the temperatures at which the maxima in €, and y
occur and the quantity (1/9)%xmaxT (Xmax) together provide a handy set
of criteria for the determination of the model appropriate to the investi-
gated compound (the values for the Ising model with S>2 have been
provided by H. T. Witteveen, private communication). We shall have
the opportunity to use these below.

Let us now focus attention on the question of what the thermodynamic
behaviour of the approximations of the chain models studied in the
laboratory will look like. In the 1-d systems the only possible deviation
from ideality that can have the effect of establishing a long-range (3-d)
ordering is the presence of a weak but finite interchain coupling J'.
Although rigorous calculations for a 3-d array of loosely coupled chains
are not available, we may turn to the work of Onsager (1944) which pro-
vides us with a 2-d analogue. In fig. 19 (¢) the specific heat of the
quadratic Ising lattice, with different interactions J and J’ along the
two axes, is plotted for three values of J'[.J. For J'=J (dot-dash curve),
we retrieve the heat capacity of the quadratic lattice, already shown in
the introduction. In the caseJ’=0, J + 0 (solid curve), we have a system
of completely isolated Ising chains and the result is the same as curve a
in fig. 15. Of most interest in the present context, however, is the dashed
curve that is obtained for J'/J = 0-01, since this corresponds to the specific
heat of a 2-d assembly of loosely coupled chains. It is seen that at high
temperatures there is no appreciable difference with the isolated chain,

A.P. (&
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but as the temperature is lowered the weak interchain coupling begins
to take effect and finally causes a transition to long-range order that is
reflected in ', as a sharp spike, sitting as it were upon the broad maximum
due to the short-range-order effects along the chain. As J’/J is made
smaller and smaller the peak moves to the left, finally vanishing at zero
temperature as J’—0. As may be inferred from fig. 19 (a), the position
of the spike depends logarithmically on J'[J ; for J'/J=10-2 the transi-
tion temperature is lowered by a factor 2 only with respect to that of the
quadratic lattice.

Another interesting point that may be learned from these exact calcula-
tions on the 2-d Ising model is that the critical properties of the 2-d array
of chains are essentially the same as those of the quadratic lattice with
J'=J. In fig. 19 (b), taken from Chang (1952), the magnetization is
plotted as a function of J'/J. The important feature here is that, if one
comes close enough to 7', for all values of J'/J the critical index B in
the power law describing the vanishing of the magnetization at T, is
exactly the same 2-d value B=}. Likewise, for every value of J'|J,
however small, the specific heat spike of fig. 19 (a) displays, close enough
to T, the same critical behaviour as found for the quadratic lattice
(logarithmic divergence at both sides of 7'.). With this in mind it will
no longer come as a surprise when we shall find below that the critical
behaviour of 3-d arrays of loosely coupled chains is the same as that of
the ‘ usual * 3-d systems (for instance the observed B values are all near ).

At this point we would like to stress the fact that in the experimental
examples of magnetic chains it is only the interchain coupling J' that
can be held responsible for the occurrence of long-range order. This
contrasts with the situation in the 2-d Heisenberg model, where the
anisotropy constitutes another mechanism that may yield a finite 7', as
will be discussed below. In the magnetic chains, since both the isotropic
and anisotropic models ideally do not possess a transition point, the
influence of the anisotropy will only consist of a shift in the position of
the T, brought about by the interchain coupling. This arises from the
fact that the 3-d Ising and Heisenberg models have a different 7', with
respect to the MF value 6. Also, the way in which the 7', of a 3-d assembly
of loosely coupled chains depends on the interchain coupling may be
expected to be different for the anisotropic as for the isotropic case.

Finally, we point out that in the case of an example of the Ising chain,
it will be much more difficult to resolve the broad chain maximum in the
specific heat from the superimposed anomaly due to the 3-d ordering
caused by J'. In fig. 1 it can be seen that in the Ising model the chain
maximum occurs below the T', of the 3-d lattice. Assuming the same
logarithmic dependence of T', on J'/J just found for the quadratic lattice
to hold also for the 3-d analogue, it follows that a value of J’/J as low as
102 brings down the position of 7', to the temperature of the chain
maximum only. In the Heisenberg model the situation is quite different,
as can be inferred from fig. 6. In this case the 7', of the 3-d model occurs

c2
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Specific heat and magnetization of the 2-d quadratic Ising lattice with different
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(a) Specitic heat for the cases J'/J=1 (dot-dash curve), J'[J=0-01
(dashed curve) and J'=0, J5£0 (solid curve). (b) Magnetization for the
cases J'[J =1, 0-2 and 0-05. References are mentioned in the text.
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well below the temperature of the chain maximum, so that even for rela-
tively high values of J'/J, the T, of the experimental chain system will
be found at a much lower temperature than that of the chain maximum.

Armed with this extensive amount of theoretical information, we now
turn to what the experimenters have to offer us.

3.1.2. Survey of experimental results

Most of the experimental work on magnetic chain structures has been
performed on Heisenberg systems. This may have to do with the above-
mentioned difficulty of observing the 1-d properties of Ising chains. In
any case, the oldest examples of pronounced chain-like behaviour that
have been found belong to the Heisenberg class and we will therefore
start this review with a discussion of the 1-d Heisenberg antiferromagnets.

In table 2 we have collected most of the examples available in the
literature, grouped according to spin value, together with those properties
that are of interest in the present context. Listed are some of the
quantities of table 1, with, in addition, the exchange constant as deter-
mined from the data, the transition temperature 7', at which 3-d ordering
sets in and the ratio of 7', and the Curie-Weiss 6, the latter being calcu-
lated from the exchange constant (6= 3%28(S+1)|J|/k). The last column
gives estimates of the ratio |J'/J| of inter and intrachain exchange,
obtained from a relation between |J'[J| and kT /|J| derived by Oguchi
(1964) on the basis of a Green function method. The only check as to
the correctness of these estimates is provided by the result
|J'[J| =3:5x 10-3 obtained by Skalyo et al. (1970) from the spin-wave
dispersion curve of CsMnCl, . 2H,0, as measured with neutron diffrac-
tion. Comparing this with the value listed in table 2, it is found that the
prediction from the Oguchi relation is in close agreement. Moreover
these estimates are useful in comparing the various compounds, which
we shall now discuss successively.

CuS0, . 5H,0 and CuSe0, . 5H,0

These copper salts belong to the earliest examples of chain-like be-
haviour. -As was pointed out by Geballe and Giauque (1953) they have
the peculiar property of consisting of two different magnetic systems,
which is a consequence of the two inequivalent positions of the copper ions
in the unit cell. This was verified by Miedema et al. (1962) by magnetic
and caloric experiments, from which it also became clear that the coppers
in one of the subsystems have a much larger exchange interaction and
form nearly isolated linear chains, whereas the other subsystem remains
paramagnetic down to at least 0-1 K. Additional evidence has subse-
quently been obtained from N.M.R. experiments; see Wittekoek et al.
(1968), in which paper references to the earlier work may be found. To
complete the list of references, we mention the work of Giauque et al.
(1970), a paper that is number V of a series in which extensive magneto-
thermodynamical studies on CuSO, . 5H,0 are reported.
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Fig. 20
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Specific heats of two examples of the antiferromagnetic, S=%, Heisenberg
chain (for the references, see the text). (a) Fit of the data to the theo-
retical curve of Bonner and Fisher (1964) (J/k is the only adjustable
parameter). (b) The low-temperature region, in which in the case of
Cu(NH,),S0, . H,0 the transition to long-range 3-d ordering has been
observed. The dashed curve is the theoretical specific heat, which is
linearly dependent on temperature at the lowest temperatures. The
increase in C, observed below £7'/|J|~0-03 is due to the hyperfine
contribution.
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The excellent fit of the specific heat to the theoretical curve of Bonner
and Fisher (1964) is shown in fig. 20 (a), in which we have combined the
heat capacity data of Miedema et al. (1962), Giauque et al. (1970) and
Duijckaerts (1951). In the case of the susceptibility the fit to theory is
slightly less, as may be seen in fig. 21. Wittekoek et al. (1968) have
attributed the discrepancy for k7'/|J| < 1-0 to the presence of anisotropy.
The fact that the agreement for KCuF, is better, although it has a far
larger value of |J'/J|, seems indeed to exclude the inter-chain coupling
as a possible source. On the other hand, the influence of anisotropy is
not appreciable in the heat capacity, so that one may not wholly discard
the effect of the paramagnetic subsystem, the susceptibility contribution
of which had to be subtracted in order to obtain the data of fig. 21.
Unfortunately no estimate of the amount of anisotropy has as yet been
obtained.

Fig. 21
0.08 [ u | I
i o CuS0,.5H,0 (J/k=-145K)
575 o Cu Se 0,.5H,0 (3/k=-0.8K)
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Reduced susceptibilities of three examples of the antiferromagnetic, S=1%,
Heisenberg chain. The fit to theory (full curve, obtained by Bonner
and Fisher 1964) is again brought about by choosing the right J/k.
It is reassuring to observe how compounds with exchange constants
differing by a factor 200 may be similarly well fitted (for the references,
see the text).

Cu(NH,),S0, . H,0 and Cu(NH,),Se0, . H,0

Copper tetrammine sulphate monohydrate seems to be the first magnetic
linear chain compound recognised as such in Nature. The earlier y and
O, measurements of Watanabe and Haseda (1958) and Fritz and Pinch
(1959) were extended and reviewed by Haseda and Miedema (1961),
who arrived at a linear chain arrangement. The crystallographic argu-
ment supporting this view has already been exposed in §2.4 (see fig. 13).

The heat capacity data of Haseda and Miedema (1961) and Fritz and
Pinch (1959) have also been included in fig. 20 (a). As a consequence of
the larger value of J' the transition to 3-d ordering could also be observed.
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This is depicted in fig. 20 (b), which shows the specific heat at the lowest
temperatures (k7'/|J|< 0-3). It may be concluded from figs. 20 (a), (b)
that the observed thermodynamic behaviour of the non-ideal chain is
indeed in accord with that predicted in the preceding section. This is
also corroborated by the y measurements of Haseda and Miedema (1961)
in which the onset of long-range 3-d antiferromagnetic ordering below
T ,= 0-37 K could be deduced from the anisotropy in x below that tempera-
ture. These authors compared their experiments with the Ising chain,
since at that time it was the only available theoretical prediction for a
1-d system. Afterwards it was shown by Griffiths (1964 b) that the
calculations for the Heisenberg chain gave a much better fit to the
experimental susceptibility and specific heat data.

A nice example of the magnetization curve of the antiferromagnetic
Heisenberg chain is provided by the measurements of Haseda and
Kobayashi (1964) on this compound. Their result is in excellent agree-
ment with the curve obtained by Griffiths (1964 a) and Bonner and Fisher
(1964), as shown in fig. 22. The departure from the theoretical curve at
the highest fields may be understood by considering the influence of an
antiferromagnetic interchain coupling (the effect of the tinite £7'/|J | = 0-35
on the theoretical curve shown, which applies to 7'=0, is much less than
the observed discrepancy between theory and experiment). We remark
that Kaseda and Kobayashi compared their measurements with the

Fig. 22
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Low-temperature magnetization curves of two examples of the antiferro-
magnetic, S=14, Heisenberg chain, compared with the theoretical result
obtained by Griffiths (1964 a), applying to 77=0 K. The dashed curve
shows the behaviour to be expected for the Ising chain.



42 L. J. de Jongh and A. R. Miedema on

theoretical curve obtained by Inawashiro and Katsura (1965), which lies
somewhat above the Griffiths curve in most of the field region of interest.

Considering the isomorphous selenate compound, only specific heat
measurements are available wuntil now, which lie in the region
0-85<kT||J| <85 (Lowndes et al. 1969). The data could likewise be
fitted excellently to the Bonner—Fisher curve, taking J/k= —2-36 K.
A disadvantage of the experiment is, however, that the heat capacity
was not measured absolutely, so that not only T(C ) but also the height

of the maximum €, had to be scaled onto the theoretical curve.

Cu(NH,;),(NOy),

Although from a crystallographic viewpoint there is no direct structural
evidence for the occurrence of chains in this compound, E.P.R. studies
and specific heat results seem to indicate a 1-d behaviour (Rogers and
Dempesey 1967). The heat capacity could be fitted to the Bonner-
Fisher curve in the region 0-27 <k7'/|J| < 4-3, yielding J/k= —3-70 K.

CuCl, . 2NC,H,

This compound may in some sense be thought of as being derived from
CuCl, . 2H,0 by replacing the water molecules by the pyridine molecules
(Takeda et al. 1970). However, in CuCl, . 2H,0 the unit cell is ortho-
rhombic, with magnetic ions on the corners and on the centres of the
upper and lower faces, whereas CuCl,.2NC,H, has a body-centred
monoclinic structure (y=91° 52'). Nevertheless, in comparing the chain-
like properties of these compounds the above concept is certainly of value
and one may anticipate that the 1-d character is greatly enhanced by the
substitution of the pyridines, which results in highly inequivalent exchange
paths along and between the chains.

The experiments bear out this expectation. The susceptibility, the
heat capacity and the magnetization data can all be fitted to the Heisenberg
chain predictions with J/k~ — 13 K (Takeda ef al. 1970, 1971 b, Matsuura
1971). In the region 2< T <4 K the specific heat varies linearly with
temperature, as expected from theory. Takeda’s data did not extend
below 2 K. Recently, Duffy (private communication, to be published)
has found the sharp anomaly due to the 3-d ordering to be at 7', =1-13 K.
With the aid of the Oguchi relation the estimate |J'/J|~4x 1073 is
obtained on the basis of the k7T /|| value. This is an order of magnitude
smaller than the value |J'/J|~4x 102 needed by Matsuura (1971) to
explain the deviation of the experimental magnetization curve at high
field values from the Griffiths prediction (fig. 22). The explanation may
well be the existence of a symmetry argument which reduces the inter-
chain coupling, similar to that present in the K,NiF, structure. A
necessary prerequisite for such a cancellation is, as we have seen, an
antiferromagnetic alignment within the layer or along the chain. Since,
in fields near to the (ferromagnetic) saturation value, the antiferro-
magnetic orientation will have been very nearly broken up, one will in
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that case measure the #rue interaction between the chains. In zero
field, on the other hand, the symmetry argument can take effect, reducing
the true interchain coupling to a lower effective J'.

KCuF,

The rather exceptional origin of the occurrence of 1-d magnetism in
KCuF; has already been discussed in § 2.4. There exist two poly-
morphisms (Okazaki 1969 a), according to the particular alignment of the
wave-functions of the Cu?* ions. The two forms have different values for
the interchain coupling. In table 1 it may be seen from comparison of
the 7',/ values that in one of them J' is about 609, smaller than in the
other. The transition temperatures have been obtained from neutron
diffraction and E.S.R. experiments (Hutchings et al. 1969, Ikebe and
Date 1971).

Although one would expect 1-d correlations over long distances to
persist to temperatures well above 7', they could not be detected in the
neutron diffraction experiment. However, their presence could also
not be ruled outt. Furthermore, a large reduction (559%,) of the expected
moment gupS~1-1 uy was observed. Although 109, of this reduction
was attributed by the authors to covalency effects, there remains a large
value of about 45%,, close to the value of about 509, found in the N.M.R.
experiments of Hirakawa el al. (1970) to be explained. More will be
said about the spin reduction in antiferromagnets in § 4.2. This effect
arises from the existence of deviations from the fully aligned Néel state
even at zero temperature, and it is another example of a property of
which the relative importance is greatly enhanced by lowering the lattice
dimensionality (see § 4.2).

Additional evidence for the 1-d behaviour is found from the suscepti-
bility curve (Kadota et al. 1967, Hirakawa et al. 1971), the absence of a
specific heat singularity (Kadota ef al. 1967) and the N.M.R. experiments
(Hirakawa and Kadota 1967, Hirakawa ef al. 1970). From the fit of the
susceptibility to theory, shown in fig. 21, the large value Jjk=—190 K
is obtained. As a consequence, the maximum of the magnetic chain
specific heat is expected to occur at a temperature at which the lattice
contribution is about 30 times larger, so that one can scarcely hope to
be able to separate the magnetic part. The transition to long-range
order at T, is likewise not appreciable in the specific heat. The anisotropy
in the susceptibility can, within the uncertainties, be accounted for by
the anisotropy in the ¢ tensor. Since only a fraction of this g anisotropy

T Recently an additional neutron diffraction study has been reported by
Tkeda and Hirakawa (1973), which may be summarized as follows. Evidence
for the 1-d correlations above 7', (=39-51 K) was obtained. The inter-chain
coupling was estimated as |J'/J|~2-7x10-2 (compare the Oguchi result
1-6x1072). Below T, the sublattice magnetization was found to be 3-d in
character, with §=0-355 + 0010, B=1-53 + 0-05 in the region 1 x10-3<1—1T/
T,<0-1, and with a 7" decrease in the low-temperature (spin-wave) region.
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will be due to the spin contribution to the magnetic moment, the applica-
bility of the Heisenberg model seems to be justified. One may object
that from the resonance experiments (Hirakawa et al. 1971, Ikebe and
Date 1971) it follows that the anisotropy in the direction of the ¢ axis
(H,™) is much larger than that in the easy plane perpendicular to it
(H,1), which would make the planar model seem more appropriate.
However, considering the fact that the exchange field following from J/k
is 2-6 x 10% Oe, while H,! is only of the order of 5 Oe, it follows that a
H ' which is 500 times as large as H,T would still be only 0-1%, of the
exchange field, small enough to choose for the Heisenberg model. Not
surprisingly, the susceptibility results (e.2. (1/¢%)Xmax? (Xmax)) €xclude
the applicability of the planar model.

Cu(l,

This compound is important for historical reasons, since the specific
heat measurements on this salt belong to the first that were analysed in
terms of a linear chain arrangement (Stout and Chisholm 1962). It is,
however, a rather poor example of a chain structure. This may be in-
ferred from the relatively high value of 7', which is 609, of T(C ,,,) and
the amount of entropy that is already gained below T, (179, of Eln 2).
For Cu(NH,),80, . H,0 the corresponding numbers are 129, and 49%,,
respectively.

Also it is not clear whether the interaction is indeed of the Heisenberg
type, although it is listed as such in table 2. Stout and Chisholm (1962)
used the Ising model to analyse their data, which was the only available
chain model at the time. However, for a Cu compound the Heisenberg
model is in general more appropriate and the ratio of T(ymax)/T (Cmax)
is indeed nearer to the Heisenberg than to the Ising value (for x,). The
fact that the value €, /R =0-61 is much too high for both the Ising and
Heisenberg model can be explained by considering that a large lattice
contribution had to be corrected for in order to obtain C',. Consequently,
the absolute values of €', are uncertain.

Susceptibility measurements have been performed only on powdered
specimens (De Haas and Gorter 1931, Starr et al. 1940). It is difficult
therefore to derive a value of J/k. Starting from the Ising model, as
Stout and Chisholm did, one arrives at J/k~70K. Applying the
Heisenberg model a much lower value of about 50 K would be obtained.
The corresponding values of 7,/6 are 0-34 and 0-48, clearly much higher
than for the other Cu chains.

On the isomorphous bromine compound CuBr, only a susceptibility
experiment has been performed (Barraclough and Ng 1964). The
maximum in y was located at 226 K.

Free radicals

A considerable number of free radicals have been found to possess
chain-like properties (Hamilton and Pake 1963, Edelstein 1964, Duify
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and Strandburg 1967, Karimov 1969, Duffy et al. 1972). As one of the
best examples, we have listed in table 2 the properties of the iminoxyl
radical 2,2,6,6-tetramethyl 4-piperidinol I-oxyl. Both the heat capacity
(Lemaire ef al. 1968) and the magnetic data (Karimov 1969) are in good
numerical agreement with the Heisenberg chain predictions. Other
iminoxyl radicals with a similar chemical structure, but with sometimes
quite different values of the exchange, show a similar agreement (Karimov
1969). For more references to recent experimental work see Yamaguchi
et al. (1970), Saito et al. (1970) and Hone (1971).

CsNiCl, and RbNiCl,

These members of the hexagonal 4BCly-type group of compounds
(4 =monovalent cation, B=divalent transition metal ion) have been
reported to be representatives of the §=1 antiferromagnetic Heisenberg
chain. In this structure magnetic chains are formed along the ¢ axis,
since the exchange interaction between metal ions of neighbouring chains
has to take place via two chlorine ions which are far apart (3-6-4-0 A),
whereas there are short B-Cl-B paths along the ¢ axis (e.g. the B-B
distance is only about 3 A). The interaction can be thought to be
reasonably isotropic since the single-ion anisotropy of the Ni%t ion in
an octahedral field is usually small. The susceptibility measurements
(Achiwa 1969) do show a fairly isotropic behaviour, in contrast to those of
the isomorphous cobalt compound.

Instead of the estimates of the exchange of Achiwa (1969) and of
Smith et al. (1970), we have listed in table 2 J/k values obtained from the
theoretical k7' (xy,ay)/ |/ | listed in table 1. In this way we find J k= —13
and —17 K for CsNiCl; and RbNiCl,, respectively. Note that the value
of (1/6*)XmaxT(Xmax) 18 in excellent agreement with the theoretical
estimate.

A specific heat measurement has up to the present only been performed
on CsNiCl,; (Mekata el al. 1970). An advantage is the existence of the
isomorphous diamagnetic compound CsMgCl,, which can be of help in
the evaluation of the lattice contribution to the heat capacity. Although
these authors attributed an apparent linear temperature dependence of
Cn in the region 6<7 <12K to the 1-d character, the argument is
fallacious since the linear dependence is not expected to extend beyond
T ~0-2|J k| (Weng 1969), which corresponds to a temperature of about
2:5 K. Accordingly, the linear part between 6 and 12 K does not extra-
polate to zero for T'—0. The amount of entropy gained below 7', was
found to be only 5%, of R In 3, confirming the 1-d character.

As concerns the precise spin structure below 7',, where the inter-chain
coupling has established a 3-d ordering, the various investigators are in
disagreement with one another. From their neutron diffraction measure-
ments Minkiewicz el al. (1970), Mekata et al. (1970) and Cox and
Minkiewicz (1971) conclude that the antiferromagnetic chains along the
¢ axis are coupled together in a triangular array, the moments lying in a
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plane perpendicular to the basal plane. Notwithstanding this, another
neutron diffraction experiment of Kpstein ef al. (1971) and the N.M.R.
meagurements of Clark and Moulton (1972) seem to indicate a collinear
structure with the spins along the ¢ axis.

Fig. 23

0.5~ .
P x” CSNICla
— linear chain
(J/k:-BK,g:Z.ZO)
T
0 [ ! [ L | l
0 10 20 30 40 50 60 [K]

T

Susceptibility of CsNiCl, (after Achiwa 1969), which is an example of the anti-
ferromagnetic S=1 Heisenberg chain. The full curve is Weng’s theo-
retical result (1969), calculated with J/k=—13 K and ¢=2-20. Note
that below T, the otherwise fairly isotropic susceptibility is split up by
the small anisotropy into a parallel (| ¢ axis) and perpendicular part, as
a consequence of the appearance of long-range 3-d ordering below this
temperature, which may itself be attributed to the inter-chain coupling.

As a contribution to the solution of this controversy, we have compared
in fig. 23 the susceptibility of CsNiCl, with Weng’s prediction (1969) for
the §=1 Heisenberg chain, taking J/k= —13 K. At high temperatures
the fit is quite good ; below 7'~ 3T deviations occur which we attribute
to the influence of the inter-chain coupling. Interestingly, in this region
the experimental points lie below the theoretical curve, in contrast with
what one would expect. Also the y, curve, measured parallel to the ¢
axis does not extrapolate to zero. These features are difficult to explain
within the collinear structure, but may be understood quite well from
the model proposed by Minkiewicz ef al. If the spins are arranged in a
triangular array the y, obviously is non-zero at 7'=0 (the expected
Van Vleck contribution is only 29, of the value attained at the suscepti-
bility maximum, Achiwa 1969). We mention that the y, as measured by
Achiwa (perpendicular to the ¢ axis) is actually the susceptibility in the
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{110] direction, which is at an angle of 60° with the plane in which the
moments lie.

The neutron experiments do agree to a low value for the magnetic
moment extrapolated to 0 K, as compared to the high-temperature result
of about 2 up found from the y measurements. Mekata ef al. (1970)
derived 1-51+0'1 up from a powder measurement, while Cox and
Minkiewicz (1971) reported 1-0 £ 0-1 uy for a single crystal. This con-
siderable reduction is attributed mainly to the effect of zero-point spin
deviations. The sublattice magnetization was found to vary like a
power law with an exponent B=0-27 + 0-03 (Cox and Minkiewicz 1971),
B=0-32 + 0-03 (Clark and Moulton 1972) and 8= 0-35 + 0-05 (Mekata et al.
1970). The ° 3-dimensional ’ value of f is in accord with the argument
outlined in the preceding section.

As for the nature of the scattering above 7', it was reported by
Minkiewicz et al. (1970) for RbNiCl, that the 3-d correlations disappear
at T ~4T,, in accordance with the susceptibility bebhaviour discussed
above. Above this temperature only the strong correlations along the
¢ axis are observed. This 1-d scattering will be treated in more detail
in §4.1.

VF,

The same phenomenon of 1-d correlations persisting up to temperatures
T>T,, as detected by neutron diffraction techniques, has been reported
by Child ef al. (1970) and Lau ef al. (1969) for the compound VF,. This
salt seems to order below 7', in a spiral structure around the ¢ axis, with
the spins perpendicular to the ¢ axis. At first sight VF, does not seem a
likely candidate for 1-d magnetism, since it has the tetragonal rutile
structure and is therefore isomorphous to MnF,, FeF,, CoF, and NiF,.
Stout and Boo (1966) proposed the following possible explanation for its
chain-like character. In these sister compounds the exchange J, between
the metal atoms along the ¢ axis, which are nearest neighbours, is smaller
than the interaction J, between the next-nearest neighbours, which are at
the distance }(c?+ 24?)12.  If now, on the other hand, J, would be much
larger than J, this would result in an assembly of chaing running along
the ¢ axis.

A justification for classifying VF, as a Heisenberg compound is the
very small anisotropy observed in the susceptibility by Stout and Lau
(1967), which is of the order of 0-1% only. The susceptibility and
specific heat show the usual 1-d characteristics. The entropy gained
below T, was found to be a mere 99, of the expected entropy change
RIn 4. Considering the relatively high spin value, this would qualify
VF, as a good approximation of the isolated chain.

Calculations of the exchange constant from 7'(y.,.) and 7(C,,,.) with
the aid of table 1 agree to J/k= —9-0 K. The resulting value 7',/ =0-16,
which is about the same as those of the Ni chains in spite of the larger
spin value, again points to a pronounced 1-d character. Interpolating
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between the values of 7'(C,,,,) for S=1 and 2 of table 1, we obtain the
prediction T'(xmax)/T(Cmax) =16, in good agreement with the experi-
mental result. The value for (1/9)%x.x7 (X max) 1S @ little lower than the
theoretical one. Also the maximum value of the specific heat exceeds
the prediction obtained by interpolating once more between S=1 and 2
(table 1). However, this may be attributed to the difficulties associated
with the subtraction of the lattice contribution.

CrCl,

This compound was investigated by Stout and Chisholm (1962) together
with the isomorphous CuCl,. The amount of enfropy gained below 7',
was found to be 189%,, which is fairly low for a chain-like compound with a
high spin value. But the discrepancies between the experimental values
Of T(xmas ) T (0 max) 30d (1/9)%X max T (Xmax) and theory point to the fact
that it is not too good an example. From the temperatures T'(yn.«) and
T(C ) one obtains for the exchange J/k= —5-6 and —8-2 K, respec-
tively. We have adhered to the former, since the heat capacity maximum
is more difficult to obtain experimentally. The resulting value for
T./0=0-36 points to a rather large interchain coupling.

CsMnCl, . 2H,0

Of the two manganese salts listed in table 2, CsMnCl; . 2H,0 has the
largest inter-chain coupling. In this compound Cl-Mn-Cl-Mn chains
exist along the @ axis of the orthorhombic unit cell. The neighbouring
chains are linked by exchange paths involving several non-magnetic
atoms or H,0 groups.

Susceptibility measurements have been performed by Smith and
Friedberg (1968) and by Kobayashi et al. (1972), who analysed the data
above T, in terms of the calculations of Weng and Griffiths for S>1
(Weng 1969), obtaining J/k= —3-0 K, which is fairly close to the value
~3:57 K derived subsequently from the spin-wave dispersion curve as
measured by neutron diffraction by Skalyo et al. (1970). A more extensive
discussion of this neutron work will be given in § 4.1. From the analysis
of the dispersion curve (fig. 24) the interchain coupling could also be
obtained. As mentioned before, their value |J'/J|=3-5x10"2 is in
reasonable agreement with the Oguchi prediction (6 x 10~3) on the basis
of the kT /|J| value. The reason why we listed the Oguchi result in
table 2 was to enable a comparison of the chain properties with the other
compounds, for which a value of J’ has not been derived experimentally.
The anisotropy was also determined in the neutron work, but using
J k= —3-57 K the more accurate value H ,/Hy=5x 1073 can be derived
from the measured spin-flop field (Butterworth and Woollam 1969,
Botterman et al. 1969). This is the anisotropy in the easy plane (I ,1).
The out-of-plane anisotropy (H ,'T) has been reported to be about three
times larger (Nagata and Tazuke 1970, cf. note on page 20).
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Fig. 24
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Magnon dispersion eurve of CsMnCl; . 2D,0, which is the deuterated isomorph
of the antiferromagnetic, §=%, Heisenberg chain CsMnCl; . 2H,0. The
solid lines are spin-wave theoretical results for a 3-d assembly of weakly
coupled chains. From the fit to the data the exchange along the chain,
as well as the interchain coupling and the anisotropy, can be derived.
The wave-vector is denoted by { and the zone boundary is indicated by
the vertical line. The 1-d character follows from the lack of an appreci-
able dispersion perpendicular to the chain direction [, 0, 0] in reciprocal
space. (After Skalyo et al. 1970.)

Not surprisingly the critical index S of the sublattice magnetization
was found to be B=0-30 (Skalyo et al. 1970). In this neutron work
evidence for the existence of 1-d scattering was given for the first time.
The correlations along the chain were found to persist at temperatures
T>T, For instance, at T=3T, the average number of correlated
spins within a chain is about five. The effect of the interchain inter-
actions begins to be felt at 7' ~27T .

[(CH,),N][MnCl;]

It may be observed from table 2 that this compound is the best approxi-
mation of a 1-d magnet found so far, since the interchsin interaction J'

A.P. D
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is 10-4-10-5 of J, which is one or two orders of magnitude smaller than
for the other examples.

In [(CH,),N][MnCl,;] the chain character is once again a consequence
of the crystal structure, which consists of chains of chlorine octahedra,
surrounding the manganese ions, the adjacent octahedra sharing {111}
faces. Thus three Mn—-Cl-Mn paths link the magnetic ions along the
chain axis, whereas there are no direct bonds between the chains, which
are separated from one another by the tetramethyl ammonium groups.

By fitting the susceptibility data to Fisher’s classical chain model,
scaled to 8 =3, the exchange was found to be J/k= —6-3 K (Dingle et al.
1969). At temperatures below the maximum the susceptibility rises
again, a phenomenon also observed in CsMnCl; . 2H,0 and KCuF,;. The
most likely explanation for this rather steep increase is the presence of an
impurity. An indication for this is also the fact that the values for J/k
derived from the experimental y, .. and T'(xm.,) With the aid of table 1
are considerably lower (J/k= —5-8 and —5-2 K, respectively) than the
result obtained by the neutron diffraction work (see below). The impurity
contribution would result in too high a y,,,+, and also shift the maximum
to a lower temperature. In this respect the better agreement of the J/k
value derived by the fit to Fisher’s =0 model scaled to 8§ =% (Dingle
et al. 1969) will be fortuitous and may be understood by considering that
the susceptibility curve of this model lies above the result of Weng (1969)
for §=3%, which seems to be a better approximation (see Smith and
Friedberg 1968). The value of T',=0-84 K, which was derived from the
susceptibility behaviour (Hutchings ef al. 1972 b) was later confirmed by
additional y measurements (Walker et al. 1972) and low-temperature
neutron diffraction data (Birgeneau ef al. 1972 a). Earlier neutron experi-
ments, also performed on the deuterated material have been reported
by Birgeneau ef al. (1971 a) and Hutchings ef al. (1972 b). Apart from
establishing the 1-d character of the magnetic structure, it was found that
the nature of the scattering could be fully accounted for by Fisher’s
calculations for the correlations in a classical Heisenberg chain (1964).
These measurements extended down to 7'~ 1-1 K. The dispersion curve
could be described within the experimental error by a sine curve, as pre-
dicted by simple spin-wave theory (cf. fig. 24). More will be said about
these important results in § 4.1. From the additional neutron studies
below 7'=1 K reported by Birgeneau et al. (1972 a), the critical index B
for the magnetization was found to be §=0-26 for 103 <1-T/T <107

From the susceptibility measurements a small anisotropy of about 19, of
the planar type has been deduced (Hutchings ef al. 1972 b).  As discussed
by Walker et al. (1972) this may be attributed to the dipolar interactions.
The same authors compared the x between 60 and 170 K with the series
result of Rushbrooke and Wood (1958), obtaining J/k= —6-5 K, in good
agreement with the value J/k= —6-6 K derived from the spin-wave
dispersion curve. In contrast with this a larger value, J/k=—-7-7K
was found in the quasi-elastic scattering experiments (Birgeneau el al.
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1971 a), a discrepancy which is not yet understood. For the present we
shall adhere to the value J/k= —6-5 K. Lastly, we mention the interest-
ing E.P.R. study of Dietz ef al. (1971).

This concludes the discussion of the examples of the antiferromagnetic
Heisenberg chain, which is by far the largest group of 1-d compounds.
In fact there are only few chain structures left, which have been listed
in table 3, the compounds being grouped according to the type of the
interaction. Their properties will now be briefly reviewed.

CsCuCl,

This salt, which is very nearly isomorphous with CsNiClg, is listed here
because it is the only example of the §=1] ferromagnetic Heisenberg
chain available at present. Susceptibility experiments have been per-
formed by Achiwa (1969) and by Rioux and Gerstein (1970). If the
interaction along the chain is indeed ferromagnetic, as we assume here,
it follows that there must be a fairly large antiferromagnetic interchain
interaction, since a negative deviation from the Curie law is observed up
to T~100 K (Rioux and Gerstein 1970). Our suggestion of a ferro-
magnetic intrachain exchange is based upon the positive value for the
Curie-Weiss 8 found by Achiwa from the susceptibility in the region
100< T < 300 (the data of Rioux and Gerstein do not extend beyond
150 K), and on the shape of the susceptibility curve, which shows a
gradual increase up to the temperature 7' ,=10-4 K at which a transition
to 3-d ordering was observed in the heat capacity (Rioux and Gerstein
1969). The absence of a maximum in y above T, and the failure of the
attempts to analyse the y curve in terms of an antiferromagnetic intra-
chain interaction are explained by assuming a model of antiferro-
magnetically coupled ferromagnetic chains. Neutron experiments to
check this would be very welcome. In any case it is clear that CsCuCl,
will be a rather poor example of a ferromagnetic chain, the interchain
coupling being relatively large.

[(CH,),NJ[NiCl,]

[(CH,),N][NiCl;] seems to be a better candidate for 1-d ferromagnetism
in view of the high degree of 1-dimensicnality of the isomorphous manga-
nese compound (although the ferromagnetic intrachain exchange will
result in a larger dipolar coupling between the chains). It consists of
chains quite analogous to those in CsNiCl; but with a larger interchain
distance (9 A instead of 7 A) and more unfavourable interchain exchange
paths. Unfortunately only susceptibility measurements have hitherto
been performed (Gerstein ef al. 1972 a). In the region 1-6<T <79 K
these could be very well fitted to a ferromagnetic chain model, based upon
Fisher’s infinite spin model (1964), scaled to S=1. The value
J/k=1-0 K was obtained from this fit. No evidence for a transition to
3-d ordering was found in the investigated region, implying that

D2
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T.0<05. More experiments on this compound in particular in the
region below 1 K would be welcome.

K, ;Fe(CN),

Potassium ferricyanide is also one of the earliest investigated chain-
like compounds. Ohtsuka (1961 a, b) concluded to the existence of anti-
ferromagnetic chains, with an anisotropy in the interaction of about 259%,.
The effective spin is §, the ground doublet lying several hundred cm—1
below the nearest excited doublet. The interchain coupling was esti-
mated by him to be about 0-1 |J|.

The anisotropy value places the compound in between the Ising and
Heisenberg model (see the results of Bonner and Fisher 1964). The
specific heat, which was measured by Duffy ef al. (1962) and Rayl et al.
(1968) is indeed intermediate between these two extremes. As explained
in the preceding section, the rounded maximum is not clearly resolved
from the large peak that reflects the 3-d ordering. The amount of
entropy already removed above T, was found to be 65%,. The maximum
in the susceptibility seems to be masked by the appearance of a weak
ferromagnetic moment in the ordered state.

From the specific heat and susceptibility experiments a value for the
exchange constant of about J/k= —0-23 can be deduced. The spin
reduction of 18%, found by Ono et al. (1970) in Méssbauer experiments is
rather low for a 1-d compound with 8=}, which may be attributed to the
large anisotropy and to the relatively high value of |J'/J].

CsCoCly

Another member of the hexagonal 4 BCl,-type group of compounds
(see CsNiCly). The susceptibility measured by Achiwa (1969) shows
extremely anisotropic character and was analysed in terms of the Ising
model. Apparently Achiwa could not correct for the Van Vleck contribu-
tion to the susceptibility, which makes the analysis dubious. The value
of Jjk=—85K derived by him from 7'(x,m.y) and x,max 18 therefore
unreliable. If we tentatively take the Van Vleck contribution to be
equal to the value of y, extrapolated to 7' =0, and subtract this from the
value attained at the maximum, we obtain J/k~ —115K from the
Xmax SO obtained. As concerns the value of 7', only slight indications
of a transition are found at about 8 K in y, and y,.

Clearly more information is needed to put things on a sure footing.
The values J/k~100 K and 7 ,~8 K listed in table 3 may therefore only
be considered as very rough estimates.

The hydrated compound CsCoCl, . 2H,0, which is isomorphous to
CsMnCl, . 2H,0 has been investigated by Herweyer ef al. (1972). The
chain character turns out to be less pronounced than in CsCoCl,, there
being relatively large interchain interactions.

Dy(C,H;80,), . 9H,0
The Ising character of this compound with effective spin } is quite
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well established with g, =10-8 and g, ~0 for the lowest doublet, while
the next doublet is found at AE/k=22-5 K. It has been extensively
investigated by Cooke et al. (1959, 1968) and also by Wielinga (1968).
The magnetic interactions are predominantly of the dipolar kind, effecting
a ferromagnetic alignment along the ¢ axis. The dipolar interactions
along the ¢ axis are about one order of magnitude stronger than the others,
which accounts for the chain-like character above T',. Thus, although the
compound is a rather poor example of a 1-d magnet, its magnetic and
thermal properties at temperatures sufficiently above 7', can be described
by a model of loosely coupled Ising chains. Below 7 ,=0-115 K the
system is brought into 3-d ferromagnetic ordering.

CoCl, . 2NC,H,

A much better example of the ferromagnetic Ising chain is
CoCl, . 2NC,H;, which is isomorphous to CuCl, . 2NC;H; already discussed
earlier, and has been studied by Takeda et al. (1970, 1971 b). The specific
heat is plotted in fig. 25 (#) and it represents the closest approximation
to the theoretical Ising chain heat capacity found at present. It clearly
illustrates the difficulty mentioned above of resolving the rounded chain
maximum from the peak due to the 3-d ordering, in case of Ising-type
compounds. In fact the specific heat of CoCl, . 2NCH, shows a close
resemblance to the dashed curve in fig. 19 (@), bearing in mind that here
we have to do with a 3-d assembly of Ising chains. The difference
observed at 4< 7' <6 K may be attributed to the anisotropy not being
complete. Below 7', the ferromagnetic chains are ordered antiparallel
with respect to one another, as can be deduced from the susceptibility
behaviour.

Another illustration of the 1-d character of CoCl,.2NC,H; can be
found in fig. 25 (b), in which the entropy versus relative temperature 1'/1',
curves of this compound and of CoCl, . 2H,0 are compared. As already
mentioned in the discussion of CuCl,.2NC,;H;, one may imagine
CoCl, . 2NC;H; to be derived from CoCl, . 2H,0 by replacing the water
molecules by the larger pyridine molecules, thereby enhancing the 1-d
character. This is indeed obvious from fig. 25 (), since one may observe
that the amount of entropy gained below T', is decreased from 609, in
the case of CoCl, . 2H,0 to a mere 15%, in CoCl, . 2NC,H,.

RbFeCl,

Although the susceptibility of this 4 BCl;-type compound was analysed
by Achiwa (1969) in terms of an uniaxial anisotropic antiferromagnetic
chain, the neutron diffraction measurements of Davidson et al. (1971)
showed the magnetic structure below 7',=2-55 K to consist of ferro-
magnetic chains, with the moments in the plane perpendicular to the
chain axis in a triangular array. From this it may be expected that the
anisotropy will be of the planar Heisenberg form. The 3-d correlations
were found to persist up to 10 K, but at 20 K the observed scattering
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(@) Magnetic specific heat versus temperature of CoCl,.2NC;H,;. The solid

curve is the theoretical prediction for the S=4 Ising chain, calculated
with J k=95 K. (After Takeda ef al. 1971 b.) (b) Comparison of the
entropy versus temperature curves of two Co salts. The large enhance-
ment of the 1-d character by substituting the NC,H; molecules for the
H,0 molecules can be clearly seen from the large reduction in the amount
of entropy gained below 7',. (After Takeda et al. 1971 b.)
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was wholly 1-d in character. From the Mossbauer study the value of the
magnetic moment at 7'=0 was estimated to be about 2 uy, which again
indicates considerable reduction, since the g factor deduced from the
x measurements was 4-49 (§=1).

This example clearly illustrates the difficulty of deducing the type of
magnetic structure from y measurements alone. Asan additional compli-
cation the effective spin value will be temperature dependent due to the
contribution of higher excited levels. In view of all the uncertainties
involved, we have refrained from listing a value for J/k.

CsNiF,

The other available example of the linear planar Heisenberg model is
CsNiF,, which also has the hexagonal A BCl, structure. Neutron diffrac-
tion and magnetization measurements have been performed by Steiner
et al. (1971). The behaviour of the specific heat and the susceptibility
is currently being investigated by Lebesque of our laboratory. Again
the easy plane is perpendicular to the chain axis. The transition to
long-range order, as found in the magnetization and heat capacity
measurements, is 7',=2-61 K. In fig. 26 the magnetic specific heat as
reported by Lebesque ef al. (1972) is shown as an example of the behaviour
found in a magnetic chain with large planar anisotropy. Also in this
case the estimate of J/k is still uncertain due to the complications involved.
The evaluation of the lattice specific heat is therefore not too certain,
since the J/k value was used in the analysis. But the overall appearance
is as expected for a S=1 chain with large planar anisotropy, in that the
curve is intermediate between the 8=1 Ising and Heisenberg chains.
Once again there is a small spike observed at 7',

In concluding this section on 1-d magnets we make some remarks
concerning the need for future work. On the theoretical side we have
seen that considerable information is available, although for the isotropic
chains discrepancies between the approximate solutions and the spin-wave
theory of these short-range ordered systems have been found that need
further investigation (see § 4.2). As far as the experiments are concerned,
one may state that the existence in some cases of extremely good examples
of magnetic chains has been quite well established, at first from measure-
ments of the heat capacity and susceptibility, and lately on quite rigorous
grounds by neutron diffraction investigations.

Since a large number of antiferromagnetic Heisenberg chains have
already been discovered, there is at present more need for investigations
of the other models. In particular examples of the Ising models with
|J'/J| <10-% would be welcome. Concerning the XY and the planar
Heisenberg model there is also much work left to be done.

Comparing ferro and antiferromagnetic chains, one finds that the first
type has scarcely been found. This is not surprising since antiferro-
magnetism is more commonly found in Nature. The antiferromagnetic
chain has the advantage that it is easier to obtain reliable values for J/k



Ezxperiments on simple magnetic model systems 57
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Magnetic specific heat of CsNiF; (curve b), which is an example of a ferro-
magnetic S=1 chain with large planar anisotropy. As expected the
curve is intermediate between the predictions for the S=1 Ising (a)
and ferromagnetic Heisenberg (¢) chain. The small spike observed at
low temperatures reflects the transition to long-range 3-d ordering.
(After Lebesque et al. 1973.)

from susceptibility or specific heat data. Also values for the anisotropy
can be obtained readily in the antiferromagnetic case from, for instance,
spin-flop measurements. It is a pity that hitherto, only in one case,
such an experiment has been performed, since knowledge of the amount
of anisotropy is of importance when analysing results in terms of the
Heisenberg model.

In conclusion we have seen that, as far as quantitative theoretical
results are available for the specific heat and the susceptibility of chain
models that could be tested experimentally, the best experimental
examples yield excellent fits to theory. This is not trivial, since there is
often only one adjustable parameter, the exchange constant J/k, needed
to fit the various thermodynamical quantities.

3.2. Layered structures
3.2.1. Introduction
As discussed in § 1.2, in going from the 1-d to the 2-d lattices there
arises a profound difference between the Ising model on the one hand and
the Heisenberg and XY models on the other. In the case of the ideal

chain model there is no transition to long-range order except at 7'=0 for
any type of interaction. But whereas changing the dimension to 2 is
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sufficient for the Ising model to order at a finite temperature, this is not
8o for the other models. For the isotropic systems the dimension has to
be raised to 3 before a phase transition occurs (cf. fig. 6). As a conse-
quence, a review of 2-d magnetism naturally divides itself into two parts,
viz. the Ising and the isotropic systems. We will start with the former.

The work of Onsager (1944) on the quadratic Ising lattice has already
been mentioned in the preceding pages. In this paper he calculated the
partition function in zero field, from which the behaviour of thermo-
dynamic quantities such as the energy and specific heat can be derived.
In later work (Onsager 1949, Yang 1952) the spontaneous magnetization
and the correlation functions were obtained. The properties of the other
planar lattices (triangular, honeycomb) have also been investigated and
were found to be qualitatively identical to those of the quadratic network.

As concerns the field-dependent behaviour, however, no exact results
have been acquired, the available information having been drawn from
numerical studies, which none the less have reached a high degree of
accuracy. The only exception is Fisher’s solution (1960 b) of a special
kind of Ising lattice, viz. the  decorated superexchange’ Ising model,
in which the magnetic spins decorate the bonds of the lattice and interact
antiferromagnetically via non-magnetic spins on the lattice nodes. For
this particular model the free energy could also be calculated for all
values of the applied field.

For an extensive review of the existing theoretical information on the
2-d Ising lattices the reader may consult the review paper of Fisher (1967).
From the discussions in the foregoing sections the extreme importance of
the results obtained on this model, for the qualitative understanding of
phase transitions will have become clear. In fact we have already shown
much of the thermodynamic behaviour of the 2-d Ising model in figs. 1-5
and 19 of the preceding sections.

Before leaving the Ising model we would like to mention that in analogy
with Landau’s proof of the absence of a phase transition in an Ising chain,
there exists a similar argument, originally due to Peierls (1936) but put
on a rigorous footing by Griffiths (1964 ¢) and by Dobrushin (1965), which
proves the existence of a phase transition in the 2-d case.

Turning now to the isotropic models we will first discuss the theoretical
arguments predicting the absence of ordering in the 2-d Heisenberg and
XY models. This has been rigorously proven by Mermin and Wagner
(1966), using an idea of Hohenberg (see, e.g., Hohenberg 1967). They
showed that for sufficiently small applied fields the magnetization in
two dimensions is bounded in the following way :

M(H, TY< Q(T |In| H||}~. (3.2)

In this inequality @ is a constant and H denotes an arbitrary field, for
instance, the applied magnetic field or an anisotropy field. By letting
H -0 it follows that there will be no spontaneous magnetization at any
finite temperature. Note however, that the presence of even a very small
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field will spoil the argument. Evidently under experimental conditions
there will, for example, always be a minute amount of anisotropy or
interlayer coupling, which may both be represented in the form of an
effective field acting on the magnetic moments.

Recently, Fisher and Jasnow (1971) have extended Mermin and
Wagner’s argument in the sense that they proved the absence of a
spontaneous magnetization without needing the introduction of a sym-
metry breaking field H (eqn. (3.2)). Moreover they showed that the 2-d
system need not consist of a single monolayer but that the arguments
also apply to a system contained between two infinitely extending parallel
planes of a finite separation. Thus the system may be 3-d in the sense
that it may contain a large number of monolayers. But provided this
number remains finite (however large) the system will not order spon-
taneously. It should be noted that the above results apply to short-
range interactions and that similar proof has been given for the 1-d
isotropic systems (§ 3.1.1).

Earlier arguments concerning the absence of long-range order in 1
and 2-d systems were based upon spin-wave theoretical arguments. To
illustrate this we consider the fractional decrease AM (T)/M(0) of the
spontaneous magnetization of an isotropic ferromagnet due to the excita-
tion of spin waves. This quantity is equal to (NyS)~ Z Ny, Where

; n=J do g(w)n(w)) (3.3)

is the total number of magnons created at a temperature T, (n(w)) is the
average value of the number of magnons of frequency w, and g(w) is the
number of magnons of frequency w per unit frequency range. Since we
are dealing with the Bose distribution we can write

g(w)
2 ny,={ dw oxp (ieolel) —1° (3.4)

Substituting « =%w/kT, it can be shown that

Z T ;'3 x(dm_ dx (3.5)
P .
0 exp (x exp (x)—1

for dimension d=1, 2, 3. Since the integral in (3.5) diverges for d <3,
it was argued that the magnetization for d=1, 2 must be zero at any
finite temperature. Furthermore, one also can see how in this case the
argument fails if a finite field or a finite sample size is introduced, since
both have the effect of changing the lower integration bound from zero
to a finite value. In the case of a finite field this occurs via the field
term in the spin-wave dispersion relation, while the finite sample size
implies a minimum wave-vector and consequently a minimum . It
should be stressed that although these arguments may serve as a nice
illustration, they constitute no rigorous proof of the absence of a transition,
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if only because spin-wave theory is merely a low-temperature approxima-
tion of the system of isotropically interacting spins (Stanley and Kaplan
1966, Fisher 1973).

To sum up, we have seen that just as in the case of magnetic chains,
theory predicts the absence of a spontaneous magnetization at a non-zero
temperature for the isotropic 2-d systems and that a transition to long-
range order may likewise be brought about by the existing deviations
from the ideal model. The dependence of the so-obtained 7', on the
strength of these deviations has been studied by various authors (Lines
1964, 1970, Dalton and Wood 1967, Obokata et al. 1967, Kats 1969,
Ishikawa and Oguchi 1971). These results have in common that 7',
decays to zero if the strength of the deviations is decreased to zero, or
in other words, if extrapolation is made to the ideal system. This is
to be expected since in these studies 7', is identified with the temperature
of the onset of the spontaneous magnetization.

Consequently, as concerns the occurrence of long-range order the ideal
2-d Heisenberg and XY models behave similarly as the chain models.
There is, however, one fundamental difference indicated by the analyses
of the high-temperature series expansions for the initial susceptibility
(x=(3M|0H), in the limit H—>0). It has already been pointed out in
1958 by Rushbrooke and Wood that the series for the 2-d lattices suggested
the existence of finite temperatures at which the susceptibility diverges,
just as in the case of 3-d lattices, where these temperatures are commonly
identified with the transition to long-rangeorder. Since such an identifica-
tion cannot possibly be made for the isotropic 2-d lattices, there certainly
is a problem. Of course one may doubt the results of the series analyses,
since only a relatively small number of terms in the series is known.
But the method works well in lattices that do show a transition to long-
range order, so there is no a priori reason to doubt it in the 2-d isotropic
case. More recently, Stanley and Kaplan (1966) brought up this matter
again, using longer series (see also Stanley 1967, 1968 a, b, Moore 1969,
Watson et al. 1970, Berezinskii 1970, Lines 1971, Betts ef al. 1971, Ishikawa
and Oguchi 1971, Wood and Dalton 1972, Ritchie and Fisher 1973).
Moreover, they made the important remark that the two requirements of a
zero spontaneous magnetization and an infinite susceptibility need not be
incompatible, if, for example, certain restrictions are put on the dependence
of the pair correlation function (S, .S,> on the separation r. It is in
this respect noteworthy that in all the proof excluding the existence of
long-range order, the possibility of a diverging susceptibility cannot be
ruled out (Mermin and Wagner 1966, Fisher and Jasnow 1971). For
instance, the bound imposed on the magnetization by the presence of a
magnetic field itself contains the property of an infinite initial suscepti-
bility at non-zero T, as can readily be observed from eqn. (3.2). In
fig. 27 (@) and (b) we have compared qualitatively the magnetization
curves appropriate to this new magnetic phase with those encountered in
the case of a normal ferromagnetic transition. At and above 7', the
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A qualitative comparison of the magnetization curves for the case of a normal
ferromagnetic transition () and for the special type of transition to a
state of infinite susceptibility but without spontaneous magnetization
(6). The isotherms are labelled by the numbers 1, 2 and 3, referring to
temperatures below, at and above 7', respectively.

qualitative behaviour would be similar. Below 7', a finite amount of
spontaneous magnetization is found for I =0 in the normal ferromagnet
(@), whereas in case of a Stanley—Kaplan transition all magnetization
curves below 7', would start from the origin with an infinite slope (b). We
finally mention that there seems to be no thermodynamic argument
excluding the possible occurrence of this new phase (Stanley 1971).
What would be the consequences on the experimental findings of the
existence of a finite transition temperature at which the ferromagnetie
susceptibility (and also the staggeredt antiferromagnetic susceptibility,
Stanley 1969 a) of a 2-d isotropic lattice diverges ? The importance of
this prediction lies herein, that it implies that under experimental condi-
tions long-range order will be found below these temperatures. One may
understand this by considering that at these temperatures the correlations
have become of such a long range that any existing deviation from the
ideal system, however small, will * trigger * the occurrence of long-range
order within the magnetic layersf. And since we shall not be dealing with
isolated mono-layers, it may be understood from simple energy considera-
tions that also an interplanar long-range order will be established throughout

+ By staggered it is meant the susceptibility in a staggered field A (likewise
in the limit #—0), which is a (theoretical) field that is alternating in sign in
going from one sublattice of the antiferromagnet to the other. Evidently,
the spontaneous magnetization in an antiferromagnet is a staggered quantity.

I It is pointed out that, since the interlayer coupling constitutes a deviation
from ideality, this argument implies that the new phase with infinite y and
yet no long-range order cannot occur in 3-d lattices. Otherwise one could
have conceived of an intermediate temperature range, in between the tempera-
ture of the susceptibility divergence (7's) and that of the onset of spontaneous
magnetization (I',), since the two need not necessarily coincide. Indeed,
no indications of such a situation were found in the numerical studies of
Baker ef al. (1970) on the 3-d Heisenberg model (nor in the calculations on the
2-d and 3-d Ising models).
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the sample. Depending on the strength of the existing deviations
(anisotropy, interlayer coupling) the experimental 7', so obtained will
be shifted upwards by a small amount with respect to the temperature
at which the susceptibility of the ideal mono-layer would diverge. Thus
the crucial difference from the situation found in the magnetic chains is
that in the latter the deviations from ideality cause an upward shift of
T . with respect to T =0, whereas in the isotropic layers the shift is with
respect to the Stanley—Kaplan temperature T'gy (it is worth mentioning
that, as we have seen in the preceding section, the ferromagnetic suscepti-
bility of isotropic chains is indeed predicted to diverge at 7'=0). If the
strength of the deviations can be made sufficiently weak it follows that
T, will very nearly coincide with 7. We will come back to this
point after having reviewed the hitherto discovered examples of 2-d
magnetism, and will then present experimental evidence in favour of the
existence of such a Toy.

As concerns the behaviour of other thermodynamic quantities of interest,
we may expect that in the absence of long-range order the specific heats
will exhibit similar broad finite maxima as in the case of magnetic chains
(see fig. 6). The transition to long-range order, due to the deviations from
ideality, will again be reflected as a sharp spike sitting on the flank of the
broad short-range-order maximum. As to the precise form of the latter
there is no theory available. At low temperatures, simple spin-wave
theoretical arguments predict a temperature dependence that is linear for
the ferromagnetic and quadratic for the antiferromagnetic Heisenberg
lattices (§4.2). In the high-temperature region the series expansion
results for the heat capacity provide a reliable prediction. But in the
rather large intermediate region there are only experimental results
available (see below).

For the antiferromagnetic susceptibility one expects a similar behaviour
as found for the isotropic antiferromagnetic chains (figs. 18 (@), 21 and 23),
since they have in common the absence of long-range order and of aniso-
tropy. Accordingly, a broad maximum due to the short-range-order
effects should be found at the higher temperatures, whereas at 7'=0 the
susceptibility should attain a finite value. Since there is no closed-form
theory available, we must once more rely on the high-temperature series
expansions and on spin-wave theory in the high and low-temperature
range, respectively.

The series expansion results have been studied by Lines (1970), who
used the six terms in the susceptibility series for general lattice and spin
given by Rushbrooke and Wood (1958).  Calculating the antiferromagnetic
susceptibility of the quadratic Heisenberg lattice for various S values,
Lines found that the series prediction just covers the temperature range
in which the broad maxima occur. At lower temperatures it becomes
unreliable because of the finite number of terms known in the series
(which is given in ascending powers of J/k7T). Lines also produced a
formula relating the exchange constant for various S values to the
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temperature at which the maximum occurs, thus enabling an estimate of
J [k of the experimental examples.

De Jongh (1972 ¢) has extended this work with the aid of additional
terms in the series, finding slightly different quantitative results. He
points out that more reliable estimates of the exchange may be obtained
by comparing with theory the height of the observed susceptibility
maximum rather than the temperature at which it occurs, since the
former quantity can be established with a greater accuracy from the
finite number of terms known in the series and is mostly also better
determined experimentally. The values for the temperatures and
heights of the maxima for various § are listed in table 4, and we shall
make use of them in what follows in determining the exchange constants
of the experimental examples. Anticipating the discussion of these
examples below, we show in fig. 28 (De Jongh 1972 ¢) the susceptibilities
of six approximations of the quadratic antiferromagnetic Heisenberg
layer, with different spin values. In the region below 7, (kT
|/|S(S + 1)~ 1) the data represent the measured perpendicular suscepti-
bilities. In the high-temperature region above T, the susceptibility is
mostly found to be fairly isotropic, except for K,NiF, in which there is a
discernible difference between y, and y, also above T, so that for this
salt only the y, data have been plotted for 7'>7, By fitting the
exchange constants, the experimental curves have been scaled upon the
high-temperature series predictions, which have been drawn in the
temperature region for which the calculations with a varying number of
terms do not differ by more than a few per cent. Note the larger devia-
tion from the molecular field theory when § is decreased. Although
there are some discrepancies, which may be caused, for example, by a
temperature dependence of J[k or by the limited number of terms in the
series, there is on the whole very good agreement.

It is also observed from fig. 28 that the experimental perpendicular
susceptibilities, extrapolated to T'=0, are in close agreement with the
x.(0) values as predicted by spin-wave theory for a 2-d Heisenberg
antiferromagnet. For §=% and S=1 these values have been indicated
in fig. 28 by the horizontal lines labelled @ and b. We point out that the
difference between the spin-wave predictions for y,(0) and the MF result
¥, 0= NogupS/2HgT is, apart from an anisotropy effect that is extremely
small in the compounds considered, wholly due to the effects of zero-point
spin deviations (De Jongh 1972 b, ¢). Spin-wave theory yields (see, e.g.,

Keffer 1966) AS() "
x.° o efa
x.(0)= tia [1— S _(2+a)zs]' (3.6)

Here y,° is the MF prediction defined above, «a=H ,/Hg, 8 is the spin
value, z the number of nearest neighbours, whereas the anisotropy

t Hy is the effective field associated with J , according to the MF relation :
gupHp=2m|J|S.
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Fig. 28
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The susceptibilities of six examples of the quadratic Heisenberg antiferro-
magnet. The experimental data in the high-temperature region
(I'>T,; kT,~8(S+1)|J|) have been fitted to the theoretical (solid)
curves by choosing the right exchange constants J/k. These curves
have been calculated from the high-temperature series expansions for
the susceptibility (H.T.S.). Note the large deviation from the molecular
field result (MF) for the susceptibility in the paramagnetic region and
below the transition temperature (x,). For references to the data, see
the text. Below 7', the measured perpendicular susceptibilities of two
8=4§ and two S=1 compounds have been included. The extrapolated
values to 7=0 may be compared with the y, (0) values predicted by
spin wave theory (in the limit H ,=0), which have been indicated by
the horizontal lines ¢ and b for S=$§ and S=1, respectively. The
differences between x, for compounds with the same S reflect the
difference in anisotropy.

dependent quantities AS(x) and e(«x) reflect the effects of zero-point spin
deviations on the effective length of the magnetization vector and on the
ground-state energy, respectively. Consequently, the fact that the
experimental y, curves agree with the spin-wave predictions at 7 =0,
constitutes experimental evidence for the existence of these zero-point
deviations, since the parameters « and J/k have been determined inde-
pendently from other sources. We shall return to this interesting point
in §4.2. Alternatively, the above argument may be reversed : knowing
AS(e«) and e(x) one may use the experimental y, (0) value to determine
the exchange constant with the aid of eqn. (3.5). We shall frequently
do this below, making use of the AS(«) values tabulated by Lines (1970)
and Colpa et al. (1971). As shown by Breed (1969), the quantity e(«) can

AP. E
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be taken equal to e(0)=0-632 (for the quadratic lattice, see Keffer 1966)
for anisotropy values « < 1072

The applicability of spin-wave theory for T' > 0 and finite « is illustrated
in fig. 29 (De Jongh 1972 ¢). Under experimental conditions the devia-
tions from ideality will cause a transition to long-range order, as discussed
above, and once this has been established the finite amount of anisotropy
that will always be present will split up the susceptibility into a perpen-
dicular and a parallel part, so that one obtains the picture seen in fig. 29.
Knowing J/k and «, both y, and y, may be calculated from spin-wave
theory, as has been done by Breed, using the parameters appropriate to
K,MnF, of which he measured the susceptibility. Renormalization
effects (Oguchi’s correction terms, Oguchi 1960) were incorporated in the
calculations. As far as the limiting low-temperature behaviour is con-
cerned the agreement is seen to be good, but there is certainly a need for
a better theory. Note that the behaviour of the parallel susceptibility
is reminiscent of that of the 2-d Ising antiferromagnet (fig. 4). Also
in this case 7', coincides with the temperature at which 0y,/07" reaches

Fig. 29
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The measured parallel and perpendicular susceptibility of K,MnF,, which is an
example of the quadratic S=3% Heisenberg antiferromagnet. The value
of J/k has been determined by fitting the high-temperature suscepti-
bility to the series expansion prediction (H.T.S.). The value of the
anisotropy parameter H,/Hy is also indicated. Using these values of
J/k and H,[Hyg, Breed (1969) has calculated the spin-wave prediction
for x, and y, shown in the figure. The measurements were also per-
formed by Breed. The position of the transition temperature T,
has been indicated.
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its maximum, but the derivative remains finite here. The anisotropy
in the susceptibility is observed to persist in a small region above T',, an
effect that is commonly met in these 2-d antiferromagnets and is due no
doubt to the substantial short-range order that is present above T'.,.

Thus, simple spin-wave theory, including a small anisotropy term,
seems to give a reasonable description of the limiting low-temperature
behaviour of the 2-d antiferromagnetic susceptibility. It is interesting
to note that the general appearance of the perpendicular susceptibility
is rather similar to that of the 3-d Heisenberg antiferromagnet, as dis-
played in fig. 53 below. Also in three dimensions the y, firstly decreases
with temperature, passing through a minimum as 7T, is approached.
The increase in y, near 7', has been ascribed by Kanamori and Itoh
(1968) to contributions of excitations of more than one magnons of non-
zero wave-number, which are not taken into account in less sophisticated
treatments. This is of importance since for the fully isotropic 2-d case
simple spin-wave theory predicts a zero x, for any 7'>0, in contrast
with the 3-d analogue where for o= 0 there still is a finite y,, decreasing
to first order quadratically with temperature (Keffer 1966). The anoma-
lous behaviour in two dimensions arises from the unlimited decrease in
the sublattice magnetization through the excitation of magnons dis-
cussed above, since the term given in eqn. (3.5) enters in the expression
for x, (T). However, in the case of the y, the anomalous decrease might
be a result of the approximations made in the simple theory, and could
possibly be compensated by mechanisms taken into account in more
sophisticated calculations, such as mentioned above. In this respect it
is of importance to note that for the 1-d Heisenberg antiferromagnet
spin-wave theory is completely in error, predicting a y, at 7'=0 that
vanishes logarithmically with « in the limit «—0, in contradiction to the
numerical calculations and the experimental findings discussed in § 3.1.
Experimentally, the behaviour of the manganese compounds in fig. 28
indicates that at small o (10~3-10-%) a change of a factor 10 in « hardly
has an effect upon the temperature dependence of y , merely shifting the
value of x (0) by a small amount. In view of these considerations one
might postulate a susceptibility behaviour of the ideal model quite similar
to the experimental curves of fig. 28 (De Jongh 1972 ¢), bearing in mind
that in analogy with the 1-d antiferromagnet the derivative of the ideal y
versus T’ curve is expected to remain finite everywhere in view of the
energy—susceptibility relation discussed in § 1.2. Since a singularity in
the specific heat will be reflected in 0x/07, it may be argued that the
temperature dependence of the latter must be of a similar smooth, non-
singular, form as the specific heat in case there is no transition to long-
range order, as evidenced by the antiferromagnetic chains. This is clearly
a matter that has yet to be solved theoretically. Although the effect of
anisotropy does seem to be small, the experiments cannot exclude, for
example, a logarithmic decrease of y, with «, as is the prediction of the
simple spin-wave theory.

E?2
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There is an interesting aspect of the influence of the anisotropy on the
perpendicular susceptibility that we would like to discuss briefly. As
seen from eqn. (3.6) x,(0) is lowered with respect to y,° by increasing the
anisotropy. At first sight this is in contradiction to the result obtained
by Fisher (1960 a) for the y,(0) of the 2-d Ising model, which was found to
be twice as large as y,°. But a little reflection shows that this is one of
the examples of the fundamental differences that may arise from the
particular way in which the anisotropy is introduced in the Hamiltonian,
as has been pointed out in §2.2. In the above spin-wave theory one
starts with an isotropiec exchange interaction, allowing for the anisotropy
by means of an effective anisotropy field H ,, representing, for example,
the single-ion or dipolar anisotropy. We may conveniently call this
model the anisotropic Heisenberg model. On the other hand, in the
Ising model an anisotropic exchange interaction is considered, leading
to a lack of antiferromagnetic correlations in the perpendicular direction
so that the perpendicular susceptibility above 7', is only lowered little
with respect to the paramagnetic behaviour, as shown in fig. 30. This
explains the relatively high value of y,(0) in the Ising model.

We shall have occasion to return to this point, since it turns out that
especially the perpendicular susceptibility of the anisotropic examples of

Fig. 30
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A comparison of the perpendicular (x,) and the parallel (x,) susceptibility of
the quadratic Lsing lattice (Fisher 1963, Sykes and Fisher 1962) with
S=1. Curve @ is the susceptibility of a paramagnetic substance.
Curbe & is the molecular field prediction for the antiferromagnetic
susceptibility in the paramagnetic region and for the perpendicular
part below the transition temperature. Compare also figs. 16 and 17 (a).
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2-d antiferromagnetism can mostly be better analysed in terms of the
anisotropic Heisenberg model than that of the Ising model. This may
be understood by considering that in the experimental examples the
anisotropy originates mainly from crystal-field effects, the superexchange
mechanism being in most cases quite isotropic.

Quantitative values for the anisotropy can be obtained by various
experimental techniques (magnetic torque, magnetic resonance, spin-flop
experiments), and in fact for most of the compounds compiled below an
estimate of the anisotropy could be given. In case the anisotropy is of
orthorhombic symmetry one should distinguish between the different
crystallographic directions. In a simple model, we shall denote by =,
y and z the preferred, the next preferred and the hardest direction,
respectively, and introduce the orthorhombic anisotropy in the
Hamiltonian in the form of terms KS,2 and LS.2, L>K>0. ForL>K
the anisotropy becomes of the planar Heisenberg type, there being an
easy plane in which the moments are nearly free to rotate, whereas for
K ~L, an Ising-like character is approached by increasing K and L.
With the anisotropy constants K and L one may associate the anisotropy
fields H,'=2KS|gup and H, "=2LSlgug. If H,'>H,I one may
simply take the former for the anisotropy H,. On the other hand, if
H,* and H I are of the same order and if one does not want to differen-
tiate between them it is not so obvious which quantity should be taken
for ‘ the > anisotropy. In what follows we have occasionally used the
quantity (H,'H, "12=H,.

Estimates of the interlayer coupling J', which is the interaction in the
third dimension, could not be obtained experimentally for most of the
examples treated below. The exception is the case of ferromagnetic
layers, coupled by an antiferromagnetic J’, where it can in principle be
calculated from the antiferromagnetic y, in the ordered region, y, being
inversely proportional to J' (see below). For the other structures one
must therefore take recourse to estimates of J' by considering the inter-
layer exchange paths and calculations of the interlayer dipolar coupling.
Referring to the discussion in § 2.4, this leads, for example, to values
|J’/J| ~10% in the compounds of the K,NiF, structure and to
|J'|J | 2 10-3-10-% in the series (C,IL,,  ;NH;),CuCl, when = is varied from
1 to 10. Tt should be noted that these values apply to the ideal crystallo-
graphic structures and that for instance in the K,NiF, structure the
value of |J’/J| will be up to two orders of magnitude larger in the case
that lattice defects or distortions of, for example, magnetostrictive origin
invalidate the symmetry argument that leads to the decoupling of
nearest-neighbouring layers. On the whole, one is apt to think that
lattice imperfections and other defects will set a lower bound to the value
of |J'/J| that can possibly be achieved. Whenever one considers a
|J’/7| as small as 101, for example, one should certainly take into
account the effects of these imperfections, as well as the fact that the
lattice is not rigid, due to the presence of phonons.
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In conclusion we want to make a few remarks about the critical be-
haviour to be anticipated in the experimental examples of 2-d magnetism.
Here we must again differentiate between the compounds of the Ising
and of the Heisenberg type. For a 3-d array of nearly isolated layers with
a highly anisotropic intralayer exchange (J) one expects to find a 2-d
Ising-type behaviour, except in a narrow temperature range around 7',
where the small interlayer coupling (/') will come into play. The extent
of this temperature region will depend on the relative strength of J'.
Taking the temperature dependence of the spontaneous magnetization as
an example one expects to find a 2-d character with a critical exponent
B near to the 2-d value %, except very close to 7', where 8 should change
to the 3-d value of about }, according to the universality hypothesis put
forward by Griffiths (1970 b) and Kadanoff (1970). This states that
close enough to 7T, the value of B should be independent of the ratio
|J*[J |, except at the point J' =0, where it should change discontinuously
from the 3-d to the 2-d value (Paul and Stanley 1971 b, Citteur 1973).
The reason is that for any finite value of J' the system is essentially 3-d.

In the case of the nearly 2-d Heisenberg magnets the situation is
different because ideally these systems cannot sustain long-range order
for 7>0. The spontaneous magnetization that is nevertheless observed
must therefore be attributed solely to the combined effects of the aniso-
tropy and the inter-layer coupling. In §3.1.1 we have already pointed
out that the difference between the magnetic chains and the 3-d Heisenberg
magnets is that in the former only the inter-chain coupling J’ can be held
responsible for the presence of long-range order, whereas in the latter the
anisotropy H, provides an additional mechanism. Depending on the
relative strength of H, and J’ the behaviour will be predominantly of the
2-d Ising type or 3-d in character, again in accordance with the universality
hypothesis. Considering again the spontaneous magnetization, one
expects that if gugH . >J’ (as is quite often the case) the critical behaviour
will be 2-d Ising-like (8~ 1) over a wide temperature range, changing over
to 3-d (B~ 1) when T, is approached closely enough. As we will see below
indications of such a cross-over of a critical exponent have indeed been
found experimentally.

We will now proceed to discuss the examples of the 2-d Ising and planar
Heisenberg models. In table 5 we have gathered the antiferromagnetic
and ferromagnetic layer-type compounds that receive consideration. It
can be seen that these are mostly Co compounds. Subsequently, the
approximations of the 2-d Heisenberg magnets will be reviewed.

3.2.2. Survey of experimental results
CoCs,Br,

In §2.2 we have already discussed the anisotropy in the interaction
between the Co?t ions in this compound. As to the origin of the 2-d
character it was mentioned in § 2.4 that the cancellation of the interaction
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in the third dimension is in this case thought to be accidental, since no
crystallographic or other arguments can be brought up.

Fig. 31

mole K

1O~

O I | | 19
0.2 TlT¢ 1 2 5 10
——ereee—————

Magnetic specific heat of CoCs;Br; plotted versus the temperature relative to

T, The full curve represents Onsager’s exact solution (1944) of the

heat capacity of the quadratic, S=1, Ising lattice. (After Wielinga ef al.
1967.)

The magnetic lattice of the Co?* ions is quasi simple cubic, the ¢ axis
of the tetragonal cell being about 109, longer (Figgis et al. 1964). The
thermal and magnetic properties have been investigated by Wielinga ef al.
(1967) and Mess et al. (1967), respectively. In fig. 31 the specific heat is
compared with the theoretical curve of Onsager (1944) for the simple
quadratic Tsing magnet. Although there is a slight disagreement above
T, there is on the whole a striking resemblance. A similarly good
agreement with theory is found in the case of the field dependence of the
antiferromagnetic transition point, as plotted in fig. 32. The data were
obtained by Mess et al. (1967) from magneto-thermal experiments, while
the theoretical curve has been computed by Bienenstock (1966). This
field-dependent behaviour will be treated in more detail in §4.5. It
should be noted that the agreement would be still better if the experi-
mental data could have been corrected for demagnetizing effects, since
this would lower the points at the lower temperatures by a few per cent.

Comparing CoCs,Br; with the other compounds it may be concluded
that its specific heat is up until now the best example of the Onsager
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curve. Except for Co(HCOO), . 2H,0 the other compounds have transi-
tion temperatures that are so high that the subtraction of the lattice heat
capacity becomes a very difficult matter, and for the formate the agree-
ment with the theoretical curve is less satisfying (Takeda et al. 1971 a).
Notwithstanding this, the low value of 7', in the case of CoCsyBr; will
have the consequence that the effect of dipolar interaction cannot be
neglected. As suggested by Wielinga ef al. (1967) this could account for
the difference of the obtained value 7',/6=0-64 with the theoretical
number 0-567, and the other observed discrepancies. Unfortunately, a
value for J' cannot be deduced from the existing data.

Fig. 32
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Antiferromagnetic phase diagram of CoCsyBry as determined from magneto-
caloric experiments. The full curve has been calculated by Bienenstock
(1966) for the quadratic S={£ Ising antiferromagnet. (After Mess et al.
1967.)

Co(HCOO), . 2H,0 and Fe(HCOO), . 2H,0

Two-dimensional magnetism in the transition metal formate dihydrates
was first discovered in the manganese member of this series of compounds,
which will be treated below amongst the IHeisenberg compounds. At a
later date also the Fe?+, Ni?+ and Co?* salts were studied (Hoy ef al. 1965,
Matsuura et al. 1970 a, Pierce and Friedberg 1971, Takeda and Matsukawa
1971). Of these the cobaltous and ferrous compounds possess strongly
anisotropic properties as required for the Ising model.

In magnetic respect the structure of these formates consists of alternat-
ing A and B sheets of metal ions, those in the B sheets remaining para-
magnetic down to temperatures much lower than that at which the spins
in the A sheets become antiferromagnetically ordered. The 2-d character
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emanates from the fact that the A sheets are as it were separated from
each other by the B sheets. At low enough temperature the spins in the
B sheets are gradually ordered under the influence of the field exerted on
them by the spins of the A sheets. Evidence for this subdivision in two
differently behaving spin systems is provided by various pieces of experi-
mental evidence and may be understood by considering the distinct
exchange paths that arise from the difference in environment of the metal
ions in the A and B sheets. The existing values deduced for the ratio of
inter to intralayer exchange are 8 x 10-3 for the cobaltous and 3 x 1073
for the manganese compound, these exchange constants having been
derived from the heat capacity data.

Fig. 33
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The specific heat of Co(HCOO), . 2H,0 as measured by Matsuura ef al. (1970 a)
and Takeda et al. (1971 a).

For the Co formate three maxima in the specific heat are found (fig. 33)
(Matsuura et al. 1970 a, Takeda et al. 1971 a). At 5-12 K a sharp peak is
observed due to the 2-d ordering in the A sheets. At lower temperatures
the contribution of the ordering within the paramagnetic B sheets is
reflected in the heat capacity in the form of a broad, Schottky-type,
anomaly with a maximum at 0-50 K. Below 0-1 K the hyperfine coupling
between the cobalt spin and its nucleus provides for yet another maximum.
This figure illustrates how much information can be obtained from the
analysis of a specific heat curve.

The susceptibility (Takeda and Kawasaki 1971) exhibits a large peak
at T, and rises again below 7', as a consequence of the paramagnetic
contribution of the B sheets. The features of the peak indicate the
existence of a weak ferromagnetic moment due to a canting of the spins
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in the A sheets, as was also found in the case of the isomorphous manganese
salt. A similar anomaly in the susceptibility has been observed for the
Fe formate (Hoy et al. 1965, Takeda and Kawasaki 1971).

In the specific heat curve of the Fe formate no sign was found of the
rounded maximum produced by the B sheets, at least not for 7'>1 K.
The heat capacity decreases exponentially below T',=3-75 K, as expected
for an Ising compound (Pierce and Friedberg 1971, Takeda and Kawasaki
1971). Above T, there is a very large tail in the specific heat that cannot
be explained by 2-d short-range-order effects alone. There will probably
be a contribution of low-lying excited levels and it has also been suggested
by Pierce and Friedberg that the apparent absence of the Schottky
anomaly (although this could still appear at temperatures much below
1 K) might be explained by assuming that the ions in the B sheet already
lose their entropy above 7T',. This would arise in the following way.
From entropy considerations and the earlier Mossbauer results (Hoy and
Barros 1965), Pierce and Friedberg concluded that most probably the A
ions have an effective §=1}, whereas the B ions have S§=2. The
Mossbauer experiments of Shinohara et al. (1972) confirm these assign-
ments of spins and indicate that the zero-field splitting of the B ion
leaves a singlet ground state, sufficiently separated from the remaining
components of the §=2 manifold, so that the B spins do not order
spontaneously at any temperature. This implies that J,p is rather
small in this compound, as in the other isomorphs. The anomalously
large specific heat above 7', is therefore the result of short-range-order
effects within the A sheets, combined with a Schottky-type heat capacity
due to the B sheets.

In view of the uncertainties that still remain we have refrained from
entering this compound in the table.

Rb,CoF, and K,CoF,

The anisotropy in these salts, which have the K,NiF, structure, has
already been discussed in § 2.2. The values for H,/Hy listed in table 5
stand in this case for the quantity 1-—b/a, where b and a have been
defined in eqn. (1.1).

After a preliminary experiment by Srivastava (1963) on K,CoF, the
susceptibilities of these compounds have been investigated in extenso by
Breed ef al. (1969), and have been reproduced in fig. 34 (¢). Apparently
there is a large Van Vleck contribution, due to the presence of the higher
energy levels, as may be inferred from the fact that the parallel suscepti-
bilities reach finite values at 7'=0. The large uniaxial anisotropy
favouring the ¢ axis is clearly seen in the behaviour of the susceptibility
measured perpendicular to this direction. The result for K,Col,, after
subtraction of the Van Vleck contribution, is compared with the calcula-
tions of Sykes and Fisher (1962) in fig. 34 (b). For this purpose we have
assumed the Van Vleck term (determined from yx,(0)) to be temperature
independent, which is certainly not justified since the distance from the
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lowest-lying doublet to the next excited level has been calculated by
Folen et al. (1968) to be about 400 K. As an additional complication
T,(=107K) and J/k (= —97 K) are of this order of magnitude, which
makes a more sophisticated correction for the Van Vleck contribution
unfeasible. For these reasons it is easily understood why the data in the
high-temperature region deviate from the theoretical curve. Notwith-
standing this it may be seen that a reasonable agreement is obtained at
lower temperatures, using the J/k and g values derived by Breed et al.
(1969). It is worth mentioning here that the theoretical prediction that
T, should coincide with the temperature at which the derivative of the
y, versus T curve reaches infinity (under experimental conditions : its
maximum value), could also be verified by these authors, since they were
able to locate T, independently from fluorine N.M.R. experiments
similar to those described by Maarschall et al. (1969) for K,NiF,. It
can be seen from fig. 34 (@) that at T, the perpendicular susceptibilities
have a maximum temperature derivative too. In fact the y, can also
be fitted to the theoretical curve up to 7' ~1-1 T', by using the appropriate
g value, but in order to accomplish this the Van Vleck contribution in the
perpendicular direction has to be taken to be about two-thirds of its value
parallel to the ¢ axis. In view of this uncertainty we have refrained from
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Fig. 34 (continued)
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(@) Magnetic susceptibilities of K,CoF, and Rb,CoF, (Breed ef al., 1969),
which are approximants of the quadratic S=3, Ising antiferromagnet.
The positions of 7', have been indicated by the arrows. The large
uniaxial anisotropy favouring the ¢ axis can be inferred from the be-
haviour of the susceptibility measured perpendicular to this direction.
The large Van Vleck contribution to the susceptibility is seen for instance
from the fact that the parallel susceptibilities do not decay to zero as
T—0. (After Breed ef al., 1969.) (b) The susceptibility of K,CoF,
compared with the theoretical prediction of Sykes and Fisher (1962)
for the quadratic, S=1%, Ising antiferromagnet. In order to correct
for the Van Vleck contribution the value of the parallel susceptibility
extrapolated to 7'=0 has been subtracted from the data.

producing the result for y, here, all the more since one may seriously
doubt the applicability of the Ising model for the perpendicular suscepti-
bility of experimental examples, as outlined in § 3.2.1.

These compounds are also currently being studied by Samuelsen with
neutron diffraction. Aspreliminary values for the spontaneous magnetiza-
tion parameters we quote for e.g. Rb,CoF,: B=0-119-+0:008 and
B~1-16+0:03, in therange 5 x 10%<1—-T7/7T_ <1x 1071 (K. J. Samuelsen
1973 and private communication). These numbers are within the
experimental uncertainties equal to the theoretical predictions for the
8 =1 quadratic Ising lattice, =0-125and B=1-24 (for 1 - T'/T ,< 2 x 10~2),

BaFeF,

This compound belongs to the BaMF, group of fluorides (M= divalent
transition ion). Other members of this series (M =Co, Mn and Ni) will
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be encountered below. The orthorhombic crystal structure consists of
puckered sheets of MF; octahedra, separated by a layer of nonmagnetic
Ba?+ jons (Keve et al. 1969). The 2-d lattice is thus a puckered, quasi
quadratic network. One does not expect the rumpling of the lattice to
have substantial influence on the 2-d properties. We note that also in
this structure the interaction between neighbouring layers is cancelled
because of symmetry. Since the structure is rather complicated, it is
difficult to estimate the interlayer coupling. However, one may expect
it to be of the same order of magnitude as in the K,NiF,-type compounds,
so we have likewise listed the value |J'/J|~10-% in table 5.

Magnetic measurements have been performed by Eibschiitz ef al. (1970).
As in the case of Rb,Fel,, the data are consistent with an effective spin
S§=2. This may be brought about by a crystal field of low symmetry,
that quenches the orbital angular momentum, leaving a ground state that
possesses only the five-fold spin degeneracy. These levels will be split
up even in the absence of a field by the spin-orbit coupling. If the
exchange energy is sufficiently large as compared with the splitting of
this manifold, one may expect a spin Hamiltonian to be applicable with
effective S=2 and considerable single-ion anisotropy. The difference
with Rb,FeF, is that in BaFeF, the moments are parallel to the ¢ axis,
while in the former they are oriented within the magnetic layer.

From the temperature T'(x,max) @t Which the maximum in x, occurs
we obtain J/k= —6-4¢ K, using the results for the Heisenberg model of
table 4, there being no theoretical prediction available for the Ising
model with §=2. On the other hand, if we assume the percentage
decrease in T(ypax) in going from S=4% to §=2 for the Ising model to
be the same as for the Heisenberg case, this would result in k7'(x.ax)/
|7|8(8+1) ~1:90 for the Ising model with §=2. Using this value,
the experimentally observed maximum yields J/k=~7-0 K. With the
molecular field result y, (0)=Ng2ug2/4z|J | for the perpendicular suscepti-
bility of the Heisenberg model at 7'=0, the value Jjk=—517K is
obtained with g=2-1, as derived from the value of the magnetic moment.
Correcting this for the anisotropy, estimated below, gives J/k= —6-3 K.
If the Ising prediction for x,(0) is used, J/k= —11-4 K results. We note
that taking |J/k| > 7 K gives 7',/ < 0-48, which seems to be unreasonable
since the quantity 7'./6 will be increasing with spin value (the differences
with molecular field theory become less if the spin value is increased)
and because for =} and S=1 the theoretical Ising values are 0-57 and
0-63, respectively (Fisher 1967, Guttmann et al. 1970). Therefore the
exchange constant J/k~ —6-4 K, obtained by applying the anisotropic
Heisenberg model, seems to be a better estimate. Clearly we have here
an example of an anisotropic compound that approximates the aniso-
tropic Heisenberg model rather than the Ising model. Although in
many of its properties the difference will not be obvious, e.g. x,, especially
in the perpendicular susceptibility the inapplicability of the latter model
is exposed.
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The anisotropy estimate has been obtained by comparing the different
values of the two perpendicular susceptibilities and by comparing the
x; Wwith spin-wave theory. We estimate H,/Hgy~0-2, where H,=
(H1H 1112 Since the anisotropies H,! and H,™ differ by a factor of
about 5 we have listed the compound as being intermediate between the
Ising and the planar Heisenberg model. Note that the maxima in the
two different perpendicular susceptibilities occur at different tempera-
tures. Lastly, we mention that the temperature dependence of the
sublattice magnetization has been derived from a Mossbauer study by
Eibschiitz ef al. (1970). The best fit of the data to the power law

M ()M (0)=B(1—T|T ) (3.7)

was obtained with B=1-18 and 8= 0-17 in the relative temperature range
0-80<T/T,<0985. These values compare rather favourably with
B=1-22 and B=4{=0-125 as predicted for the quadratic S=} Ising
lattice (Fisher 1967) and are certainly quite different from the 3-d S=1}
Ising values, which are B~1-52 and B=0-312 (Fisher 1967). One does
not expect the critical exponent to be different for S=2. In any case
Guttmann et al. (1970) found identical B values for S=1 as for S=}.
The value of B, however, decreases slightly for increasing 8. The data
obtained have been reproduced in fig. 48,-and will be discussed at the end
of this section, together with those obtained on other compounds.

Rb,FeF,

The sublattice magnetization of this member of the K,NiF, family has
been measured by Birgeneau et al. (1970 b), using neutron diffraction
techniques. In the range 0-7<7/7T < 0-98, about the same result was
obtained as in BaleF, (8 ~0-2). Closer to the transition point, however,
the exponent B was found to increase suddenly which, according to the
arguments presented in § 3.2.1, can be explained by assuming that for
T|T > 0-98 the phase transition has become 3-d in character. Although
the symmetry in Rb,Fel, is indeed slightly distorted below T, by magneto-
striction (Wertheim et al. 1968), it is not clear how this may destroy the
symmetry argument for the cancellation of the interactions between
nearest neighbouring layers. For instance, the argument would not be
invalidated if the symmetry would be lowered from tetragonal to ortho-
rhombie, as is very likely. The apparent changeover in 8 might also be
explained by the observed spread in the transition temperature of about
2 K (Wertheim et al. 1968, Birgeneau et al. 1970 b).

As mentioned above, the spins lie in the basal plane. This was already
concluded from the susceptibility measurements (Wertheim et al. 1968),
which could be explained by assuming a domain structure in which the
spins belonging to different domains are in two mutually perpendicular
directions in this plane. Concerning the anisotropy value we can only
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make a guess, since there is as yet no experimental information available
to this end. Comparing the susceptibility curves with those of BaFekF,
one may infer that the anisotropy is somewhat smaller, so that the value
H,/Hg~01 seems to be as reasonable an estimate as can be made.
One may, however, draw the conclusion from the y behaviour that the
anisotropy within the layer is much smaller than the out-of-plane aniso-
tropy, which makes this compound also intermediate between the Ising
and the planar Heisenberg model, the latter being probably the most
appropriate.

CoCl, and FeCl,

For more than 50 years the peculiar properties of FeCl, and CoCl,
have drawn the attention of experimental and theoretical physicists (for
a review of the earlier data see Wilkinson et al. 1959). It gradually
became clear (Landau 1933) that they could be explained by assuming the
magnetic structure to consist of ferromagnetic layers, with an intralayer
exchange J, coupled by a much weaker antiferromagnetic interaction J/'.
Since J > |J'|, these systems will have positive Curie-Weiss temperatures,
whereas at low temperatures and in low fields they will behave as anti-
ferromagnets. Because of the small value of the antiferromagnetic
coupling the magnetization already reaches near-saturation values in
moderate fields (gugH ~22'|J']8), the crystals becoming essentially
ferromagnetic. More about the field-dependent behaviour will be said
in §4.5.

The crystal structure of these compounds (and also of NiCly) is of the
CdCl, type, with hexagonal layers of metal ions, separated by two
hexagonal layers of chlorine anions. They are different in that in FeCl,
the (strong) anisotropy is uniaxial, favouring the hexagonal ¢ axis and
thus making the compound of the Ising type, whereas in CoCl, there is a
strong anisotropy constraining the moments within the layer, the in-
plane anisotropy being very small, so that it qualifies for the planar
Heisenberg model.

The fact that an effective S=1 may be assigned to the Fe?t ion in
FeCl, has been discussed by Ono et al. (1964), and Birgeneau et al. (1972 b).
With reference to the discussion of BaFeF, we note that this can be ex-
pected if the departure from cubic symmetry of the crystal field is small,
leaving an orbital triplet lying lowest. Spin—orbit coupling will split up
this manifold in three levels, having #=1, 2 and 3. Provided the effects
of non-cubic components of the crystal field are small, the lowest ¢ =1
level may be treated with an effective spin §=1 in the Hamiltonian.
The second proviso for this, namely, that the spacing of the #=1 and
the next level (£ =2) is large as compared to the transition temperature
is reasonably well met, since the distance is about 57, in FeCl,. An
evaluation of the exchange constants has been accomplished by Birgeneau
et al. (1972 b). From a fit to spin-wave theory of the dispersion curve of
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the ferromagnetic (planar) spin waves, as measured with neutron diffrac-
tion, they obtained the exchange between nearest and next-nearest
neighbours within the plane as well as the anisotropy, finding +3-9 K,
—~0-52K and D= —17K, respectively, within the effective S=1
formalism. The antiferromagnetic coupling between the layers may
be determined from the metamagnetic transition field H  as measured
by Jacobs and Lawrence (1967). Using 2z|J'|S=gupH, and H, =
1-1 x 102 Oe, g=4-1, we obtain J'/k= —0-25 K.

Another value may be obtained from the susceptibility measurements
of Bizette et al. (1965 a, b). The parallel susceptibility shows the sharp
peak characteristic for this type of antiferromagnetic arrays, reaching
¥ =089 cm3/mole at T',. Taking, as in the molecular field approxima-
tion, this value to be equal to the (isotropic) perpendicular susceptibility
at T =0, we calculate, using x,(0)=Ng?ug?/4z|J'|, J'[k= —0-20 K. 1t is
not clear whether the authors corrected the susceptibility for demagnetiz-
ing effects. If not, the corrected x,(0) would be a few per cent higher,
improving the agreement between the two J'/k values. We have therefore
taken J'/k=—0-25 K. For the effective intraplanar exchange we have
taken the sum of nearest and next-nearest neighbour interactions per
nearest neighbour, assuming these to be additive as in molecular field
calculations.

The critical behaviour was found to be 3-d in character (Yelon and
Birgeneau 1972), which may be understood from the relatively large value
of the inter-layer coupling. In fact the sublattice magnetization and the
susceptibility, as determined by neutron diffraction, show properties
appropriate to the 3-d Ising antiferromagnet with §=0-29 and B=1-47
(eqn. (3.6)). We will return to this matter at the end of this section and
now proceed to discuss CoCl,.

From the value of the spin-flop field Hgp~2kOe (Wilkinson et al.
1959), and the field needed to saturate the sample, H ~ 33 kOe (Jacobs
et al. 1968), one obtains (with Hgy?=2HzH ' and H = 2Hy— H ') for the
antiferromagnetic interlayer coupling J' and the in-plane anisotropy H ,!
the values J'/k= —1-08 K and H,'~10%2 Oe. From the parallel suscepti-
bility at 7', (Bizette et al. 1956), x~0-4 cm3/mole, it follows that J' [k~
—1-4 K. Here we have used g=6-0, as obtained by Jacobs ef al. (1968).
The intralayer exchange cannot be derived from the existing data.
From the work of Lines (1964), who obtained an approximate relationship
between |J'/J| and T, one may estimate |J'/J|~0-1, giving J/k~10 K
and 7',/0~ 0-8, which does seem reasonable. The out-of-plane anisotropy
was estimated to be of the same order as J.

The transition temperature 7',=24-71 K was derived from the heat
capacity measurements of Chisholm and Stout (1962), who devised an
ingenious way to separate the lattice contribution. For the ideal 2-d
planar Heisenberg model one expects a broad maximum in €, as in
the case of the 2-d Heisenberg model, since both cannot sustain long-range
order. No sign of such a maximum is found in the specific heat, which

AP, F
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only shows the sharp anomaly due to the onset of long-range order,
although there is an appreciably large high-temperature tail.

Apart from the fairly large interlayer interaction J'/k, we may also
consider the small anisotropy H ,! within the layer (about 10-% of J/k)
as a possible mechanism for establishing the long-range order. The out-
of-plane anisotropy H X most probably does not come into play, since
this brings about the planar Heisenberg character and therefore does not
help in bringing about a transition. According to whether |J'|>gupH ',
or conversely, one expects to find a 3-d or a 2-d Ising character. Since
in the present case |J'|~0-1J, we are apt to interpret the heat capacity
as being of a 3-d nature, albeit with enhanced short-range-order contribu-
tions. This view is supported by the fact that in examples of the 2-d
Heisenberg model to be treated below, which have anisotropies also of
the order of 10-3J/k but J'/k values of about 105 of J/k, the transition
to long-range order is indeed only reflected in the heat capacity as a small
spike, sitting on the flank of the broad maximum. Notwithstanding
this, we shall see below that minute amounts of anisotropy can put a
considerable amount of Ising character into the system.

CoCl, . 6H,0 and CoBr, . 6H,0

The crystal structure (Mizuno 1960, 1961) of these compounds (and
also of NiCl, . 6H,0) is monoclinic (space group C2/m). In the case of
the Ni salt the moments are perpendicular to the ¢ axis, whereas for the
Co compounds they are parallel to it. The behaviour of the Ni salt is
definitely 3-d, as can be concluded from the susceptibility behaviour
(Haseda et al. 1959). Conversely, the susceptibility of CoCl,.6H,0
shown in fig. 35 (a) (Haseda 1960) exhibits 2-d characteristics, the broad
maximum occurring at 3-3 K, while the transition temperature, as
determined from heat capacity experiments, equals 7', = 2-29 K (Robinson
and Friedberg 1960, Skalyo and Friedberg 1964). Hence, this compound
is one of the first 2-d antiferromagnets on which experiments were per-
formed. Robinson and Friedberg (1960) were certainly very near to the
truth when they remarked that the amount of entropy gained above T,
obtained by them (529, of the total AS) was comparable with the theo-
retical result for the quadratic Ising model (569%,).

The maximum in the temperature derivative of the x, coincides with
T, as can be seen in fig. 35 (b) taken from Skalyo ef al. (1967). In this
paper an extensive experimental verification of Fisher’s relation between
the energy and the parallel susceptibility, as outlined in §1.2, may be
found. Since the interaction in CoCl, . 6H,0 is of the planar Heisenberg
type, this illustrates the general validity of this relation.

The difference of the planar Heisenberg antiferromagnet from the
Ising antiferromagnet (cf. fig. 34 (@) is apparent, since in the latter the
susceptibilities in the perpendicular directions are very nearly equal,
wheréas for the present compound (fig. 35 (2)) the x, measured within
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(@) Susceptibility of CoCl, . 6H,0, which may serve as an example of a 2-d
planar Heisenberg antiferromagnet. The planar anisotropy clearly
follows from the fact that above the maximum, the perpendicular sus-
ceptibility as measured within the easy plane nearly coincides with the
parallel susceptibility, whereas the perpendicular susceptibility in the
direction out of the easy plane is much lower. (After Haseda 1960.)
(b) The parallel susceptibility of CoCl,.6H,0 in the region around
T,=2-29 K, showing that the maximum in dx/dT indeed very nearly
coincides with the transition temperature which was determined from
the heat capacity. The temperature at which y, reaches its maximum
is T=3-3 K. (After Skalyo ef al. 1967.)

F2
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the easy plane is for 7> T .., not much different from y,, in contrast
with the susceptibility perpendicular to this plane, which is lowered
substantially as a consequence of the planar anisotropy.

As in CoCl,, the form of the specific heat curve does not resemble a
system that ideally would have no transition to long-range order. In
fact CoCl, . 6H,0 has been mentioned as an example of the 2-d Ising
model. For |T—T,|/T,<0-05, Skalyo and Friedberg (1964) found that
the specific heat behaved as C/R=—02711In |T'—T |+4, with
A= —0-015 for T>T, and A=0-559 for T'< T, Wielinga el al. (1967)
have observed that for |7'—7',|/T,<0-1 the exact Onsager solution for
the quadratic Ising lattice agrees within a few per cent with

C/R=—0-491n |T—T,|—0-29

for T< T, as well as T>T,. One may conclude therefore that although
the qualitative behaviour is similar to that of the 2-d Ising model, in
quantitative respect there is a rather poor agreement. It should also
be noted that the measured heat capacity shows considerable rounding
for |T-T,|/T,<1073-10"2

Numerical results for the intralayer interaction can be obtained from
the specific heat and the susceptibility data. In both cases z=4 has
been assumed. From the total energy involved in the magnetic ordering
Robinson and Friedberg (1960) derived J/k= —2:45 K.

In principle one could also determine J/k from the x maximum by
fitting to the high-temperature susceptibility. Unfortunately, although
Betts et al. (1971) have calculated the susceptibility for the ferromagnetic
9-d XY lattice, there is no comparable series for the antiferromagnetic
quadratic XY lattice as yet.

On the other hand, the magnetic phase diagram has been mapped
completely by Metselaar and De Klerk (1973 a), extending the earlier
work of Van der Lugt and Poulis (1960), Schmidt and Friedberg (1967)
and McElearny et al. (1969). The results for the spin-flop field are
in fair agreement, yielding an extrapolated value at T'=0 of Hgp(0)~
6-5x 103 Oe. The saturation field at 7=0 has been determined as
H (0) =46 x 10* Oe (Metselaar and De Klerk 1973 a). Using the formulae

QHEHAI - (HAI)2 =HSF2

and 2Hp—H, '=H, one obtains Hy=2-25x10* Oe and H,1'=920 Oe
(in-plane anisotropy). With z=4 this yields J/k=—1-9 K. A larger
value is calculated from the perpendicular susceptibility. Taking
x.(0)=0-25 cm®/mole (Metselaar and De Klerk 1973 a, Flippen and
Friedberg 1960, Haseda 1960) one obtains with y (0)=2% og2upt4z]J |
the value J/k= —2-3 K, after correcting for an estimated Van Vleck
contribution of 0-01 cm3/mole and adopting g=4-9 (ﬁryu and Friedberg
1965). In our opinion the seeming agreement with the result from the
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heat capacity is fortuitous. Instead we take the value Jjk=—-19 K,
obtained from H ,, to be most reliable in view of the uncertainties involved
in the J/k determination from the specific heat. The larger value follow-
ing from y,(0) is ascribed to the effect of zero-point spin deviations, that
will also exist in planar antiferromagnets (see, e.g., Semura and Huber
1971) and will lower the y,(0). In the present case the experiment sug-
gests a reduction of about 20%, for the 8=} planar Heisenberg quadratic
antiferromagnet. This may be compared to the y,(0) reduction of
about 55%, predicted for the § =1 Heisenberg quadratic antiferromagnet.

Since the anisotropy is for most part due to the ¢ tensor, one may obtain
a rough estimate of the out-of-plane anisotropy by putting

a=1-J [J, ~1-(g,/g9,)*~07

(note that the measured in-plane anisotropy of about 0-04 correlates
well with 1—(g,/g.)2~0-04). A value for the interlayer coupling cannot
be obtained from the existing experimental data.

Of the many investigations performed on this compound we mention
further the resonance work of Date (1961) as well as the neutron investiga-
tion of the magnetic structure by Kleinberg (1970). As concerns the
sublattice magnetization, we have analysed the results obtained by Van
der Lugt and Poulis (1960) with an N.M.R. technique. For (T,—T)/
T,< 0-4 we find a critical index B~ 0-18, implying a fairly low value for
|J’[J | indeed (see the discussion in § 3.2.3). Unfortunately their results
did not extend nearer to 7', than (7',— T)/T .= 0-04.

As in the case of CoCl,, we may ask the question whether it is the in-
plane anisotropy H,' of the interlayer interaction J’/k that is most
important for establishing the long-range order in CoCl, . 6H,0. From
the low value of B, which is nearer to the 2-d Ising value } than to the
3-d result %, one would conclude that |J'| <gupH ! in this salt, which is
not unreasonable in view of the rather large H,' value (one order of
magnitude larger than in CoCl,). A more elaborate study of the sub-
lattice ‘magnetization would be very welcome to substantiate this, es-
pecially closer to 7', where one would expect to observe a changeover
from 2-d Ising to 3-d behaviour. In this picture the critical behaviour
of the specific heat for |T—1T,|/T,<0-05, mentioned above, can be
understood as being due to a mixture of the effects of the in-plane aniso-
tropy and the interlayer coupling.

A specific heat measurement on the isomorphous bromine compound
has been performed by Forstat ef al. (1959), who found 7' ,~3-07 K and
obtained 389, for the amount of entropy gained above 7', considerably
less than in the chlorine compound. The magnetic structures of the two
salts were found to be most probably identical by Spence et al. (1964).

We may use the ¢ values obtained by Murray and Wessel (1968) to
estimate the intralayer exchange constant from the susceptibility
measurements of Garber (1960), which also indicate 7',~3-1 K (see also
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Metselaar and De Klerk 1973b). With x,(0)~0-19 cm®/mole and
g~5-1, we calculate in the same way as for the bromide J/k~ —3-4 K.
The phase diagram has been studied by McElearney et al. (1969) and by
Metselaar and De Klerk (1973 b), yielding an extrapolated value of
7-5 x 103 Oe for Hyp(0), and H (0)=54x 10* Oe. Accordingly one calcu-
lates Hg~2-7x 10t Oe, J/k=2-3 K and H,1=1-0x10% Oe. Comparing
the J/k values, one again observes an apparent reduction of about 30%
of the y,(0), that is most probably due to zero-point motions.

From the specific heat and the susceptibility results one may conclude
that the 2-d character is less pronounced in the bromine as in the chlorine
compound (compare also the 7'./0 values). It is further remarked that
in these structures the cancellation of the interaction in one direction
must be accidental, in view of the 3-d behaviour of the isomorphous
nickel compound. Although in crystallographic respect the erystals do
have a layered structure, with perfect cleavage along the (001) plane
(Mizuno 1960, 1961), using this as an argument would be fallacious since
it would also apply to the Ni*+ compound.

BaCoF,

This orthorhombic compound has the same structure as BaFeF, (see
above) and has been investigated by Eibschiitz et al. (1972 b), who per-
formed susceptibility and neutron diffraction measurements. Although
the anisotropy is of orthorhombic symmetry, it is not so good an example
of the planar model, since the anisotropy within the easy plane is relatively
larger than in CoCl, . 6H,0, as can be seen from the behaviour of the
susceptibility. It is therefore intermediate between the planar and the
Ising model.

In order to obtain the exchange we only have the susceptibility avail-
able and again we must take recourse to the relation x (0) = Nog?up?/4z|J|.
However, in the present case, also the x,(0) within the easy plane is
considerably lowered as a consequence of the anisotropy. An estimate
of J/k can therefore only be obtained in the following way. From
inspection of fig. 35 (@) it can be inferred that most probably the y,(0)
of the planar model is for S=1 about the same as the value attained at
the rounded maximum. Substituting the latter, after subtraction of the
Van Vleck contribution, in the MF relation for y, (0) and allowing for a
probable reduction of about 209, due to the effects of zero-point spin
deviation, as found in CoCl, . 6H,0, we obtain for the exchangeJ/k ~ 100 K.
Here the g value was taken to be about 6-8, as following from the neutron
diffraction work. Evidently, this result is only a crude estimate. Note,
however, that the J/k value so derived is of the same order as those
obtained for the other two cobalt fluorine compounds in table 5.

The in-plane anisotropy following from the apparent reduction of the
x,(0) in the ‘ easy ’ plane gives «a~0-4. Tt is thus of the same order as
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the out-of-plane anisotropy, which amounts to «~0-8, as may be in-
ferred from the susceptibility and from the ¢ anisotropy, which in view
of the value of g, may be anticipated to be about the same as in the other
cobalt—fluorine complexes.

Having surveyed the strongly anisotropic 2-d magnets, we now proceed
to the examples of the 2-d Heisenberg antiferromagnet, which have been
compiled in table 6. It can be seen that numerous approximations have
already been discovered, many of which have the K,NiF, structure
described in § 2.4. We have mentioned above that in the case of 2-d
antiferromagnets it is all but impossible to obtain quantitative informa-
tion about the interlayer coupling J’. This mainly arises from the fact
that J' is usually so small as compared to J that its effect on the thermo-
dynamic properties cannot be measured quantitatively. Only in
Mn(HCOO), . 2H,0 could an experimental value for J' be deduced (from
heat capacity measurements). For the compounds with the K,NiF, and
the BaNiF, structure we have put |J'/J|=10-%, which is the earlier
mentioned estimate, obtained by considering that the next-nearest
neighbouring layers are decoupled because of the crystal symmetry.
However, deviations from the ideal crystal structure (distortions, lattice
defects, phonon effects) may (partly) invalidate the argument leading to
the cancellation of the coupling between nearest neighbouring planes.
In that case the ratio |J'/J| can be up to two orders of magnitude larger,
as follows by considering, for example, the dipolar interlayer coupling.

DPAN

_ This four-letter word stands for the aromatic free radical (HsCOCgH,),
NO (di-p-anisylnitrosyl). In this compound, studied by Duffy et al.
(1969), the magnetic moments are situated at the sites of the nitrogen
atoms, which have an unpaired electron. The crystal symmetry is
orthorhombic (space group Aba2) and the nitrogen radicals form layers
perpendicular to the b axis, the nearest-interplane-neighbour distance
being about three times larger than the nearest-neighbour distance within
the plane. As mentioned in § 2.2, free radical solids can be considered
to approximate the Heisenberg § =1 model.

The value of the exchange constant was deduced by Duffy ef al. from
various experimental data. The compounds DPAN and CuF,.2H,0
constitute the few examples of the 2-d Heisenberg antiferromagnet that
have transition temperatures low enough to enable a more or less reliable
separation of the magnetic specific heat from the lattice contribution.
The specific heat reported by Duffy et al. is indeed a smooth, non-anomalous
curve, as expected for the isotropic 2-d lattice which ideally cannot sustain
long-range order. At the transition temperature, 7,=2-7 K, as deter-
mined from the discontinuity in 2y/07, there is only a very slight indica-
tion of a heat capacity spike due to interplanar coupling and anisotropy
effects. However, a comparison with the results obtained for CuF, . 2H,0
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and for the ferromagnetic 2-d Cu salt, shows that the near non-existence
of the spike in DPAN does not point to a very small J’ and anisotropy,
but is probably due to a limited experimental resolution or to sample
imperfections. In these other examples the contribution of the deviations
from the ideal model to the heat capacity is clearly resolved from the
rounded maximum, whereas from inspection of the 7'./6 and T [T (C )
values (7(C ;) denotes the temperature of the broad maximum) it
follows that these deviations from ideality must be considerably larger
in DPAN.

Comparing the specific heat at low temperatures with Kubo’s (1952)
spin-wave prediction (C, ~7T?), we found no correlation with theory.
The experimental specific heat lies above Kubo’s curve instead of below,
as would be expected (see CuF, . 2H,0). The apparent fit reported by
Dutfy et al. is erroneous and is due to a misinterpretation of the theoretical
coefficient of the quadratic spin-wave term in the specific heat, as caleu-
lated by Kubo. In conclusion one may state that DPAN unfortunately
turns out to be a rather poor example of 2-d antiferromagnetism.

CuF, . 2H,0

It is a pity that this interesting compound has nearly escaped the
attention of experimenters, since, with its low spin value, it constitutes
an interesting object of inquiry.

As far back as 1961, Shulman and Wyluda observed that the 7',
deduced from their fluorine resonance experiments (10-92 K) did not at
all correlate with the maximum in the (powder) susceptibility that was
found by Bozorth and Nielsen (1958) to be 26 K. The susceptibility
measurements on a single crystal by Tazawa et al. (1965) confirmed these
findings. It seems therefore that CuF, . 2H,0 is the earliest investigated
quasi 2-d isotropic antiferromagnet. We have used both susceptibility
measurements in constructing the curve shown in fig. 28.

Although similar in chemical formula to CuCl, . 2H,0, the fluorine
compound has a monoclinic crystal structure, whereas CuCl, . 2H,0 is
orthorhombic. Accordingly, the two compounds are quite different in
magnetic respect, which is immediately obvious from a comparison of the
specific heats as measured by Clay and Staveley (1966). For a discussion
of the magnetic structures see, e.g., Nagai (1963). CuCl, . 2H,0 consists
of ferromagnetic layers coupled by an antiferromagnetic interaction
along the ¢ axis (Shirane et al. 1965, Poulis and Hardeman 1952), the
latter being probably a bit larger than the ferromagnetic exchange within
the layer, thereby forming antiferromagnetic chains along the ¢ axis.
This results in a slight enhancement of the short-range-order effects in
this otherwise 3-d crystal. On the other hand, the structure of
CuF, . 2H,0 (Geller and Bond 1958, Abrahams and Prince 1962) may be
regarded as consisting of antiferromagnetic layers of CuF,0, groups,
parallel to the (101) plane, the (superexchange) connection between the
planes being made by long Cu-F bonds. There might have been a direct
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exchange along the ¢ axis between Cu ions of neighbouring planes, but the
large Cu—Cu distance of 3-244 A (in Cu metal 2-55 A) and the fact that
along this axis the spins are parallel ordered implies that this interaction
must be very small, since a direct exchange would favour an antiferro-
magnetic orientation.

From the fit of the high-temperature susceptibility (fig. 28) we obtain
J k= —13 K, after correcting for the diamagnetic contribution, estimated
as 0-6x 107 from the known susceptibilities of H,0, CaF, and ZnF,.
Using this J/k value we may derive the anisotropy from the AFMR
frequency at 7’=0 in zero field, measured by Peter and Moriya (1962).
With the aid of the well-known formula Av=gun(2H H , + H 212 (H =0),
it follows from v=9-6x10"° Hz that H, ~1300 Oe (x=3-7x1073).
These authors found the anisotropy to be uniaxial and determined the
direction of the magnetic moments to be about 3-5° away from the ¢ axis.

The specific heat between 1 and 80 K has been measured by Clay and
Staveley (1966). We have attempted to separate the magnetic part from
the lattice contribution in the following way. Using Jjk=—13 K, we
have calculated the magnetic specific heat from the high-temperature
series expansion for the quadratic S=1 lattice (Baker et al. 1967 a, b),
which in this case is reliable down to 7'~ 30 K, Subtracting this magnetic
part from the total measured heat capacity we obtain the lattice contribu-
tion for 77> 30 K. This has been fitted to a Debye function (6 ~ 135 K)

Fig. 36
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Magnetic specific heat of CuF, . 2H,0, as derived from data of Clay and Staveley
(1966). Included are the high-temperature series expansion prediction
and the spin-wave result for a 2-d antiferromagnet with S=4%, both
calculated with J/k= —13 K, which is the value obtained from the fit of
the susceptibility to the high-temperature series expansion, as shown in
fig. 28.
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and thereby a rough estimate of the lattice specific heat over the lower
temperature range is obtained. The resulting magnetic part has been
plotted in fig. 36, together with the series expansion prediction and the
theoretical spin-wave heat capacity, as calculated by Kubo (1952). The
rounded maximum is clearly resolved, although its exact height and
position are still uncertain, due to the large error possibly involved in the
subtraction of the lattice contribution. From the fact that 7', occurs
not very far below T(C,,.,) it can be inferred that the interlayer inter-
action is relatively large (from a comparison with the ferromagnetic Cu
salts discussed below, which have comparable anisotropies, the value
|J'}J| ~1-5x 102 may be deduced). As expected, the experimental
specific heat at low temperatures lies below the spin-wave prediction,
since in this region the energy involved in the 3-d ordering has to be
‘ paid back’. The relatively large value of [J’/J| in this compound
may explain why the experimental value of y,(0)=5-26 x 102 ecm®/mole
is considerably larger (269,) than the spin-wave value, since the presence
of J' will tend to reduce the effects of zero-point spin deviation (which
lower the y (0) with respect to the MF value). However, one cannot
exclude the possibility that, especially for S =1, the spin-wave prediction
may be quantitatively in error in two dimensions (De Jongh 1972 c).

Another interesting experiment performed on this compound is the
study of the temperature dependence of the paramagnetic resonance
line-width by Nagata and Date (1964). A comparison of the behaviour
in MnF, shows the enhancement of short-range order in the lower dimen-
sional compound.

Cu(HCOO), . 4H,0

Two-dimensional magnetism in cupric formate tetrahydrate—not to be
confused with the dihydrate—was first suggested by Martin and Waterman
(1959) from crystallographic consideration. In the monoclinic structure
the Cu?+ ions, linked together by formate groups, form layers that are
separated from one another by layers of water molecules. Their pre-
liminary experiments were soon followed by the susceptibility measure-
ments of Kobayashi and Haseda (1963) and of Flippen and Friedberg
(1963). The susceptibility is characterized by the occurrence of a broad
maximum near 60 K, and a transition to the ordered state at about 17 K,
accompanied by the appearance of a weak ferromagnetic moment. The
latter authors also reported that no pronounced anomaly could be detected
in the specific heat at neither of these temperatures.

Taking the maximum in the susceptibility to be at 65 K in view of the
findings of Seehra (1969), we calculate (table 4) J/k= —34XK. From
Ymax = 30 x 1072 em3/mole (Kobayashi and Haseda 1963) one obtains
with the series result: J/k=—-30K. We have adopted the value
Jjk=—-30K.

The magnetic structure has been investigated by N.M.R. techniques
by Van der Leeden et al. (1967) and by Dupas and Renard (1970 a). The
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latter authors also studied the temperature dependence of the sublattice
magnetization by N.M.R. (Dupas and Renard 1970 b) and performed an
accurate determination of T, (=16-57 K). The value found for the
critical index for the magnetization was 8=0-32. Of great interest is
the large spin reduction of 479, derived by them by comparing observed
and calculated values of the proton frequencies, a reduction that is of the
same order as the theoretical value of 369,. The difference may be
attributed to the crudeness of the dipole model used in calculating the
frequencies.

The same authors also derived a value for the anisotropy by fitting the
magnetization at low temperature to the calculations of Lines (1970).
Combining their result with those of Seehra and Castner (1970) we obtain
the estimate x=1x 1073,

The value for |J'/J]| in table 6 has been estimated by Kobayashi and
Haseda (1963) in view of the different exchange paths. A similar result
has recently been obtained by Ajiro and Terata (1970).

Apart from susceptibility measurements (Flippen and Friedberg 1963),
the dihydrate has until now not been studied. It will most likely have
the Mn(COOH), . 2H,0 structure and thus will exhibit 2-d properties too.
From the low 6 value (2 K) one expects the maxima in y and C, to
occur at a much lower temperature (7' < 4-2 K) than in the tetrahydrate.

BaNiF,

This compound has essentially the BaMnTF, structure already described
under BaFeF,. Neutron diffraction and susceptibility experiments have
been performed by Cox et al. (1970). The magnetic moment was found
to be 20 up per Niion. Although this is fairly low considering that the
g values in Ni salts are usually about 2-25, the experimental error of
0-2 up prevents a definite conclusion regarding the spin reduction (which
would be 0-14 uy theoretically) to be drawn. From the fit of the high-
temperature susceptibility, shown in fig. 28, the value J/k= —32 K is
derived. Here we have corrected for a diamagnetic contribution
Xaia= — 01 x 1073 cm3/mole, which, following Breed (1967), has been
estimated from the known susceptibilities of BakF,, Calf, and ZnF,.
Inspection of the y, curve shows that 7,=70+5 K. An estimate for «
has been obtained by comparing the y, curve with spin-wave theory,
using J/k= —32 K. As shown in fig. 28 (see also §4.2), the value of
x.(0) attained at 7 = 0 is in good agreement with the spin-wave prediction.

Rb,NiF, and TLNiF,

These compounds are both isomorphous with K,NiF,. We have re-
interpreted the susceptibility and spin-flop measurements of Matsuura
et al. (1970 b) on Rb,NiF,. From 7(x,max) =210 K we calculate
Jlk=—47K. After subtraction of the Van Vleck contribution, y,(0)
is obtained as 2:1 x 10-3 cm3/mole. In the same way as above we have
estimated the diamagnetic susceptibility x4i,= —0-1x 10~% cm?/mole
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from the known susceptibilities of RbF, CaF, and ZnF, With
a=95x10"3, AS(a)=0-16 and e(x) =0-632 (cf. eqn. (3.6)) it follows that
Jlk=—42 K. From the value y;,;= —2-5x10-2 cm?/mole at T(x, yax)
we also obtain J/k= —42 K (with g=2-27). Since the first result is the
most uncertain we adhere to the value of the latter two, Jj/k= —42 K, and
from the spin-flop field at 7'=4-2 K of 350 kOe we subsequently calculate
H, [Hg>~1x1072,

The transition temperature has been located by Maarschall et al.
(1969) at 90-4 K. This has been checked by additional susceptibility
measurements in the region 80< 7 <120 K (De Jongh, unpublished) in
which the maximum in 9x/07" was found to occur at 7'~ 92 K, so that
we have listed 7',=91 K in table 6.

Maarschall et al. (1969) also obtained 7',=100-8 K for TI,NiF,.
Susceptibility measurements on their (powdered) sample (De Jongh,
unpublished) confirm this value. The maximum in y, was found at
220 K, giving J/k= —50K. From yx,..=2-31x 103 cm3/mole, likewise
corrected for y,;,= —0-12x 10~ 3em3/mole, we obtain J/k= —41K.
The difference in both values is explained by the fact that there was an
impurity present in the sample. ~Although its contribution to the suscepti-
bility was only substantial at temperatures considerably lower than
T(xymax)> it will nevertheless heighten the value of y,.. by a small
amount, thereby lowering the J/k value derived from it. With an eye on
the corresponding results for Rb,NiF, we have listed the value J k= — 45 K
in table 6. For H < 400 kOe no spin-flopping could be observed, implying
that H,/Hg>14x 1072  This is in accordance with the kT',/|J| value,
which is considerably higher than that of Rb,NiF,. A value of « from
the x, curve could not be derived, there being only a powder specimen
available.

K,NiF,

The compound K,NiF, is certainly the most extensively investigated
2-d antiferromagnet. A short historical survey therefore seems appropriate.

The first clue to the 2-d properties was given in the neutron investiga-
tion by Legrand and Plumier (1962 a, b), who pointed out that in the
antiferromagnetic state the exchange and the dipolar interaction between
neighbouring Ni** sheets will cancel. They observed antiferromagnetic
correlations below a temperature 7'~ 180 K. The subsequent suscepti-
bility measurements of Srivastava (1963) showed the familiar 2-d y curve,
with the characteristic maximum at a temperature about twice as high
as that at which the y becomes anisotropic (~ 100 K).

In 1967 Lines collected and discussed the various pieces of information
then available and showed that the presence of a broad maximum in the
paramagnetic susceptibility indeed emerges from series expansion calcula-
tions. He also explained that the transition temperature 7', could very
well occur far below this maximum, thus reconciling the neutron and the
susceptibility results.
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Maarschall et al. (1969) re-measured the susceptibility and were able
to locate the transition temperature 7', by studying the temperature
dependence of the fluorine resonance linewidth, thereby proving that 7',
indeed coincides with the temperature at which the derivative of the yx,
curve reaches its maximum, instead of with that of the susceptibility
maximum.

At about the same time Birgeneau ef al. (1969) bad performed their
first neutron experiments, showing the magnetic scattering above T, to
be of 2-d nature. The important work of this group will be discussed
further in the next section. Below 7', long-range 3-d ordering was found
to set in. They also studied the temperature dependence of the sub-
lattice magnetization, obtaining B=0-15 (compare with the 2-d Ising
value B=0-125 1) and T,=97-1 K. Short-range-order effects were found
to persist up to 7=27T,. The magnetization curve in the critical region
is displayed in fig. 47. In subsequent papers of this group of workers,
neutron diffraction techniques were used to their full extent to derive as
much information as possible (Birgeneau et al. 1970 b). Skalyo et gl.
(1969 a) measured the spin-wave dispersion curve shown in fig. 37. The
lack of dispersion found in the direction perpendicular to the layers in
reciprocal space (crosses in fig. 37), implies that |J'/J|<3-7x 1073, the
limit being set by the experimental resolution. Furthermore, the
temperature dependence of the dispersion revealed the important fact
that renormalization effects do not come into play up to 7'~1-1 T, quite
different from the behaviour in 3-d antiferromagnets where they are
usually already seen at T~0-37, (cf. §4.2). In subsequent work
(Birgeneau et al. 1970 b) the magnetization measurements were refined,
yielding B=0-138+0-004 and B=0-973 in the temperature region
3x104<1—T|T,<0-2, with T,=97-23 K (see fig. 47). The low value
of B is certainly very near to the 2-d Ising value $=0-125 (see discussion
in § 3.2.3). Contrastingly, the critical exponents y and » of the staggered
susceptibility and the correlation length, respectively, appear to have
classical rather than 2-d values (Birgeneau ef al. 1971 b). We will return
to this matter in § 4.4.

Values for the intralayer exchange constant are available from various
experiments. From the magnon dispersion curve, Skalyo ef al. (1969 a)
obtained J/k=—56 K at 42 K. From Raman scattering experiments
Chinn et al. (1971) have deduced J/k= —55-5K. Yamaguchi and
Sakamoto (1969) found J/k= —60+5K from measurements of the
susceptibility of Ni-doped K,MgF,. These authors also determined the
next-nearest neighbour interaction within the plane to be Jy/k~ —0-5 K
(o Ty ~1072).  From T'(xpay) =230 K (Maarschall e ol. 1969, Matsuura
et al. 1970 b) it follows that J/k= — 52 K with table 4. Values for x,(0)
have been measured by Srivastava (1963), Maarschall ef al. (1969) and
Matsuura et al. (1970 b), who obtained 8:35 x 1076, 9-3 x 10~% and 9-8 x 10~¢
cm3/g, respectively. Also in case of the value xp,y attained at 7',
there is a similar disagreement since Srivastava reported a value of
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E (meV)

Spin-wave dispersion curve of K,NiF,, measured with neutron diffraction by
Skalyo ef al. (1969 a). The 2-d character follows from the apparent lack
of dispersion in the direction in reciprocal space perpendicular to the
magnetic layers (dashed curves). The energy gap found for zero wave-
vector { reflects the small anisotropy present in this compound.

10-1 x 1078, whereas Maarschall et al. give 10-6 and Matsuura et al.
10-8x 107¢. Legrand and Van den Bosch (1969) have published
10-1x 1075, in agreement with Srivastava. Since these differences may
be due to various sources such as impurity contributions, misorientation,
or experimental uncertainties arising from the fact that the susceptibility
is very small, we took mean values, corrected for an estimated diamagnetic
contribution of 0-4x10-%cm3/g and a Van Vleck contribution of
1-0x 10-% cm3/g. The latter has been deduced from y,(0) and assumed
to be the same for y,(0) and for y,(max). In this way we obtain
¥, (max)=9-8x 107% and yx,(0)=8-6 x 10-¢ cm3/g, yielding (with g=2-27)
J/k=—48 K and —49 K, respectively, in the latter case assuming a
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spin reduction AS(a)=0-18 and taking e(x)=e(0)=0-632. The best fit
of the high-temperature susceptibility data shown in fig. 28 was obtained
with J/k=—49 K and g=2-27. We note that in an earlier calculation
(De Jongh et al. 1972 a) J k= — 57 K was deduced from the y,(0) obtained
by Matsuura ef al. This originates from the fact that no correction for
Xaia Was made and the e(«) term was not accounted for. In summing up
we may say that the susceptibility data yield J/k= —49 K. The apparent
large difference with the other determinations, e.g. from the spin-wave
dispersion curve, can be removed since Skalyo et al. did not take into
account renormalization effects in their calculation. Using a renormalized
spin-wave theory, De Wijn et al. (1973 b) obtained J/k= —51 + 0-4 K.
We conclude therefore that the value of —50 K will be trustworthy
within about 3%, over the temperature range 1-300 K.

The anisotropy has been obtained by Birgeneau et al. (1970 a) from
AFMR experiments and by Matsuura et al. (1970 b) and Yamazaki el al.
(1972) from the value of the spin-flop field. All results agree to
a=2-0x 1073, A comparison with the dipolar anisotropy, which yields
a=48x10"% only (Colpa, private communication), shows that the
observed anisotropy must for the most part be attributed to the single-
ion mechanism.

Values for the spin reduction can be deduced from y,(0) as well as from
measurements of the sublattice magnetization by neutron (Birgeneau
et al. 1970 a) and magnetic resonance techniques (De Wijn et al. 1973 b).
Birgeneau et al. found a 15+ 5%, reduction of the magnetic moment
(including the effects of covalency), De Wijn et al. found a reduction of
20 + 39%,. Furthermore, an upper limit for |J'/J| was estimated from the
resonance study, viz. |J'/J|<2x 104 This is in accordance with the
already mentioned estimate of about 1078, following from a comparison
of the intra and interlayer superexchange paths. The interlayer
dipolar coupling has been calculated by Colpa (private communication) to
be a mere 6:8 x 10~ of the intralayer exchange.

Lastly we mention a specific heat measurement of Salamon and Hatta
(1971), who detected a small anomaly at 98-7 K, which result is inter-
mediate between the 7' ,=97-23 of Birgeneau ef al. (1970 b) and 7' =
100:5 K reported by Maarschall et al. (1969). These small differences are
not so surprising and may, for instance, be due to calibrational errors or
small chemical impurities, as can be understood by realizing that replace-
ment of Ni by other elements results in widely different 7' ’s.

Ni(HCOO), . 2H,0

This Ni salt has the manganese formate structure already discussed
above. As in the case of Co and Mn formate, the specific heat shows a
Schottky anomaly at low temperature, ascribed to the gradual ordering
of the paramagnetic B sheets, and a broad maximum at more elevated
temperatures due to the antiferromagnetic ordering within the A sheets.
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The heat capacity has been measured by Pierce and Friedberg (1971)
and Takeda and Kawasaki (1971). Also in this case the experimental
resolution has most probably not been sufficient to resolve the peak due
to the 3-d ordering from the broad maximum.

The transition temperature, as determined from the susceptibility
experiment of Hoy ef al. (1965) is T ,=15-6 K. Unfortunately these
measurements did not extend to high enough temperatures to detect the
high-temperature maximum (which should oceur at 40-50 K) predicted
by the series expansions and as observed in Mn formate. As a consequence
we do not have experimental information from which an estimate of J/k
can be made. In view of the results for the other Ni salts listed in table 6,
we may however, expect |J|/k to be in the range 6-5-7-5 K.

Obviously, a value for H ,/Hy is also not available at present. We have
classified the compound as being of the Heisenberg type in view of the
small anisotropies found in the other Ni®t salts.

Ca,MnO,

This is another compound with the K,NiF, structure. From the
susceptibility measurements of Davis (see MacChesney ef al. 1967),
one finds y,a.=276x10-3 em?3/g and T'(xp.y) ~ 220 K, giving (table 4)
Jk= —28-6 and J [k= — 27-9 K, respectively, accounting for an estimated
diamagnetic contribution of 0-07x 1072 cm®/g. For reasons already
explained we take the former value. Also T,=114 K was found in this
work. Unfortunately there is no experimental result for the anisotropy.
Neutron diffraction studies (Cox et al. 1969, Ollivier and Buisson 1971)
revealed a magnetic unit cell that is doubled in the ¢ direction as compared
to that of K,NiF,. The 2-d character was found to be not as pronounced
as in the case of K,NiF, (e.g. ~0-3). The value of the magnetic moment
was 2:0 + 0-3 up, much lower than the expected 3 uy, even after correcting
this for the spin reduction of 0-4 uy from zero-point spin deviations.
Covalency effects may play a role. Another explanation suggested is the
fact that the model of localized electron spins may be not wholly appro-
priate for this material.

RbFekF,, CsFeF, and KFeF,

Although also orthorhombic, the crystal structure of these compounds
differs considerably from that of BaNiF,. Also in this case the layers
are puckered, but it is not the 2-d magnetic lattice built up by the Fe3+
ions that is rumpled, the washboard effect being caused by the tipping out
of the layers of the F—Fe-F bonds (Heger et al. 1971). The sheets of
FeF, octahedra are separated by layers of Rb* ions. Of importance is
the fact that the symmetry argument leading to the cancellation of the
interactions between nearest neighbouring layers in the K NiF, structure
is also valid for the KFeF, structure, but not so for RbFeF, and CsFeF,,

as can be derived from the magnetic structure proposed by Eibschiitz
AP, G
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el al. (1972 a) on the basis of their neutron diffraction measurements.
Estimates of the superexchange interaction between the layers yield
|J'/J| ~10-* and 10-2-10-2 for the KFeF, and for the RbFeF, structure,
respectively.

Magnetic susceptibility, Mossbauer effect and neutron diffraction
experiments on RbFeF, have been performed by Eibschiitz et al. (1971,
1972 a). With the aid of table 4 we caleulate J/k=—12:0 K from
T(xmax)=215+10 K. The transition temperature indicated by 0x/oT
was T,=133+2K. From the value x,p..=671x 1078 cm3/mole and
x.(0)=17-25x 10~3 em3/mole, allowing for y4;,= —0-66 x 1073 cm3/mole,
AS(x)=0-16, () = 0632, we calculate J/k= —12-2K and J/k= —-11-7T K.
Consequently we take J/k to be about —12 K. An estimate for the aniso-
tropy was obtained by Eibschiitz ef al. (1971) by fitting the magnetization
curve at low temperatures to spin-wave theory, thereby deriving an
energy gap of 30+ 5 K. A 169, lower result was obtained by De Rosa
(private communication to Eibschiitz et al.) from AFMR, which yields the
« value listed in table 6. Near to 7', (0-40<T/T,< 0-99) the magnetiza-
tion was found to follow a power law with 8= 0-245 + 0-005.

Similar results were obtained from the Mossbauer study of KFel,
(Eibschiitz ef al. 1972a). For 072< T[T, <099 they found p=
0-185+0-005. These B values are discussed in §3.2.3. For 7', the
authors obtained 137-2+0-1 K, in good agreement with the value
T.=137+1 K derived by Heger et al. (1971) from Mossbauer and neutron
studiest.

Heger et al. also measured the susceptibility of a powdered sample of
KFeF,. Unfortunately there was a contribution from impurities at
T<T, so that we only have the high-temperature y from which to
obtain J/k. The temperature 7T(xpn..)=222K yields J/k=—12-4 K.
From the value y,,..=6'68x10"%cm®mole, corrected for xgq;,=
—0:06 x 1073 ecm?®/mole, J/k=—12-3K {follows. The latter result has
been listed in table 6. We note that this J/k value may be a little too
small due to the impurity contribution that will increase the susceptibility
of the maximum by a small amount. Also for this compound Eibschiitz
obtained an energy gap of 30 + 6 K from the fit of the magnetization to
spin-wave theory. In view of the just mentioned findings of De Rosa, we
conclude that KFeF, most probably has about the same anisotropy value
as RbFel,.

In the case of CsFeF, we derive the exchange from the susceptibility
measurements of Eibschiitz et al. (1972 a). The temperature of the
susceptibility maximum 7(y;..)=235K gives J/k=-13-1K. From
the value yx,..=5"75x1073 cm?mole at the maximum, and from
x,(0)=6+0 x 10~ em3/mole, both corrected for a diamagnetic contribu-
tion yg5, = —0:06 x 10~3 cm3/mole, the values Jjk= —14-2 K and J/k=

+ Heger and Geller (1972) have subsequently reported the considerably
higher transition temperature 7',=148 K.
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—14-1 K are derived, respectively (taking AS(x)=0-16). We conclude to
J/k= —14-2 in view of the large uncertainties involved in the first de-
termination. An estimate of the anisotropy may be obtained by com-
paring the x, curves of CsIeF, and RbFeF, on a relative temperature
scale, from which it is concluded that « must be about the same.

Rb,MnF, and K,MnF,

These fluorine compounds are also amongst the most extensively
investigated members of the K,NiF, family. The earliest inquiries were
susceptibility and spin-flop experiments by Breed (1966, 1967, 1969),
from which the 2-d character was established and a determination of the
anisotropy could be made. Neutron diffraction investigations were
subsequently carried out by Loopstra ef al. (1968) and by Birgeneau ef al.
(1970 b). The latter authors found the Rb,MnF, crystals to consist of
two phases, one with the K,NiF, and the other with the Ca,MnO, struc-
ture, both phases occurring even in the same single crystal. This is an
important discovery, for the following reason. The fact that the phases
with a ferromagnetic and an antiferromagnetic alignment along the ¢ axis
are both observed in the same sample may be interpreted in the sense
that there exists a subtle balance between the different kinds of coupling
between the (next-nearest) layers, as there are the dipolar and the super-
exchahge interaction. Which of the two phases will occur in a particular
part of the crystal would then be determined by lattice imperfections.
Since the dipolar interlayer coupling favours a ferromagnetic alignment
along the ¢ axis, the superexchange part would tend to establish the
antiferromagnetic alignment.

The importance of this intuitive picture is that it implies that the two
different kinds of interlayer coupling must be about equal in magnitude.
Since the dipolar part can be evaluated numerically, we obtain in this way
an indication as to the quantitative value of the interlayer interaction.
Calculations of the dipolar interlayer coupling by Colpa (private com-
munication) yield [J'/J|=5'8x10-8 and 8:2x 108 for Rb,MnF,, re-
spectively, indicating that the estimate |J'/J|~10-¢ (at highest) for the
compounds of the K,NiF, structure may indeed be correct.

The temperature dependence of the sublattice magnetization, in parti-
cular in the critical region, has been studied with neutron diffraction by
Birgeneau et al. (1970 b) and by Ikeda and Hirakawa (1972) for Rb,MnF,
and K,MnF,, respectively. The former authors derived 8=0-18 and
B=1-02 for both phases of Rb,MnF, from measurements in the region
1-T|T,>3x1073 Ttisa pity that their work does not extend nearer to
T .because justat 1 — 7'/7T ,~ 4 x 10~3, Tkeda and Hirakawa (1972) observed
a change-over of the 8 value of K,MnF, from $=0-188 (1 —7T/T,< 4 x 1073)
to a 3-d value (in the range 2-5x107*<1-7/T,<4x1073%). Both
measurements have been reproduced in fig. 47 and will be discussed

G2
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in §3.2.3. We remark that the magnetization curve of K,MnF, just
mentioned applies to a phase with the magnetic K,NiF, structure. Ikeda
and Hirakawa also reported the existence of a second magnetic phase
with a different 7', in their crystals, which they identified as a K,MnF,
phase having the magnetic Ca,MnO, structure. We have strong reasons
to doubt this identification, since in Rb,MnF,, Rb,MnCl, and Cs,MnCl,
(see below), these two phases were reported to have the same transition
temperature within the experimental resolution. This is what one would
anticipate, since 7', is to a very high degree only determined by the
exchange within the layer (see discussion in § 3.2.3), which is not expected
to be different for both phases. On the other hand, Tkeda and Hirakawa
report T,=42-37 K and 7',=58-0 K for K,MnF, of the K,NiF, and the
Ca,MnO, magnetic phase, respectively. An explanation would be the
presence of an impurity in their crystals. For instance, the fact that
CUs,MnCl, and Rb,MnCl, both have T ,~55K (see below) is very sug-
gestivet.

In the lower temperature region the sublattice magnetization has been
accurately measured by N.M.R. techniques (de Wijn et al. 1971, 1973 b).
The excellent fit of the data on K,MnF, and K,NiF, to spin-wave theory
up to 7'~0-5 T, is shown in fig. 38. Furthermore, various authors have
reported on the observation of the effects of zero-point spin deviations in
these compounds (Breed 1967, Loopstra et al. 1968, De Wijn ef al. 1971,
Colpa et al. 1971, Schrama 1972, De Jongh 1972 b, ¢). We will collect and
discuss these findings in § 4.2 and as a last reference mention the study of
the fluorine N.M.R. linewidth in K,MnF, by Maarschall (1970) and Bueci
and Guidi (1970, 1974).

Values for the exchange constants may be obtained from various sources.
From the fit of the high-temperature susceptibilities, shown in fig. 28,
Jk=—-3176K and —4-20 K are obtained for Rb,MnF, and K,MnF,,
respectively. The low-temperature determinations are in fair agreement
with these values, since Breed (1969) finds —3-65 K and —4-20 K from
the fit of the y, curve to spin-wave theory, while De Wijn el al. (1973 b)
obtain —3:69 + 0-045 and —4-205 + 0-03 K from the spin-wave analysis
of the sublattice magnetization. We thus conclude to J/k= —3-73 K and
—4-20 K, with no temperature dependence of the exchange for 7' < 100 K.
The experimental values of x,(0) are moreover in good agreement with
the spin-wave prediction (fig. 28), calculated with these exchange constants
and the measured anisotropy parameters. From the spin-flop fields

+ Our conclusions are corroborated by the recent neutron diffraction study
on K,MnF, by Birgeneau et al. (1973), who find no evidence for the second
phase reported by Ikeda and Hirakawa. They obtain 7',=42:14 K, and
further J/k=—4-23+0-05K from the dispersion curve. Moreover, their
magnetization curve differs considerably from that of ITkeda and Hirakawa
in that the magnetization is higher over most of the critical region, and that no
kink is found down to a temperature of 1 —-7/1",=6x10-%. For the f they
report B=0-15 £ 0-01 for 6 x 102<1 -1 /T <0-3. See also § 3.2.3.
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Fig. 38
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Temperature dependence of the sublattice magnetization in K,MnF, and
K,NiF, as determined from the N.M.R. frequency of the fluorine nuclei
by De Wijn et al. (1971). The circles are the measuring points, the
solid curves have been calculated from spin-wave theory for a 2-d
Heisenberg antiferromagnet with a small anisotropy.

(Breed 1967) Hyp =551 +1-0 and 50-8 + 1-3 kOe (at 7'=4-2 K) one calcu-
lates o =3-8 x 1073 and 4:0 x 10-3 for K,MnF, and Rb,MnF,, respectively.
We may compare these anisotropy values with the dipolar anisofropies,
that yield «=4-06x10-3 and 4-44x 10-3 for K,MnF, and Rb,MnF,,
respectively, in which calculation the effect of spin reduction has been
included (Colpa, private communication). De Wijn et al. (1973 a) deter-
mined the spin-wave energy gaps at T'=0 K from AFMR measurements
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to be 740 + 0:05 K and 7-28 + 0-05 K for K,MnF, and Rb,MnF, respec-
tively, which yield «=3-9 x 10-3 and 4-7 x 10~ for the potassium and the
rubidium salt, respectively. Since the AFMR results are the most
accurate, we have entered these in table 6. The listed values of T,
follow from the work of Breed et al. (1969), Birgeneau et al. (1970 b, 1973)
and Tkeda and Hirakawa (1972).

Mn(HCOO), . 2H,0

Numerous experiments have been performed on this example of the
2-d Heisenberg antiferromagnet with S=35. Of great advantage is its
low T, value, which enables a reliable determination of the magnetic
specific heat since the lattice contribution can be obtained with reasonable
accuracy. As described above under the isomorphous Co salt, its
magnetic structure consists of antiferromagnetic A sheets separated by
paramagnetic B sheets. In some way this situation resembles that found
in §3.1.2 for the linear chain compound CuSO,.5H,0. Evidence for
the peculiar magnetic structure can be found from various sources, for
instance, the proton N.M.R. experiments of Abe and Matsuura (1964)
and the susceptibility measurements of Abe and Torii (1965) and inde-
pendently of Cohen et al. (1964). Apart from crystallographic considera-
tions, strong support was also obtained from the heat capacity data of
Pierce and Friedberg (1968), who found that even down to 77'~05 T,
only about one-half of the expected entropy RIn (28+1) was removed
from the system. In this paper a MF calculation, based upon the above
sketched division in differently behaving A and B sheets, was carried
out and found to be consistent with the experimentally observed behaviour.

The overall magnetic properties are best described by considering the
specific heat behaviour (fig. 39). At 7',~3-7 K there occurs a transition
to long-range antiferromagnetic order within the A sheets. The spike
reflecting this cooperative phenomenon is superimposed on a broad
anomaly, which is once more attributed to the short-range-order processes
that are inherent on the ideal 2-d Heisenberg system. The fact that 7',
lies nearly on top of this maximum, whereas for the 2-d copper compounds
with S=1% (see below) 1',~0-5 T(C %), is partly explained by the high
spin value of §. The transition at 3-7 K is accompanied by the appearance
of a weak ferromagnetic moment, directed along the ¢ axis of the mono-
clinic structure (a,=8-86 A, b,=7-29 A, ¢,=960A; B=97-7°). The
extremely sharp peak observed at 7' ~0-46 7', is associated with a spon-
taneous reorientation of the antiferromagnetic axis (first-order transition).
Accordingly, below this temperature the direction of the weak ferro-
magnetic moment is found to be parallel to the b axis. Evidence for the
weak ferromagnetic behaviour has been brought forward by Yamagata
(1967) from torque measurements, by Matsuura ef al. (1969) and Ajiro
(1969) from susceptibility experiments (see also ﬁryu 1965), and by
Bertaut ef al. (1969) who studied the magnetic structure as a function of
temperature with neutron diffraction.
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Fig. 39
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Specific heat of Mn(HCOO), . 2H,0 versus the relative temperature T|T,.
The measuring points have been taken by Pierce and Friedberg (1968)
and by Matsuura et al. (1970 a). The heat capacity of Co(HCOO), . 2H,0

is included for comparison.

The third maximum observed in fig. 39 at 7'~0-2 K represents the
contribution of the paramagnetic B sheets (evidence for the hyperfine
contribution has also been found at still lower temperatures). Below
T, the Mn2+ ions in the B sheets are gradually ordered as a consequence
of the effective field exerted on them by the antiferromagnetically ordered
spins in the A sheets (Pierce and Friedberg 1968, Burlet ef al. 1969,
Matsuura ef al. 1970 a), resulting in a broad Schottky-type maximum.

The susceptibility (Matsuura et al. 1969) appears roughly as a para-
magnetic curve, due to the contribution of the B spins, with super-
imposed on it two sharp peaks, one at 7', the other at T=1-72K
(=046 T,), both reflecting the weak ferromagnetic behaviour. Un-
fortunately, measurements in the region 7'>4-2 K are not available so
that the positions of the maximum associated with the shortrange 2-d
interactions has not been located. With the aid of table 4 and the J/k
value to be derived below, this maximum may be expected to be found
at about 6-5 K.

In order to obtain J/k one must therefore resort to the caloric data.
From the heat capacity in the higher temperature region, Pierce and
Friedberg (1968) found the intralayer exchange within the A sheets to
be J/k=—0-37 K. By analysing the Schottky anomaly at 0-2 K,
Matsuura et al. (1970 a) and Takeda ef al. (1971 a) were able to estimate the
interlayer couplings, obtaining 7x 10-2J for the coupling between A
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and B sheets and 3x10-2J for the interaction between the A sheets.
The latter value is listed in table 6 as representing ‘the’ interlayer
coupling.

As regards the value of the anisotropy a definite conclusion cannot be
drawn, due to the fact that various mechanisms contribute to it and
experimental determinations are still lacking. The dipolar anisotropy
is of the order of 1 x 10-3 of the exchange, but, as pointed out by Bertaut
et al. (1969), it cannot be the only source since for 1-7 < T < 3-7 the spins
are within the magnetic layer, an orientation that is not favoured by the
dipolar anisotropy in case of an antiferromagnetic intralayer exchange.
From the study of the weak ferromagnetic behaviour it transpires that
the anisotropic part of the exchange interaction is less than 19, of the
isotropic part. As a third factor we have to consider the single-ion
anisotropy. Although this quantity is small for Mn?* ions it may not
be neglected because of the small value of the exchange. According to
the E.S.R. experiments of Morigaki and Abe (1967), the single-ion aniso-
tropy is about 0-04 K, giving o ~3x 1072,

Comparing the 7.6 value of Mn(HCOO), . H,0 with other §=3§
examples of table 6 of which an « value is known, one would conclude
to a value of about 1 x 10-3.  This value is in accord with what one may
derive from the magnetic phase diagram (Ajiro 1969, Schutter et al. 1972).
If the lowest transition observed with the field parallel to the b axis is
indeed due to spin-flopping, one may obtain H, ~2-5x 103 from the
value of the spin-flop field Hgqp~4kOe. This would imply that the
different sources of anisotropy somehow cancel one another. Since we
have seen that the spin direction does not correlate with the dipolar
anisotropy, this does not seem to be an unreasonable assumption. We
might add that also in the case of the other Mn salts, the measured
anisotropy is often lower than the calculated dipolar value.

Lastly, we point to the neutron scattering study of Skalyo ef al. (1969 b),
which provides proof of the 2-d character of the substance, since up to
T =2T, the existence of 2-d magnetic correlations could be established.
These authors also studied the temperature dependence of the magnetic
moments on the A and B sheets. For the critical index S of the sub-
lattice magnetization of the A sheets they found f=0-23 +0-01 in the
range 5-5x 102<1—-T/T < 0-55. In asubsequent proton N.M.R. study,
Ajiro et al. (1970) obtained the slightly different result g=0-22 + 0-02 for
1-6x102<1-T|T <0-47. We will come back to these § values in
§3.2.3.

Rb,MnCl, and Cs,MnCl,

The magnetic structure of these chlorine compounds has recently been
investigated by Epstein ef al. (1970) and Gurewitz ef al. (1970) with neutron
diffraction. They found it to be of the K,NiF, type when the crystals
were prepared from molten salts. On the other hand crystals of Rb,MnCl,
prepared from aqueous solutions were shown to possess the magnetic
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Ca,MnO, structure. In this case the two phases do not co-exist in the
same sample, as in Rb,MnF,. Instead the authors observed that after
annealing the crystals prepared from aqueous solutions possess the
K,NiF, structure too, which seems therefore to be the most stable phase.
The transition temperature was found to be the same for both phases,
being 7', =57 K and 52 K for the Rb and the Cs salt, respectively. Spin
correlations within the magnetic layers were observed to persist up to
200 K.

Magnetic measurements on Rb,MnCl, have been carried out by De
Jongh (unpublished). From susceptibility and spin-flop experiments,
the values J/k=—-62K, T,=565+15K and a=H,/Hy~1-5x1073
could be derived, the latter being equal to the calculated dipolar anisotropy
within the experimental error (Colpa, private communication).

(C,H,,,,NH;),MnCl, (n=1, 2,3, ...)

As pointed out by Van Amstel and De Jongh (1972), the face-centred
tetragonal structure of these compounds offers the possibility of finding
the ‘ best * 2-d antiferromagnets, in the sense that it allows in principle for
the smallest |J'/J| values that can possibly be reached. This arises from
the fact that in this structure the symmetry argument leading to the absence
of an interaction between neighbouring layers, that provides for the 2-d
properties in the K,NiF, structure, is combined with the mechanism of
separating the layers by increasing %, which leads to the pronounced 2-d
character of the Cu compounds (C,H,, ,NH,;),CuCl, (see §2.4). For
instance, the dipolar interlayer coupling in (C,H,, ,NH;),MnCl, has
been calculated by Colpa to be 2:5x10~% 2:2x 1071 and 1-3x 10-1
of the exchange, for n=1, 2, 3, respectively (using the .J/k value for the
methyl compound derived below). The superexchange interlayer
coupling is even for the n =1 compound estimated to be a mere 1071 of J,
since it has to occur via two (CH,NH;) groups and two Cl anions. The
lower bound to |J’/J| will in this case no doubt be set by lattice imperfec-
tions or the presence of phonons, as has been pointed out above. We have
tentatively entered the value 102 in table 6. Since the crystal structure
allows for the replacement of Mn by other metal ions, for instance the
isomorphous Fe compounds {(n=1, 2, 3) have been found to be also
tetragonal (Mostafa and Willett 1971), it certainly offers many pos-
sibilities.

The temperature dependence of the E.S.R. linewidth in methyl and
ethyl ammonium manganese chloride has been studied by Boesch et al.
(1971). Indications were found that the position of the transition
temperatures will probably be near 50 K. This was corroborated by the
susceptibility measurements of Van Amstel and De Jongh (1972) on
(CH,NH,),MnCl,, who obtained 7',=47+3 K. The exchange constant
was determined as J/k= —5:0+ 0-2 K, while the anisotropy derived from
the value of the spin-flop field was a=1-1x 1073,
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The transition temperatures of the Fe salts were found at 96 K and
90 K for n=1 and 2, respectively (Mostafa and Willett 1971). A sharp
peak at T, was observed in the (otherwise) antiferromagnetic suscepti-
bility of the methyl compound. This will likely be due to the presence
of a weak ferromagnetic moment. It would be interesting to analyse
this susceptibility divergence in view of the large value of the suscepti-
bility exponent y that is expected for 2-d lattices (y=1-75-2-0). These
compounds have not been included in table 6, due to the limited amount
of information known to date.

BaMnF,

This manganese compound distinguishes itself by its very low value
for the anisotropy parameter «, in spite of its rather low J |k (see table 6).
Once more we may derive the exchange from the susceptibility curve,
which has in this case been measured by Holmes ef al. (1969). From the
fit of the high-temperature susceptibility shown in fig. 28 we obtained
Jjk=—2-712K. The value following from y,(0)=3-0x 1072 cm?®/mole is
in fair agreement, since taking AS(x)=0-19 and e(a)=e(0)=0-632 and
allowing for y,;,= —0-1x 1073 cm3/'mole, one derives Jjk=—2-78 K.
We conclude therefore to J/k= —2-75 K, with no apparent temperature
dependence below T'=100 K. The anisotropy follows from the spin-flop
field via the formula Hgp?=2H Hg(1—y,/x. )" With Hgp=10-4 kOe
and y,/x,.=0047 (Holmes et al. 1969) this yields «=3-1x10"4 The
transition temperature 7 ,~24-25 K is indicated by the observed be-
haviour of the AFMR (T < T.) and E.S.R. (T>7T,) modes, and by the
parallel susceptibility curve.

MnTiO,

Manganese titanate is the only example in table 6 of a 2-d antiferro-
magnet in which the 2-d network is not quadratic. The compound has
the hexagonal ilmenite (FeTiQy) structure and consists of magnetic Mn?*
layers, separated from each other by two oxygen and one Ti sheets. In
the hexagonal layers, the Mn2?t jons have three nearest neighbours
(honeycomb lattice). Susceptibility experiments on powdered specimens
have been performed by Heller (1964) and Sawaoka et al. (1966), whereas
Akimitsu ef al. (1970) have studied a single crystal. The susceptibility
shows the usual characteristics, with a broad maximum at about 100 K,
whereas the values of T, reported from various experiments lie in the
range 60—65 K.

The early neutron diffraction investigation of Shirane et al. (1959)
confirmed the antiferromagnetic structure within the layer. In later
work, Akimitsu ef al. (1970) observed the typical 2-d correlations, thereby
confirming the 2-d character of the salt.

To derive a value of J/k is not so easy because of the limited amount of
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information available. In the high-temperature region we may use the
series expansion of the susceptibility of the honeycomb lattice with
§=14§, of which six terms have been obtained by Rushbrooke and Wood
(1958). We have analysed this expansion in the same way as for the
quadratic lattice. The susceptibility calculated from six terms exhibits
a maximum at about ¥7'/|J[S(S+1)~1-5, but this number is uncertain,
due to the limited number of terms. For instance, with five terms the
maximum is found at 1-15. Assuming that the maximum will be some-
where near 1-35, it follows that J/k~ —8-5 K. We have tried to fit the
data of Akimitsu et al. to the series prediction for 7'> 7, ., but this
could not be achieved properly. Tt seems as if other contributions to the
susceptibility (apart from y,,,) are present, which may be attributed to
the presence of the Ti ions. An indication for this may also be the fact
that different values for x . . have been found, ranging from 8 x 10-% cm3/g
(Heller 1964) to 9-8 x 105 cm?/g (Akimitsu et al. 1970).

Calculating J/k from y, (0)=9-7x 105 cm3/g (Akimitsu ef al. 1970) is
therefore also a risky matter, more so since quantitative estimates of the
effects of zero-point spin deviations (AS(0) and ¢(0)) are missing for the
honeycomb lattice. Nevertheless one may try to estimate AS(0) and
¢(0) from the corresponding values for the quadratic lattice, by comparing
the differences in these quantities found for the simple cubic (z=6) and
the body-centred cubic (z=8) lattice. In this way we may guess that
AS(0)~0-25 S and e(0)~0-63. After correction for yg;,~ —0:05x 10-3
cm3/mole, one then obtains from y,(0)J/k~ —9-4, in reasonable agree-
ment with the estimate on the basis of T'(y,,,.)- Without the corrections
for zero-point spin deviations, the value would have been —8:2 K.

With Jjk~ —9-0 K one may subsequently calculate the anisotropy
from the zero-field AFMR frequency extrapolated to T' = 0, as determined
by Stickler et al. (1967). From v=156 kMc/sec the value a=H ,/Hy~
1:2x 1073 is obtained. The number 5x 10-5 quoted by De Jongh et al.
(1972 a), is wrong, due to a calculational error, arising from the fact that
wg and vy are interchanged in the paper of Stickler ef al. (1967).

The ratio |J'/J| is not known for this compound, but will be considerably
larger than in the K,NikF, structure, since within the hexagonal symmetry
there exists no decoupling of nearest neighbouring layers. Accordingly,
the sublattice magnetization in the region 1—7'/T, < 0-125, was found
to follow a power law with the ‘ 3-d ’ 8 value 0-32 + 0-01, pointing indeed
to a substantial interlayer coupling.

We next proceed to discuss the ferromagnetic layer-type compounds,
gathered in table 7. It is seen that only Cu and Cr compounds have been
found to approximate this model. This arises because in the other
magnetic ions with a fairly isotropic interaction, e.g. Mn2?t and Ni2*,
apparently the exchange nearly always has the antiferromagnetic
sign.

The interaction between the layers is mostly antiferromagnetic, so that
below 7', the ferromagnetic layers become ordered antiparallel with
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respect to one another. This situation is favoured by the dipolar inter-
layer coupling, although this is mostly too small to account for the
observed value of J'. The only exceptions are K,CuF, and(CH;NH;),CuCl,,
which behave ferromagnetically also below 7',.  This points to the presence
of various types of interlayer interactions, with different signs.

As already remarked above, the combination J>0, J'<0 has the
advantage that quantitative estimates of J' are easily obtained from the
value of the (antiferromagnetic) susceptibility at or below 7', (x, ), which
is inversely proportional to |J’|. It is remarked that, due to the fact that
J > |J'|, effects of zero-point spin deviations are negligible in this special
type of antiferromagnets (De Jongh 1972 a), justifying an MF calculation
of J' from y , via the relation y, = Nog?ug?/4z|J’|. Since the actual y, will
in most cases decrease below 7', by, amongst other things, the presence of
anisotropy, one may conveniently use x(7',) in this formula, which equals
x.(0) (for H,=0) in both MF and spin-wave theory.

The anisotropy in these compounds is of orthorhombic symmetry, with
H,">H,. This points to a planar Heisenberg character, were it not
that also H ,I' € Hy. We prefer therefore to classify them as Heisenberg
compounds, bearing in mind that there is a small planar type anisotropy
superimposed upon the overall Heisenberg character. There certainly
remains the possibility that, near enough to 7', the critical behaviour will
be more appropriately described by the planar model.

Values for the in-plane (H,!) and the out-of-plane (H ,!) anisotropy
may be obtained by torque or ferromagnetic resonance measurements, or
in the case of an antiferromagnetic J’ by measuring the magnetization or
the susceptibility as a function of field in the different crystallographic
directions (at 7'<T,). From the values of the spin-flop field and the
fields needed to saturate the sample, both H,I and H,™ may then be
deduced (cf. § 4.5).

The compounds of table 7 fall into three groups, those of the K,NiF,
type, the (C,H,, ., NH;),CuX, series and the chromium compounds. We
will start with the first category.

K,CuF,

The experiments performed on K,CuF, include magnetization (Yamada
1970), N.M.R. (Yamada e al. 1971), neutron scattering (Hirakawa and
Tkeda 1972) and specific heat measurements (Yamada 1972). In the
latter experiment 7' ,=6-25 K is indicated. The exchange constant J/k
was obtained as 11-2 K from the high-temperature susceptibility and as
8-8 K from the linear temperature dependence of the spin-wave contribu-
tion to the heat capacity (see below). Similar differences have been
found in the case of the (C,H,, NH;),CuX, series (see below). The
values for the anisotropy (H,I and H,U) were obtained from the
magnetization measurements. The ferromagnetic coupling between the
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layers has been estimated to be about 0-08 K (J'/J ~3:5x10-3) by
Hirakawa and Ikeda (1972).

In view of the rather large value of J'[J, as compared with those en-
countered in the 2-d antiferromagnets, one expects the critical behaviour
of the magnetization to be 3-d in character. On the other hand the
interlayer coupling is small enough for the spin-wave spectrum to be
predominantly 2-d in nature (compare with the results obtained for
FeCl, and (C, H,,  ;NH,),CuX,). The apparent agreement of the tempera-
ture dependence of the magnetization in the region 0-12<kT/J < 0-36
with the 73/ law predicted by spin-wave theory for a 3-d ferromagnet, as
reported by Kubo, may therefore be fortuitous. Although by taking
T,=6-25 K, Hirakawa and Ikeda deduced a B value of about 0-22 for
001 <1—T,/T <0-17, this result does not seem to be conclusive. We
would rather say that the 2-d behaviour in the region near 7', is spoiled by
interference of J'. For instance, by taking 7',=6-32 K, which is the
temperature at which the neutron intensity (which is proportional to M )
actually falls of, the authors reported that the fit of the data to a power
law did not yield a straight line, so that a unique value for 8 could not be
derived.

Rb,CuCl,

The system Rb,CuCl,, Rb,CuCl;Br, Rb,CuClBr, is currently being
investigated by Witteveen (1973). The transition temperatures have
been determined from specific heat and susceptibility measurements,
the J/k’s from the analysis of the high-temperature susceptibility (see
below). The anisotropy parameters follow from the measurement of the
magnetization curves at temperatures far below 7, (We are much
indebted to H. T. Witteveen for providing these results prior to publica-
tion.)

It is quite interesting to observe how by the successive replacement of the
Cl~ ions by Br~ the anisotropy H ,™ increases by an order of magnitude,
whereas the anisotropy within the layer is hardly affected. This arises most
probably because the Br— ions fill in the out-of-plane positions in the octa-
hedral environment of the Cu,* ions. Similar indications for the presence
of an anisotropy associated with the superexchange mechanism are fre-
quently found when comparing otherwise isomorphous Cl and Br com-
pounds (e.g. CrCl; and CrBr,, (NH,),CuBr, . 2H,0 and (NH,),CuCl, . 2H,0,
(CHy, NHy),CuX, (n=0,1,2,3,...,10; X=Clor Br)

This series of compounds has been the object of extensive studies at our
laboratory, including specific heat, E.S.R., susceptibility, magnetic torque
and thermal conductivity measurements. Although the crystal structure
is orthorhombic, the magnetic layers are very nearly quadratic since the
difference between the lattice parameters within the Cu planes is only
about 3%,. We have already outlined in § 2.4 how the pronounced 2-d
properties in these compounds arise from the separation mechanism,
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based upon the fact that the organic alkyl ammonium groups can be
greatly enlarged. As may be inferred from table 7 the distance between
the copper ions in neighbouring magnetic layers is increased by a factor 3
by varying n from 1 to 10, whereas the configuration within the layer is
hardly affectedf. As a consequence of this piling up of organic material
between the magnetic layers, the estimates of the interlayer super-
exchange interaction, as well as the interlayer dipolar coupling (in the
case of a pure antiferromagnetic arrangement of the ferromagnetic layers),
amount to |[J'[J| <105 for n>3. In the case of (NH,),CuCl, and
(C,H,NH,),CuCl, the directions of the moments of neighbouring layers
are indeed fully antiparallel (in zero external field). In (CH;NH;),CuCl,
the interlayer interaction is ferromagnetic, whereas in other compounds
weak ferromagnetic moments have been observed, the direction of this
moment being within the layers for the chlorine and perpendicular to it
for the bromine compounds. Consequently, the magnetic behaviour
found below T, is often quite complex and difficult to analyse. It is
remarked that with these small J’ values also the Earth’s magnetic field
comes into play, that is about 106 of J, and was not compensated for in
the experiments. In view of the above we may expect that the fields
acting on the sample, other than arising from the anisotropy, will be of the
order of 10-5 Hy or less for the compounds with n >3 (cf. the observed
values for n < 3 in the Cl series).

The anisotropy within the layer H I is seen to vary between 10~5 and
10— of Hy, whereas the out-of-plane anisotropy H ! is typically 10—2 Hy
for all compounds. As mentioned above, one intuitively expects that
H T will be the quantity that must be taken into account in discussions
concerning the occurrence of long-range order, since H ' merely intro-
duces a planar Heisenberg character into the system.

The above discussion also indicates the difficulties encountered in the
interpretation of magnetic measurements on these compounds. As an
illustration we point out that in the case of an antiferromagnetic inter-
layer coupling J' as small as 5 x 1075 of J, the susceptibility at 7', reaches
a value about equal to that expected for a ferromagnetic platelet-shaped
sample (J and J’ both >0), which is determined by the demagnetizing
factor. With these extremely small J’ values, it is all but impossible to
decide experimentally whether the interlayer coupling is ferro or anti-
ferromagnetic if further information is lacking. This may also be under-
stood from the fact that for J' < 0, the field needed to saturate the sample
is roughly given by 4z'|J’|S/gug, which for [J'[J|~10—° amounts to
10 Oe, only.

It can be seen from table 7 that the compounds with a positive J',
K,CuF, and (CH;NH,;),CuCl,, form an exception in the sense that they
have considerably smaller |J’/J| values than their nearest neighbours in

+ Recently Kitamura and Tsujikawa have extended the series to n=18, in
which case d,/d,~8 (private communication, to be published).
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the row of compounds (compare the 7T',/0 values). The value of |.J'/J| of
(CH3NH,),CuCl, has been determined by Yamazaki (1973) from E.S.R.
measurements and by Bloembergen (private communication) from torque
measurements. The only explanation for this peculiarity that we can
give is that in these compounds there is a competition between interlayer
couplings of different sign. Assuming that in the other salts the various
interlayer interactions would all prefer an antiferromagnetic arrangement
of the layers, the argument would be that they add up, except in K,CuF,
and (CH;NH,),CuCl,, where they would partly cancel one another.

In order to obtain more quantitative estimates of the anisotropy and of
J’, Bloembergen et al. (1972, 1973) have started a programme of magnetic
torque measurements. Although the analysis of these measurements is
still under way, the preliminary results do confirm the picture just outlined.

After this general description we will present some of the experimental
results of importance within the present context. The fact that a ferro-
magnetic interaction within the Cu layers is the predominant exchange
has been proven by susceptibility experiments in the paramagnetic
region T'> T, (De Jongh et al. 1969, De Jongh and Van Amstel 1970),
and by measurements of the spin-wave contribution to the heat capacity
at T<T, (Colpa 1972 b). In the latter experiment, a linear dependence
of the specific heat on temperature was clearly indicated, as predicted
by simple spin-wave theory for a 2-d Heisenberg ferromagnet (see fig. 67
and the discussion in § 4.2). The high-temperature susceptibility yields
positive Curie-Weiss temperatures, moreover the data could be adequately
analysed in terms of the series expansion for this model. For S=1, ten
terms are known in this expansion (Baker et al. 1967 a), which give a pre-
diction for the susceptibility that may be trusted down to T~ 1-5J/k. As
a typical example we give in fig. 40 the fit of the (powder) suceptibility
of (C,H;NH,),CuCl, to the series expansion result (curve 1). ‘Here C/xT
is plotted versus /7, so that the Curie-Weiss law appears as the straight
line O/yT'=1-0/T (curve 3). The exchange constant J/k is the only
unknown needed to scale the experimental points upon the theoretical
curve. Note the huge deviation of the 2-d ferromagnetic susceptibility
from the Curie-Weiss law, even at T'=260. For comparison the deviation
of the series result for the ferromagnetic b.c.c. lattice has also been in-
cluded (curve 2). It is seen that even for a 3-d ferromagnet, estimates
of J/k from a value of the Curie-Weiss 6 determined in the range
T ~40~6T , may result in serious errors.

For T<Jjk (=%0) the susceptibility becomes field dependent in
fields of a few kOe. In fig. 41 it is shown how the (initial) suscepti-
bilities of eleven Cu compounds of the series in the region up to 7' ~J/k
scatter evenly around a common curve, in spite of the fact that the various
compounds differ in magnitude and sign of J' and in anisotropy. For
each compound the value of J was determined by the fit to the series
expansion result for 7 >1-5J/k. Since there is no apparent difference

for the various compounds for 7 > 0-9J/k, one may consider the curve
A.P. H
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Fig. 40
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The susceptibility of the ferromagnetic layer compound (C,H NH,),CuCl, in
the high-temperature region (I'>T.; 6/T,~3-6). The full curve 1
drawn for 6/T <1-4 has been calculated from the high-temperature
series expansion for the quadratic Heisenberg ferromagnet with S=1.
The exchange constant J/k was obtained by fitting the data to this
prediction. The dotted curve 2 represents the series expansion result
for the b.c.c. Heisenberg ferromagnet. The straight line 3 is the MF
prediction CO/xT=1—0/T for the quadratic ferromagnet. (After De
Jongh et al. 1972b.) A : H=10kOe; O: H=4kOe; x: H=0
(a.c. susceptibility measurements).

drawn through the data of fig. 41 as an experimental continuation of the
series expansion prediction with ten terms into a region wherein it is no
longer trustworthy.

For T <0-:9J/k, the influence of the interlayer interaction and the
anisotropy gradually become manifest. This is depicted in fig. 42 where
the parallel susceptibility of (C,H;NH,),CuCl,, in which the ferromagnetic
layers order antiferromagnetically at 7', is compared with the sucepti-
bility of (CH,NH,),CuCl, and (C,,H,,NH;),CuCl, (De Jongh ef al. 1972 b).
The y of the methyl compound diverges at 7', since J' > 0. In practice
this means of course that y(7') becomes equal to 1/D, where D is the
demagnetizing factor of the sample. The same situation was found in
the decyl compound, which led the authors to believe initially that in
this case J' is positive too. However, as stated above, we are at the
moment inclined to think that for all compounds with » > 1, J’ is negative,
attributing the high values of y reached at 7', in (C;,H,;NH;),CuCl, to
the extremely low value of J'. Be this as it may, from the much lower
values of |J'/J| in the methyl and decyl compound (compare the T ,/6
values) and from the fact that their susceptibilities coincide, it can be
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Fig. 41
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Susceptibility data of eleven different members of the series (C, H,, ., NH;),CuX,
in the region 0-5 <.J/kT < 1-1 (J[k=06/2). Since the results for the various
compounds coincide, although they differ in strength and type of the
inter-layer interaction as well as in anisotropy, the straight line through
the data may be considered to represent the y of the ideal quadratic
Heisenberg ferromagnet (tabulated values have been published by
De Jongh and Van Amstel 1970). As such this result may be seen as an
extension of the series expansion prediction, which is trustworthy up to
J kT <0-6 only.

inferred that in the temperature region shown, the upper curve in fig. 42
may be regarded as representing the susceptibility of a system of isolated
ferromagnetic layers. The lower curve of (C,H;NH,),CuCl, is then ob-
tained by ‘ switching on * the weak antiferromagnetic interaction between
these layers. We point out that the value of ¥7',/C in this unusual type
of antiferromagnet is extremely high (~85), as a consequence of the
small value of [J'/J|. In ‘normal’ antiferromagnets, in which a similar
division of the spins in (ferromagnetic) sublattices can be made, y7/C is
usually smaller than unity, since the ferromagnetic intra-sublattice
interaction, corresponding to .J, is mostly much smaller than the anti-
ferromagnetic intersublattice interaction (J').

In table 7 the values of the exchange constants J/k, as obtained from
the analysis of the high-temperature susceptibility with the aid of the
series expansion, have been compared with those derived from the
coefficient of the linear spin-wave term in the heat capacity. It is seen
that there is a systematic difference between the two results. Taking into
account the errors of a few per cent involved in both determinations, we
may say that the mean difference is about 10%,. It is noteworthy that
the same discrepancy has been obtained in the case of K,CuF, (Yamada
1972).

An obvious way out of the problem would be to postulate a temperature
dependence of the exchange, the susceptibility analysis being performed

in the region 7'>1-5Jk, whereas the specific heat data considered were
H2
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Fig. 42
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Comparison of the parallel susceptibilities of three Cu compounds. O:
(C,H,NH,),CuCl,; A: (CHNH,),CuCl,; 0O: (C,HyNH,),CuCl,
In the temperature region shown, the curve common to the methyl
and decyl compound represents the (diverging) susceptibility of a system
of isolated ferromagnetic layers, with an intralayer exchange J. The
curve for (C,H NH,),CuCl, can be thought of as being obtained from
this by including a weak antiferromagnetic coupling J'(|J'|/J ~8 x 10-%)
between the layers. (After De Jongh et al. 1972 b)

for T'<0-05J/k. However, the x data show no apparent sign of a
temperature dependence of J in the range 7'<150 K. Moreover, one
would expect an increase of J as the temperature is lowered, as in fact is
mostly found experimentally (also for Cu compounds), whereas in table 7
the reverse is seen to be the case. The possible effect of J' on the aniso-
tropy and of an interaction with second neighbours within the layer have
been considered in detail by Colpa (1972 b) with negative results. Taking
into account these by-effects will either increase the discrepancies or their
influence is too small to be perceived.

Since the series expansion for the susceptibility is an exact result, at
least as far as the temperature is high enough not to invalidate the calcula-
tion because of the limited number of terms, a possible explanation would
be to assume the spin-wave prediction to be quantitatively in error.
Indeed, such a situation is encountered in the magnetic chain systems,
where spin-wave theory does predict the right variation with temperature
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of the ferro and antiferromagnetic specific heats at low temperatures, but
quantitatively gives quite incorrect answers regarding the amplitude of
these temperature dependences (Bonner and TFisher 1964). We will
return to this matter in § 4.2. In any case it is clear that the determina-
tion of J/k on the basis of the spin-wave theory stands on a less sure
footing than that from the series expansion for x, so we have used the
latter in the subsequent calculations.

We remark that the parameters of (NH,),CuCl, listed in table 7 have
been derived by Lécuyer et al. (1972) from powder susceptibility measure-
ments that were analysed in the same manner as described above. Their
result provides a welcome addition to the work on the other Cu compounds.

With the aid of the so-derived J/k values, Bloembergen ef al. (1970 and
to be published) have succeeded in separating the lattice contribution
from the total measured heat capacity of these compounds in the following
way. Assuming the magnetic part in the high-temperature region to be
given by the series expansion prediction for ', calculated with the known
J|k’s, the lattice contribution is known for say T ~2J/k and an extrapola-
tion down to T'=0 can be made, using different procedures of a varying
degree of sophistication. As consistency checks, one has available the
requirements that the total energy and entropy derived from the subse-
quently resulting magnetic specific heat must be equal to the expected
values for S=1. In addition the lattice specific heat thus obtained can be
compared with the measured heat capacity of the isomorphous non-
magnetic compounds, which are obtained by replacing the Cu atoms by Cd
or Zn. Moreover the specific heat in the spin-wave region is known, since
at these low temperatures the lattice part is either negligible or can be
more easily accounted for.

Proceeding in this way, estimates of C,, for a large number of Cu
compounds have been obtained that more or less fall on the same curve.
From these one may then construct a ‘ mean * curve, which should repre-
sent the behaviour of the ideal model within an accuracy of a few per cent.
In fig. 43 the resulting prediction is shown, with superimposed the small
spike (2) due to the occurrence of long-range order at 7', as found in
(CoH;NH,;),CuCl,, which has the highest |J'/J| value of the members of
the Cl series on which measurements have been made. In the other com-
pounds similar but smaller anomalies have been observed, the interesting
feature being that the heat content of these peaks (i.e. the area under the
spike) diminishes with increasing #. This is what may be anticipated,
because by increasing » the ideal 2-d model is better approximated (as can
be inferred from the 7'./0 values) and since one expects the size of the
anomaly at 7', to reflect the strength of the deviations from ideality
that are present. Accordingly, for the chlorine series the highest peak
was found in case of the ethyl compound. As can be seen from fig. 43,
even in this case the peak at 7', is so small that one may easily accept the
interpretation that it arises from spurious by-effects and is not an intrinsic
property of the ideal system. To illustrate this point we have also
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Fig. 43
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The dashed curve in this figure represents the heat capacity of the ideal quadratic
Heisenberg ferromagnet as predicted on basis of the experimental find-
ings (P. Bloembergen, private communication). It is the mean of the
results obtained for various members of the series (C,H,, ,,NH,),CuX,.
Except near to 7', the data of the individual compounds scatter evenly
within a few per cent around this common curve. As in the magnetic
chains there is a small spike observed at 7', in each compound, super-
imposed upon the broad maximum. The arrows 1 and 2 indicate the
peaks observed in (CH;NH,),CuCl, and (C,H NH,),CuCl,, respectively,
and have been included to show the behaviour observed near the transi-
tion point, arising from the existing deviations from the ideal model,
which are most pronounced in the ethyl compound. The full curves
are the series expansion prediction at the high-temperature side, and
the spin-wave contribution at low temperatures, as measured and calcu-

lated by Colpa (1972).

included in fig. 43 the spike observed in (CH;NH,),CuCl, for comparison
(1). This compound has a much lower 7' /8 value, because of its smaller
interlayer interaction. As discussed above this is probably due to an
accidental partial cancellation of interlayer interactions of different sign.

The advantage of having the non-magnetic isomorphs has also been ex-
ploited in measurements of the heat conduction of these compounds. Infig.
44 the thermal conductivities of (CH,NH,),CuCl, and (CH,NH,),CdCl,
are compared, from which it is seen that the lattice contribution is rather
well represented by the behaviour of the non-magnetic compound. The
small shifts needed to let the curves coincide for temperatures exceeding
the 7', of the Cu compound may be easily attributed to small differences
in the Debye temperature (horizontal scale) and in the dimensions of the
two samples (vertical scale). Below 7', the curve of (CH,NH,),CuCl,
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clearly shows a huge contribution of the magnetic excitations to the heat
conductivity. That the surplus conductivity is indeed of magnetic
origin could be confirmed by subsequent measurements in magnetic fields
of varying strength.

In concluding the discussion of the Cu compounds of table 7 we remark
that in trying to correlate the observed decrease of 7' /6 with either
|J'[J| or H,' or H,!, the following features become apparent. Firstly
in comparing Rb,CuCl,, (CH,NH,),CuCl, and (C,H,NH,),CuCl, one con-
cludes that for these compounds it is the quantity |J'/J| that determines

Fig. 44
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The thermal conductivity (in zero field) of (CH;NH,),CuCl, as compared with
that of the isomorphous, non-magnetic Cd compound. The small
shifts needed to let the two curves coincide above the transition tempera-
ture, T,==8-91 K, of the Cu salt have been indicated in the left-hand
corner below. The Cd data can be seen as representing the lattice part,
the huge surplus conductivity observed below T, in the Cu compound
may be attributed to the contribution of the magnetic excitations.
The T'%2 dependence at low temperatures is expected for the magnon
conduectivity of a 2-d ferromagnet from simple spin wave theory. (After
Gorter et al., 1969.)
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for the most part the position of the transition temperature. Also, from
the fact that 7T',/0 decreases in going from Rb,CuCl, to K,CuF,, whereas
the latter has a ten times larger H ,H value, it seems that the out-of-plane
anisotropy is indeed ineffective in establishing the long-range order, in
accordance with our assumption that H,'' merely introduces a planar
Heisenberg character. For the (C,H,, ,NH;),CuCl, series with n >3 the
quantity |J'/J| becomes of the same order or smaller than H ,T so that we
expect that for these salts the actual value of 7,/0 is determined by a
mixture of both these deviations from the ideal model. Furthermore,
we point out that with the aid of table 7 one may estimate the |J'/J|
values of DPAN and CuF, . 2H,0 tobe4 x 10-2 and 1-5 x 102, respectively,
from the T' /0 values of these compounds.

Concerning the temperature dependence of the sublattice magnetiza-
tion, the only result obtained so far is an indirect determination following
from the behaviour of the critical saturation field in (C,H,NH,),CuCl,
with temperature (De Jongh et al. 1972 b). According to both spin-wave
and MF theory this should reflect the temperature dependence of the
magnetization (cf. §4.5). A 3-d value of 8 was found (~1) which is to
be expected, since the interlayer interaction is fairly large (|J'/J| ~10-3;
see also § 3.2.3) in comparison with K,NiF,.

AgCrSe,, NaCrS, and NaCrSe,

In the hexagonal structure of these compounds the Cr®t ions form
ferromagnetic layers in which each magnetic ion is surrounded by six
nearest neighbours (triangular lattice). These layers are antiferro-
magnetically coupled and are separated by three non-magnetic sheets,
the ratio d,/d; being about 2. Unfortunately they have not been greatly
studied so far. Bongers el al. (1968) have measured the susceptibility
of powdered specimens, whereas for the case of NaCrS, additional single-
crystal data have been obtained by Blazey and Rohrer (1969). These
authors also derived the antiferromagnetic phase diagram of this salt
from magnetization and differential susceptibility measurements. Thus
for NaCrS,, values for the antiferromagnetic J’ and H, could be obtained
from the values of the antiferromagnetic susceptibility at T, from the
spin-flop field and from the critical field needed to saturate the sample,
yielding J,;/k~ —0-6 K and H,'~3kOe. Apparently the value of H I
is only slightly larger than H,T. These results may however suffer from
substantial errors, since Blazey and Rohrer did not correct their data
for demagnetizing effects.

Since the high-temperature susceptibility was not analysed in terms of
a series expansion, we could only derive a crude estimate of the ferro-
magnetic intralayer exchange from the reported value of the Curie-
Weiss temperature. The same can be said for NaCrSe, and AgCrSe,.
In the latter case J' was calculated from the value of the susceptibility
at T,. We point out that NaCrSe,, with its low |J'/J| and T,/8 values,
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presents an interesting object of further studies, since the experimental
information on ferromagnetic layer compounds with §> 1 is still limited.

Crl,, CrBrg and CrCl,

The hexagonal structure of the chromium tri-halides consists of ferro
magnetic honeycomb layers (z= 3) of Cr3+ ions, separated from one another
by two layers of halogen ions. Again the ratio dy/d, is about 2. The large
variation in the quantity |J'/J| for these compounds, as observed from
table 7, may be attributed to the existence of different interlayer inter-
actions of opposite signs. Thus in CrBr;, Samuelsen ef al. (1971) reported
that of the main three interlayer interactions two were ferromagnetic
and one antiferromagnetic. The fact that in CrCl; the ferromagnetic
layers are coupled antiferromagnetically with respect to one another,
whereas in CrBr; and Crl, the effective J’ is positive, also points to a
variation in sign and magnitude of these three interlayer interactions.
The low value of |J'/J| in CrCl; would then be the result of a partial
cancellation of the individual interactions.

The exchange constants listed in table 7 are the result of spin-wave
theoretical calculations of the magnetization, in which a simplified two-
parameter model was used, the various inter and intralayer interactions
being substituted by an effective JJ" and J, respectively. In this way the
results obtained for the different halides can be better compared. It
should be pointed out that a more extensive analysis on the basis of a
many-parameter model, which has been carried out for CrBr; (Samuelsen
et al. 1971), leads to slightly different results. In this case an inelastic
neutron scattering experiment was concerned in which the dispersion in
the different crystallographic direction was measured. Quite similarly,
as in the case of other 2-d magnets (cf. figs. 24 and 37), the spectrum was
found to be very flat, with little dispersion in the ¢ direction.

When likewise analysed in terms of a two-parameter model, however,
these neutron data yield quite similar results for J and J', as given in
table 7, where the listed parameters for CrBr,; follow from the work of
Davis and Narath (1964), who investigated the temperature dependence
of the magnetization with an N.M.R. technique and fitted their measure-
ments to a renormalized spin-wave theory on the basis of the two-para-
meter model. In the same way, Narath and Davis (1965) and Narath
(1965) obtained the exchange constants of CrCly; and Crl;. We remark
that the values for the intralayer exchange J thus derived are consider-
ably lower than those calculated from the measured Curie—Weiss tempera-
tures (Hansen and Griffel 1959), in accordance with the picture given in
the discussion of tig. 40.

For CrBr, slightly different transition temperatures have been found
for different samples (Samuelsen el al. 1971, Ho and Litster 1970, Senturia
and Benedek 1966, Jennings and Hansen 1965). A mean value is given
in table 7. The T, of CrCly has been determined in a heat capacity



122 L. J. de Jongh and A. R. Miedema on

experiment by Hansen and Griffel (1958), whereas the value for Crl,
follows from the work of Williams and Sherwood (see Dillon and Olson
1965). In the heat capacity measurements (Jennings and Hansen 1965)
large short-range-order contributions have been observed, the amount of
entropy lost above T, being 45%, and 639, of the total R1n (28 +1) for
CrBr; and CrCl,, respectively.

The observed anisotropy is uniaxial in Crl, and CrBrs, favouring the
hexagonal ¢ axis. Quantitative values have been determined by Dillon
(1964) and Samuelsen et al. (1971) for CrBr,; and by Dillon and Olson
(1965) for CrI;. Contrastingly, CrCl, has a (much smaller) anisotropy of
orthorhombic symmetry. 1In this case H,! and H, could be estimated
from the spin-flop field and the saturation fields, respectively (Narath
and Davis 1965). The fact that in CrCl, the direction of the moments is
within the layer, whereas it is perpendicular to it in CrBr, and Crl,,
points to the presence of an anisotropy in the superexchange mechanism
via the halogen ion, as mentioned above. In the case of ferromagnetic
layers, the dipolar anisotropy favours an orientation within the layer.

In view of the large |J'/J| value of CrBr, it is not surprising that the
critical behaviour of this salt has been found to be fully 8-d in character
(Ho and Litster 1970, Senturia and Benedek 1966). More about the
critical parameters found for this salt will be said in § 4.4.

3.2.3. Concluding remarks

After having taken stock of the wealth of available experimental in-
formation, we are now in a position to try to tackle some of the funda-
mental questions, left by theory, concerning the thermodynamic behaviour
of the isotropic 2-d systems (see § 3.2.1). Asregards the 2-d Ising system,
the situation is fairly well established theoretically and, as we have seen,
the experimental work nicely confirms the. picture given by theory.

Let us then focus attention on the examples of the 2-d Heisenberg
model, and first of all make some remarks about the high degree of
approximation that has already been reached. Regarding the interlayer
interaction, J’, we have learned that the estimate |J’/.J| ~10-¢ or smaller
for the members of the K,NiF, group is most probably correct. Although
no exact determination of J' has hitherto been accomplished, there are
indeed indications (see discussion of Rb,MnF,) that it is of the order of
the dipolar coupling, which has been calculated to be about 10-8-10-7 of .J.
Furthermore, we have found that there is probably no lower limit to the
value of |J'/J| that can be reached experimentally, other than that set
by lattice imperfection or other sources, e.g. phonons (see wunder
(CoHgy 1 NH;),MnCly).

Accordingly, it is the anisotropy that is the prime deviation from the
ideal system that we are left with. In fact, when comparing the |J'/J|
and o= H , [Hy values obtained, the conclusion is that in most examples «
is at least one order of magnitude larger than |J’/J|. Unfortunately
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values of « smaller than about 10-% are not easily reached, since even for
a fully isolated (but finite) layer one always has the intralayer dipolar
anisotropy to deal with. The only way out is in having competing aniso-
tropy mechanisms, with different preferential directions, so that the
various sources more or less cancel one another. This however is a rather
unpredictable occurrence, so that it becomes a matter of trial and error to
find such a compound.

The most prominent questions to answer are those concerning the order-
ing problem. Do the experiments confirm the theoretical proofs excluding
the establishment of long-range order at a finite temperature ? In our
opinion the answer is definitely yes, based upon the observed specific heat
behaviour. Especially in the case of the 2-d ferromagnetic Cu compounds,
we have encountered overwhelming evidence for the fact that the specific
heat of the ideal model will be a smooth non-anomalous curve, quite
similar to those found for the chain structurest. Less conclusive but
nevertheless clear indications to this end are the heat capacities of the
quasi 2-d antiferromagnets CuF, . 2H,0 and Mn(HCOO),.2H,0. We
remark that from the experimental findings predictions for the height
and the position of the specific heat maximum for the 2-d Heisenberg
systems may be obtained. Hstimates for various S have been compiled
in table 8, where we have used the heat capacities of (C,H,, . NH,),CuX,,
CrBr;, CuF, . 2H,0, and of Ni and Mn formate. In comparing these
results with the values of these parameters in the Heisenberg chain model
(table 1), a number of interesting- conclusions may be drawn. Firstly,
one observes a similar dependence on S and also the fact that the maximum
oceurs at a higher temperature in the case of an antiferromagnetic inter-
action. Secondly, there is the striking feature that the predictions for
C max/ R for different 8 of the 2-d antiferromagnet are equal to those given
for the antiferromagnetic chain in table 1. In contrast with this there is
no such correlation for the ferromagnetic case. Whereas the ferro-
magnetic chain maxima are considerably lower than their antiferro-
magnetic counterparts, in two dimensions the heights of the antiferro-
magnetic and ferromagnetic specific heat maxima seem to have about the
same value.

The second question is : Do finite transition temperatures exist in these
systems, at which the ferromagnetic (or the staggered antiferromagnetic)
susceptibility diverges, in spite of the fact that there cannot be long-range
order ? As argued in §3.2.1, in order to answer this, one must try to
establish whether the experimentally observed 7',’s are upwardly shifted
(by the existing deviations of ideality) with respect to T=0 or with

T Although the experiments clearly indicate the absence of a diverging specific
heat for the ideal 2-d Heisenberg model, the possibility of a weaker singularity,
e.g. a diverging temperature derivative of ¢, at the point where the suscepti-
bility becomes infinite, cannot be excluded. ~Quite recently, Betts et al. (1973)
have found evidence for the €', of the 2-d, §=1, XY model to be qualitatively
of the same form as the curve shown in fig. 43.
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Table 8. Values for the height and the temperature of the specific heat
maximum of the quadratic Heisenberg layer as predicted by the experi-
mental findings. The observed dependence on the spin value S may
be compared with that encountered for the magnetic chains, as given in

table 1.
Ferromagnetic Antiferromagnetic
i
i ~0-37-0-38 ~0-8 ~0-35 ~1-4
1 — — ~0-52 ~2-1
3 ~0-65 ~4 — —
2 — — ~0-71 ~10-6

respect to a finite (Stanley—Kaplan) temperature 7'g;. In other words,
do the experimental T'.’s, when studied as a function of the strength of
these deviations, extrapolate to zero or rather to a finite value ! Evi-
dently, making such extrapolations to the ideal case is the only way open
to the experimentalist to contribute to the solution of the problem.
Bloembergen et al. (1970) were the first to make such an inquiry, with
the aid of the series of ferromagnetic Cu compounds. They argued that
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The relative transition temperatures T./0 of ten Cu compounds of the series
(C,H,, ., NH;),CuX, plotted versus the energy content of the small
spikes which are found at 7', in the heat capacity, superimposed upon
theideal behaviour. A : X=Br,n=1,...,5; O0: X=Cl,n=1,...,5.
The direction of increasing = is from the right to the left. It is seen that
for most of the materials the energy content of the peak is only about
10-% or less of the total energy involved in the magnetic ordering.
(After Bloembergen et al. 1970.)
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the energy content of the small spikes, found superimposed upon the flanks
of the broad maxima, may be regarded as reflecting the strengths of the
various deviations from the ideal system (for the latter the spike obviously
will be absent).t Evaluating the area under these small anomalies for
ten different compounds of the series, they studied the way in which the
relative transition temperature 7',/0 depends on this minute amount of
energy. Their findings have been reproduced in fig. 45, from which it
may be seen that, when the peak energy is plotted on a linear scale, the
extrapolation to the ideal case (K., =0) does indeed seem to yield a
finite transition temperature. Note that for the compounds with large »
the energy content of the specific heat spike diminishes to values of the
order of 10~* of the total magnetic energy.

Fig. 46
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Relative transition temperatures 7',/8 as a function of the anisotropy para-
meter o, for the quadratic layer-type compounds of different spin value.
The symbols refer to the examples of the 2-d antiferromagnet for which
the anisotropy is expected to be at least one order of magnitude larger
than the interlayer interaction, both as compared to the intralayer
exchange. Only for the S=4 case have some ferromagnetic layer com-
pounds been included which satisfy the same requirement. The various
materials have been collected in tables 6 and 7 and the references to the
data are given in the text. The curves a, b and ¢ are theoretical results
discussed in the text. The three dashed curves represent the limiting
values to which the experimental data for S=1, 1 and § seem to con-
verge. (After De Jongh et al. 1972 a)

T It has recently been realized by the authors that the argument is not
entirely correct if, as we expect, the planar part of the anisotropy is indeed
ineffective in establishing the long-range order, since it would then not contri-
bute to H,,,;. Because H ,1I/Hy has about the same value (~10-3) for all the
compounds, its effect cannot be eliminated by the extrapolation, so that the
obtained result for 7' /6 might in principle be affected.
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As pointed out by De Jongh ef al. (1972 a), another extrapolation
can be made by taking advantage of the large number of 2-d antiferro-
magnets of widely varying anisotropy that has been discovered. Since
in these compounds the interlayer interaction is usually considerably
less than the anisotropy (both compared to J), one may assume that the
anisotropy is the predominant deviation from the ideal system one has
to reckon with. As a happy coincidence the anisotropy in antiferro-
magnetic substances can be determined relatively easy from spin-flop or
AFMR measurements, so that in most cases a quantitative estimate of o
is available. A plot of 7',/8 versus a=H ,/Hy for these substances will
indeed yield the anisotropy dependence of the transition temperature.
In fig. 46 this has been done for the materials discussed in the preceding
section that receive consideration. As could already be inferred from
table 6, the 7' /0 values do seem to converge to finite values, indicated
by the horizontal broken lines. These limiting values are dependent on
the spin value, as is to be expected, since the deviations from MF theory
become larger with decreasing S. For comparison three theoretical
predictions concerning the dependence of 7'./6 on « have been included.
Curve a has been calculated by Lines (1970), who considered the quadratic
Heisenberg antiferromagnet, introducing the anisotropy in the form of a
field in the Hamiltonian. Curve b has been obtained by Dalton and
Wood (1967) for the ferromagnetic quadratic lattice with an anisotropic
exchange. For small « the results are seen to be very nearly the same,
whereas for o>10-3 the difference between the two approaches clearly
manifests itself. In both cases the Green-function method in the random-
phase approximation has been used. Since in this method the occurrence
of a transition is associated with the onset of long-range order, T is
predicted to decay to zero for «->0. Furthermore, this approximate
theory is expected to give best results for the high spin values. Lastly,
curve ¢ represents the dependence of 7', on « obtained by Dalton and
Wood from series expansions of the susceptibility of the quadratic S=1}
Heisenberg ferromagnet with an anisotropic exchange. For o=1 the
result correctly coincides with the prediction for the S=1 Ising model.

From inspection of fig. 46 one may observe that especially for the higher
spin value § = §, for which deviations from the curves a and b will already
occurr at relatively high « values since 7',/6 increases with S, there is a
clear departure from these predictions, the experimental points in the
range 1074-10-3 lying 20-309, higher.

In table 9 we have listed the limiting temperatures, derived from the
plots of figs. 45 and 46, and compared them with the Tg’s obtained by
Stanley and Kaplan from their analysis of the susceptibility series.
These were found to agree to within a few per cent with the formula
(Stanley and Kaplan 1966)

T~ Hz—1)[28(S + 1) — 1k, (3.8)

The S=1 case is excluded, since for this spin value the evidence from the
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Table 9. Limiting values of T,/ as a function of § derived from the plots of
figs. 45 and 46. These results are compared with the predicted transi-
tion temperatures Tq /0 to a state of infinite susceptibility, as obtained
by Stanley and Kaplan from their analysis of the high-temperature
susceptibility series expansions for the quadratic lattice (eqn. (3.8)).
One should also take into account the value 7' ,/6 ~0-40 obtained from
the series for the classical model (8= o0), which differs from that calcu-
lated from eqn. (38), as well as the result 7./ ~0-35 for the quadratic
planar model with S= oo (Stanley 1968 a).

S 3 1 2 o0 |
T./6 0-22 0-36 0-39 —
TorelO — 0-34 0-42 0-45

series was not conclusive. Dividing by the Curie~Weiss temperature,
with z=4, gives
Tege/0 =~ 0-225[2—1/S(S + 1)] (3.9)

from which the values given in table 9 may be calculated. We remark
that the uncertainties in these predictions are fairly large. As an indica-
tion of the errors involved we point to the result T'q;/0 ~0-30-0-35 for
the §= o0 case that was subsequently obtained by Stanley (1967) from
the series for the classical Heisenberg model, much lower than the value
calculated from eqn. (3.9). On the other hand, Lines (1971) derived
Tsx/0=040 from the same S=co series (see also Ritchie and Fisher
1973). One is therefore inclined to take 0-40 + 0-05 as the estimate for
8= 00, which is indeed close to the experimentally found value for §=3.
Since the errors involved in the experimental 7' /0 values are also con-
siderable, one should not put too much weight on the quantitative agree-
ment. In qualitative respect, however, experiment and theory do yield
the same picture.

In summing up we state that the experimental evidence obtained so
far, favours the existence of finite 7Tgy’s, although the precise values
remain rather uncertain. In §3.2.1 it has been explained how the
occurrence of such a temperature at which the susceptibility diverges
will lead to the establishment of long-range order under experimental
conditions, although this could not happen in the ideal model.

We will conclude the discussion of 2-d magnets with a few remarks
concerning the temperature dependence of the spontaneous magnetization
is these systems. To this end we have reproduced in figs. 47 and 48 the
magnetization curves of a number of isotropic and anisotropic compounds,
respectively, available from the literature. For comparison the result
for the quadratic Ising lattice (8=1%) has been included in both figures,
whereas in fig. 47 the behaviour of a typical 3-d isotropic salt (MnF,) has
also been drawn.
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Firstly we observe that, since the 2-d Heisenberg lattice cannot sustain
long-range order, the conclusion must be that any spontaneous magnetiza-
tion found in an experimental example cannot be an intrinsic property
of the ideal system but is the result of the deviations from ideality, i.e.
the anisotropy andjor the interlayer interaction. In § 3.2.1 we made
the assumption that the behaviour of the spontaneous magnetization
will be of a 2-d anisotropic character or of a 3-d (Ising or Heisenberg)
nature, according to whether gugH , > |J'| or conversely. Furthermore,
in the former case one expects that the effect of J' will still become
manifest, if only the transition temperature is approached closely enough,
the width of this range around 7', being dependent on the strength of J'.

Fig. 47

T lIH_IH] T IlIHTI] I Ty T TTTTT

1.0
0.8

0.6

2d ISINS {S=1/2)

0.4

0.2

|||3 L Illlll|2 L Hmll1 ERRETIE

z - - 6

10 10 10 0 1-T/Te 1

Magnetization curves of three examples of the quadratic Heisenberg anti-
ferromagnet in the critical region, plotted on a double logarithmic
scale. The prediction for the quadratic S=1} Ising lattice and the result
obtained for MnF, experimentally by Heller (1966) are also shown.
For references to the data, see the text.

Arguing in this way, one may define a ‘changeover’ temperature
T*(J'), below which the system behaves two-dimensionally, whereas in
the region 7', — T* the behaviour is of a 3-d character. It is not obvious
a priori that the changeover will indeed occur abruptly at a certain
definite temperature, or that the transition will be more or less smeared
out. As seen from figs. 45 and 46 two examples have been found that
seem to behave according to the picture just given, and the changeover
does take place rather suddenly, in particular in K,MnF,. In Rb,FeF,
the temperature 7'* is about 0-97 T',, whereas in K,MnF, it is about
0-996 T',. The explanation for the fact that in the other compounds no
such effects have been observed would be that in those cases the transition
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Fig. 48
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A similar plot as in fig. 47, but now for three anisotropic examples of 2-d
antiferromagnetism. The origin of the data has been cited in the text.

temperature 7T, has not been approached closely enough. Thus in
K,NiF,, T* would be nearer to T, than a hundredth of a per cent !
Since the difference T',— T* is related to |J'/J]| it would follow that for
some reason or the other this quantity is much larger in Rb,FeF, than in
K,NiF,, the case of K,MnF, being intermediate between these two. On
the other hand, the situation is far from being solved, since the apparent
cross-over behaviour may very well be caused by a distribution of transi-
tion temperatures throughout the crystal (Birgeneau et al. 1973). Clear
indications for this have been found in the case of Rb,Fel, (see above).
The effect of such a distribution on the data analysis has been discussed
both qualitatively and quantitatively by Birgeneau et al., explaining the
apparent cross-over observed by Hirakawa and Ikeda in K,MnF, by
a spread in 7', of the order of 10— 7', in their sample. Their own data,
in which no kink could be observed, are indicated in fig. 47 by the broken
line. The conclusion therefore must be that in these two compounds
the apparent cross-over is most probably a spurious effect. An example
of a changeover of an exponent that is more likely to be real will be given
in §4.4.

In any case one would expect that interlayer interactions of the order
of 10-4-10-2 will be sufficient to bring the region 7*— T, down to about
0-99 to 0-90 of T';, so that log—log plots of M (T)/M (0) versus e=1~T T
will then yield 8 values which are either near to the 3-d value 8=1 or
lie in between } and the 2-d Ising value § if the changeover temperature
T* is smeared out. In order to test this we have gathered in table 10
the observed 8’s in the 2-d compounds of the preceding section, together
with their anisotropy parameters and interlayer interaction constants.
Also listed are the amplitudes of the singularity B, as defined by eqn.

AP, I
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(3.7). For comparison the values of 8 and B for the 2-d quadratic Ising
model and for the 3-d Heisenberg and Ising lattices are given, together
with the range of ¢ in which the magnetization of these models does follow
the limiting behaviour given by the power-law of eqn. (3.7) (Wielinga 1971).

By studying table 10 one may indeed observe a correlation between the
B value and the interlayer coupling. FeCl,, CrBr; and (C,H,NH;),CuCl,
clearly show 3-d behaviour. Note in particular that the parameters of
the anisotropic compound FeCl, are very close to the 3-d Ising predictions,
whereas for the reasonably isotropic salt CrBr, the results are in better
agreement with those of the 3-d Heisenberg model. Also for MnTiO,
a 3-d B value is found, which finds its explanation in the fact that in this
hexagonal compound there is a direct coupling between the neighbouring
antiferromagnetic layers, in contrast with the situation in the K,NiF,
structure. The ratio |J'/J| will therefore probably also be of the order
of 103-102, as in the Cr compounds of table 7, which have a rather
similar structure. Such a direct coupling also exists in the structure of
RbFeF,, that accordingly has a higher § (within the same e range) than
KFeF,, in which the interaction between the nearest layers is cancelled
because of symmetry. In spite of this the ratio of |/'/J| in KFeF, will
likely be larger than in the K,NilF', structure because the exchange paths
connecting the next-nearest layers involve three I ions, instead of the
two F and two K ions in K,NiF,.

The ‘ intermediate ’ § values of about 0-22 of RbFeF,, Mn(HCOO), . 2H,0
and K,CuF, may be understood in terms of a smeared-out transition
range, taking into account that they have been determined in a relatively
high range of the relative temperature (e>0-01). Although for K,CuF,
an additional lower decade in € was explored, the uncertainty in the choice
of T, in this case enables a fairly wide range of possible 8 values. The
same remark also applies to some of the other compounds of table 10,
since one must keep in mind that for ¢ <102 a knowledge of the 7', of
the investigated sample better than 0-19 is necessary to obtain a reliable
result for the 8.

From the fact that in the 2-d Ising model the spontaneous magnetiza-
tion retains near-saturation values up to a much higher relative tempera-
ture than in the 3-d models, it is explained why the log—log plots of the
quasi 2-d salts in figs. 47 and 48 lie in between the 2-d Ising curve and the
MnF, result, and also why the measured B values of the isotropic 2-d
compounds are much lower than the Ising prediction. The particular
value of M (T)/M,(0) at a certain relative temperature will be dependent
ona, |J'/J| and on 8. Concerning the dependence on 8, for instance, it is
known from the 3-d models and the 2-d Ising model that the value of B
will decrease by increasing S, although the exponent 8 will to all proba-
bility retain the same value. For compounds of similar |J'/J| and «,
the magnetization at a particular e value will be lower the lower is S.
Thus K,NiF, is nearer to the Ising result for § = than Rb,MnF,, although
it is more isotropic. Far away from 7', for € > 0-1, one may observe that

12
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the Fe compounds are even closer to the 2-d Ising prediction than K,NiF,,
which can be explained from their highly anisotropic properties. Not
surprisingly, the magnetization curve of one of the 2-d Co salts that
have § =1 is extremely close to the Ising prediction (preliminary measure-
ments of Samuelsen on Rb,CoF,, see Samuelsen 1973). In view of the
above discussion we may add that only the experiments on extremely
anisotropic compounds may provide essential information regarding the
critical behaviour of the spontaneous magnetization in 2-d systems. By
this we mean that the measurements of the long-range order in the iso-
tropic salts, although extremely useful for other purposes, are concerned
with a property that is not intrinsic to the ideal system. The purpose of
such work should therefore lie elsewhere, for instance, to provide more
detailed studies about the nature of the changeover effect.

In concluding this section we would like to add that a slightly different
approach to the changeover mechanism may be taken. Quite generally
one might assign a transition temperature 7°, to an ideal model system,
and then assume that the deviations from this model will result in a shift
of T, to a T, which would be the experimental transition temperature.
For temperatures for which |7'—7'.| is large as compared with the
difference |T',— T '|, the critical behaviour will then be in accordance with
the ideal model ; for instance, the susceptibility behaviour will yield the
right exponent. But as T is approached, the system realizes that its
actual transition temperature is not 7', but a shifted 7',’, and the character
of the susceptibility plot is changed. One may thus define an inner region
|7, —T*| in which the presence of the deviations are felt, the suscepti-
bility in this range behaving as diverging at 7'/, with a changed critical
exponent.

In the 2-d quasi-isotropic magnets one may identify the ideal 7', with
the Stanley-Kaplan temperature 7'gy, whereas the shifted 7', would be
the experimentally observed transition temperature. It is of importance
to note that for these systems the cross-over can be different for both
sides of 7',. In the case of the spontaneous magnetization observed
below T, the cross-over will be from 2-d Ising to 3-d Ising-like behaviour,
and is due solely to J'. Above T, the susceptibility, for instance, may
first change from 2-d Heisenberg to 2-d Ising and thereafter from 2-d
Ising to 3-d Ising behaviour if, as in most cases, the anisotropy is con-
siderably larger than the interlayer coupling. We will take up this
matter again in § 4.4.

3.3. Three-dimensional magnetic systems
3.3.1. Introductory remarks

To his likely surprise, the reader will find the number of experimental
examples treated in this section to be less than in the previous ones on
1-d and 2-d magnets. There are a number of reasons for this. Tirstly,
since in this paper 1-d and 2-d magnetism is reviewed for the first time,
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the authors thought it appropriate to give an extensive treatment of the
lower dimensional systems, considering also the less ideal examples.
Evidently, the fact that our own research has been in this field for several
years plays a role too. Secondly, the number of 3-d magnetic compounds
being so vast, it would be an almost impossible task to discuss them all,
so that we decided to regard only the very best examples of either the
Ising or the Heisenberg 3-d models (a good example of the 3-d planar
Heisenberg model is yet to be found). It turns out that in this way one
is left with few compounds. In particular the number of ferromagnetic
insulators approximating the nearest-neighbour-only lIsing or Heisenberg
model to a sufficient degree turns out to be disappointingly small.

Before embarking on a discussion of the experimental examples we
shall, as before, briefly mention some of the theoretical results that are
available. Here again such a summary of necessity has to be of a very
brief and general nature, due to the enormous amount of papers bearing
on the subject. TFor more extensive information the reader is referred to
the review papers mentioned in § 1.1.

As a first remark we recall that the MF theory is more closely approxi-
mated in 3-d systems, at least in comparison with the complete inap-
plicability of this theory in 1-d and 2-d cases. Referring to the discussion
in § 1.2, the explanation is the relative weakness of the effects of short-
range order in 3-d systems. In fact, if one is not interested in details
(e.g. critical behaviour), effective field theories will give a satisfactory
account of the overall behaviour found in 3-d magnets.

However, near to the transition point (and in the case of the isotropic
magnets in the spin-wave region) the failure of the effective field concept
becomes apparent and one has to take recourse to more sophisticated
theories. Since no exact treatments of the 3-d Ising and Heisenberg
models are available, the information about the thermodynamics has been
supplied by approximate solutions. In the low-temperature region, < 1",
one expects spin-wave theory to give a reasonable description of the thermo-
dynamic behaviour of the Heisenberg model, as is indeed confirmed by
the experimental findings (see below). On the other hand, in the Ising
model the extreme anisotropy makes it possible to calculate the limiting
(T'—0) low-temperature behaviour of the thermodynamic functions, which
is of exponential form. Combined with results obtained from low-
temperature expansions this yields a thrustworthy prediction in the region
T<T, in some cases even quite close to T, In the critical region,
high (T'>T,) and low (T < T,) temperature series expansions have been
used in both models. By carefully analysing these series with various
techniques one has obtained estimates of the critical behaviour of the
specific heat, the ferromagnetic susceptibility and the magnetization,
that compare favourably with the obtained experimental results (see
§4.3). Thus, in spite of the non-availability of exact solutions, one often
has come quite far by linking together the results deduced by the approxi-
mate methods in various temperature regions (evidently the MF theory
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constitutes the high-temperature approximation). In that way a
prediction valid over quite a wide range of temperatures relative to T',
can be constructed in practice.

Since the quantitative theoretical information obtained for the critical
exponents (series expansions) and for the low-temperature behaviour
(spin-wave theory) will be reviewed in §§ 4.2-4.4, together with the experi-
mental findings, we shall not give a survey of these predictions here.
They will, however, be mentioned when they arise in the discussion of the
experimental examples below.

3.3.2. Survey of experimental results

As in the preceding section we will commence with the anisotropic
compounds. In table 11 we have collected what we consider to be the
best examples of the 3-d Ising model known at present, together with their
critical parameters, as derived from the heat capacity data. These will
serve to compare the experiments with the theoretical predictions in-
cluded in the table.

CoCs,Cl, and CoRb,Cl,

The origin of the anisotropic properties of these compounds has already
been mentioned in §2.2. They are isomorphous to CoCs,Br,, which
has been discussed in the preceding section. The magnetic ions form a
simple tetragonal lattice, with a cy/a, ratio of about 1-1 so that the struc-
ture is approximately simple cubic. We have seen that in the case of
the bromine compound there is apparently an accidental cancellation of
the interaction along the ¢ axis, giving the substance a pronounced 2-d
magnetic character. In the two chlorine compounds, on the other hand,
the interactions along the ¢ axis and in the a-a plane are nearly equal.
From E.S.R. measurements in ZnCs,Cl, doped with Co?t, Van Stapele
et al. (1966) found that the exchange within the a-a plane is antiferro-
magnetic, whereas the interaction along the ¢ axis is of ferromagnetic
sign and about 25%, smaller in magnitude. For CoRb,Cl;, on the other
hand, Blote (1972) deduces the coupling in the ¢ direction to be also anti-
ferromagnetic, by comparing the total energy involved in the magnetic
ordering (derived from the heat capacity) and the measured Curie-Weiss 6.
The occurrence of both ferro and antiferromagnetic interactions along the
¢ axig in this series of compounds may provide an explanation for the
apparent cancellation of this interaction in the case of CoCs,Br;.

Since in the Ising model the sign of the exchange constant is irrelevant
as concerns the heat capacity, the experimental data on both CoCsCl;
and CoRb,Cl; may be compared with the theoretical curve for the simple
cubic Ising model. Basing themselves upon the work of Baker (1963)
and Sykes ef al. (1972), Blote and Huiskamp (1969) obtained a prediction
for this model that is shown as the full curve in fig. 49. It can be seen
from this figure and table 11 that their data on CoRb,Cl; fit the theory
excellently. For CoCsyCl;, which was studied by Wielinga et al. (1967)
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the agreement is slightly less. As mentioned by Wielinga ef al. (1967)
and Blote and Huiskamp (1969), this may be attributed to the lower 7T,
of the chlorine compound, as a consequence of which dipolar interactions
will be relatively more important. These long-ranged interactions can
enhance the asymmetry of the specific heat curve by the fact that they
may tend to increase the effective number of nearest neighbours. In
fact it is observed from table 11 that the caloric data on CoCs,Cl, are in
better agreement with the predictions for the b.c.c. Ising model. Thus,
although on the basis of the crystal structure one would choose a s.c.
magnetic structure, the specific heat is best described by an Ising model
with a higher (effective) coordination number.

Fig. 49
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Heat capacities of CoRb,Cl; and CoCs,Cl; compared with the theoretical pre-
diction for the simple cubic Ising model. (After Blote and Huiskamp 1969).

The transition temperatures and exchange constants listed in table 11
have been derived from the heat capacity data. In the case of CoCs,Cly
the J/k so obtained was in reasonable agreement with the average value
deduced from the E.S.R. experiment. It must be noted that the listed
exchange constants include the dipolar contributions.
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Magnetic experiments on CoCs,Cl; have been performed by Mess et al.
(1967). However, the existence of a ferromagnetic interaction in this
compound makes a comparison with the antiferromagnetic Ising model
irrelevant. Not surprisingly, the measured antiferromagnetic suscepti-
bility deviates strongly from the prediction for the s.c. Ising antiferro-
magnet. Unfortunately, apart from the powder susceptibility, no
magnetic measurements on CoRb,Cl; have been performed up until the
present.

The interactions in the three Dy compounds in table 11 are predomi-
nantly of the dipolar kind, but they are well approximated by an Ising
8§ =1 model. The highly anisotropic properties of the Dy3+ ion have
been discussed in §2.2. The energy separation of the lowest Kramers
doublet and the first excited state is about 70 ecm~! in DyPO, and DAG,
and about 55 cm~! in DyAlQ,. Since the ordering temperatures are in
the liquid helium range, the population of the excited level is negligible,
leaving a ground state with a nearly perfect uniaxial magnetic character
(g, ~18; g, ~05).

DyAlO,

The crystal structure of DyAlO; is a distorted perovskite in which the
Dy ions occupy two magnetically inequivalent sites. The magnetic
structure has been determined by neutron diffraction by Bidaux and
Mériel (1968) and can in the antiferromagnetic state be described in terms
of a four-sublattice model, with the principal axes within the a-b plane.
There are six nearest neighbours, four in the a-b plane and two along the
¢ axis. From their optical work, Schuchert et al. (1969) found the inter-
actions to be mainly of dipolar origin with substantial further neighbour
contributions. Furthermore, they deduced the exchange interactions
within the a-b plane to be much smaller than along the ¢ axis. Conse-
quently, the total magnetic interaction along the ¢ axis is predominant,
which may explain why the critical parameters given in table 11, as
obtained by Cashion ef al. (1968) from the specific heat, are in better
agreement with an Ising model having a lower coordination number than
s.c. (compare with the diamond lattice, z=4). In table 11, T'./6 has
been deduced from the total magnetic energy (Cashion et al. 1968). By
fitting the measured parallel susceptibility to the Curie~Weiss law in the
region 6 < 7 <20 K Schuchert ef al. (1969) obtained §=18 + 3 K, giving
T,0~0-201 This again illustrates the errors that may arise when the
MF theory is applied, even in the temperature range 27 ,< T <57, in
particular for §=1.

From their measurement of the magnetoelectric susceptibility, Holmes
et al. (1971) were able to determine the critical behaviour of the sub-
lattice magnetization. The power-law fit yielded B=0-311 +0-005,
B=151+003 and 7,=3-525+0-001 K. The latter value is in good
agreement with 7',=38-52 K, as derived from the specific heat. The
B value is within the uncertainty equal to the theoretical prediction for
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3-d Ising lattices (B is thought to be independent of the precise lattice
structure). On the other hand, B is predicted to decrease slowly with
coordination number, being 1-66, 1-57 and 1-49 for the diamond, s.c. and
b.c.c. lattice, respectively (see, e.g., Fisher 1967).

Dy;AlLO;,

Dysprosium aluminium garnet (DAG) has the cubic garnet structure
containing six magnetically inequivalent Dy ions. The local z axis is
different for each of the six sites, with an equal number of moments
pointing along the +a, +b, and +c¢axes. As a consequence, the ordered
antiferromagnetic state must involve at least six different sublattices.
However, in a magnetic field along a (111) axis, the a, b, and ¢ axes
become equivalent in threes, so that the substance can be described within
a8 two-sublattice Ising model.

The extensive literature on this material includes specific heat, magnetic
resonance, magnetization, susceptibility, optical and neutron scattering
experiments, and one may safely say that it is one of the most extensively
investigated antiferromagnetic materials. Recently, Wolf, Landau,
Keen and Schneider have started a series of papers which aim to give a
complete picture of the magnetic and thermal properties (Landau et al.
1971, Wolf ef al. 1972). Since there is no use in reproducing all the in-
formation, we refer the reader to these publications for the full details as
well as references to the earlier papers.

What is of interest to us in the present context is how closely DAG
resembles a particular 3-d Ising model. Although calculations for the
garnet structure are absent, we may make a comparison with lattices of
a similar coordination number. In DAG about 809, of the total interac-
tion is between the nearest neighbours. The dipolar contribution to this
nearest-neighbour interaction is about twice as large as the exchange part
(see, e.g., Norvell et al. 1969 for a table of the various interaction energies).
Since there are four nearest neighbours one would expect the critical
parameters to agree with an Ising model with coordination number 4,
such as the diamond lattice. This is indeed observed from table 11.
That the sum of the interactions with further neighbours is only 209, of
the total interaction energy arises because the individual interactions have
a tendency to cancel. The estimate §#=3-7 £ 0-2 K used in table 11 was
obtained by Ball et al. (1963), who deduced the effective interaction
constant from both the heat capacity in the low-temperature region and
the total magnetic energy.

The observed value of the critical exponent for the magnetization
B=026 +0-02 (Norvell ¢ al. 1969) is lower than the accepted Ising
prediction, 8=0-312 (see §4.4). An accurate value for the amplitude
was not reported. The critical exponents associated with the staggered
susceptibility and the correlation length, also determined by these authors,
will likewise be discussed in § 4.4. Moreover, in that section the results
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of the measurement of the specific heat singularity are compared with
Ising model predictions.

Lastly we note that DAG is a suitable material for a study of the field
dependence of the thermodynamic properties, since the fields needed to
bring the system into the paramagnetic phase (for 7'< T'.) are lower than
10 kOe. Elaborate measurements have been reported by Landau ef al.
(1971), from which some very interesting features have emerged (see
§ 4.5).

DyPO,

This compound has the tetragonal zircon structure in which the magnetic
ions form a diamond-like lattice. The extensive study of this compound
by Wright et al. (1971) includes magnetic susceptibility, heat capacity and
optical measurements. In addition the temperature dependence of the
sublattice magnetization has been obtained by Rado (1969) from the
magnetoelectric susceptibility. The nature of the magnetic structure
(antiferromagnetic alignment along the ¢ axis) was confirmed by the
neutron diffraction studies of Scharenberg and Will (1971), and of Fuess
etal. (1971).

The excellent agreement between the experimental data and the theo-
retical results of Essam and Sykes (1963) and Sykes et al. (1965) on the
diamond S =1 Ising lattice (nearest-neighbour interactions only ; z=4)
is illustrated in fig. 50 (@), (b), (¢), where the plots of the heat capacity,
the parallel susceptibility and the sublattice magnetization have been
reproduced from the references cited. As mentioned above, the theo-
retical information is obtained from high and low-temperature series
expansions. An attractive point of the diamond lattice, in this respect,
is that the convergence of the low-temperature expansions appears to be
much faster than for other 3-d lattices. Discussion of the critical be-
haviour of the specific heat will again be postponed to § 4.4.

It must be stipulated that in the case of the specific heat and the sus-
ceptibility the only adjustable parameter in the series expansions is the
effective exchange J/k. In the present case J/k was determined by
comparing the observed exponential decay of €, and y, below T, with
the theoretical expressions for the limiting low-temperature forms of these
quantities [~exp (—z|J|/kT)]. The values obtained in this way are
wholly consistent and in agreement with that derived from the optical
work. As a final check one may compare the experimentally obtained
critical temperature 7',/0=0-678 +0-01 (using 7,=3-390 K and
J/k= —2-50 K) with the theoretical value 0-676. As concerns the sub-
lattice magnetization, comparison with theory in fig. 50 (c) involves the
low-temperature expansion for 7'/T,< 0-8, and in the critical region a fit
to the power law taking for the exponent f=0-314 and for the amplitude
B=1-661, values that are within the uncertainty of theory (see also § 4.4).

Before leaving DyPO, the question must be posed why in fact there is
over the whole temperature range such a striking agreement with the
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Fig 50 (continued)

1.0 =
~ ~ - . .
N
N\
08 AN
\
\
\
\
Q/a,
06+
oR
MM,
04+
e EXPER. Q/Q,
THEORY M/M, (Ising MopEL)
—~—— THEORY M/M, (MoLEcuLar FiELD)
021
o 1 L L 1

0 02 04 06 08
T/ T
(c)

Magnetic and thermal data on DyPO, compared with predictions for the S=1}
Ising model on the diamond lattice (z=4). For the references see the
text. (a) Magnetic specific heat. The solid curve is not a line drawn
through the experimental data but is the theoretical prediction obtained
from high and low-temperature series expansions! (b) Antiferro-
magnetic parallel susceptibility. The solid curves are the predictions
of the high and low-temperature expansions for xT/C. (¢) Tempera-
ture dependence of the spontaneous magnetization derived from the
magnetoelectric susceptibility. The solid curves are the low-tempera-
ture expansion and the power-law behaviour with 8=0-314 and B=1-661.

nearest-neighbour only Ising model, in view of the substantial contribu-
tions to the magnetic interaction from the long-ranged dipole interac-
tions that will exist in this material. Indeed, about 509, of the nearest-
neighbour interaction constant J/k cited above is of dipolar origin. The
only way out of the dilemma seems to be contained in the conclusion
drawn by Wright ef al. (1971) from their experiments, namely, that the
dipolar and exchange interaction of a given ion with neighbours other
than first tend to cancel. They found that, although the individual
interactions with further neighbours are considerable, their sum amounts
to only a few per cent of the nearest-neighbour J/k. By this fortunate
coincidence DyPO, distinguishes itself from the other two dysprosium
compounds, in which large further neighbour interactions have to be
reckoned with.
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In addition to the above-mentioned examples there are some other
more or less anisotropic materials that have been analysed in terms of
the 3-d Ising model. For instance, the specific heat of CoF,, which has
a ground doublet (effective spin ) with fairly anisotropic g values, is in
reasonable agreement with 3-d Ising predictions (Stout and Catalano
1955, Wielinga 1971). A complication here is the fairly high 7', value
(37-70 K) and the presence of higher energy levels that have a relatively
small separation from the lowest doublet. In any case, we expect that
table 11 comprises most of the clear-cut examples of the 3-d Ising anti-
ferromagnet with =1 known at present.

Turning now to Ising-like compounds of higher (effective) spin value,
there exist some Ni?* compounds (S=1) and Fe?t compounds (S=2),
that receive consideration. However, we repeat here the warning given
in § 2.2 that in these materials with higher spin values the anisotropy is
not as complete as in the Dy and Co compounds. As examples we
mention Ni(CN),NH,CcH,, in which the single-ion anisotropy and the
exchange were found to be about equal (Takayanagi and Watanabe 1970).
Furthermore, a number of Fe?+ compounds with effective § =2 typically
have an anisotropy that is about twice as large as the exchange. Such a
value for the anisotropy is certainly large enough for the critical behaviour
to be Ising-like. On the other hand, the spin-wave dispersion will still
be of the anisotropic Heisenberg form, the energy not being independent
of the wave-vector as in the Ising limit. Moreover at temperatures
Ts> T, the Ising §=2 formalism will break down.

As our last example we will therefore consider Fe¥,, which has also
been the subject of much research during the past 20 years. FeF, has
the rutile erystal structure and is isomorphous to MnF, and CoF,. In
the body-centred tetragonal magnetic lattice the moments are aligned
along the ¢ axis, with the moments at the cell corners antiparallel to the
central spin. The a,/c, ratio is about 1-4. 1In FeF, the splitting of the
5D state by a cubic field results in an orbital triplet lying lowest. The
orbital degeneracy of this level is removed by an orthorhombic distortion,
leaving an orbital singlet as the lowest level, with five-fold spin degeneracy.
Spin—orbit coupling (and spin—spin interactions) will further split this
orbital state, but since the first excited level is about 1600 K away,
whereas the spin—orbit coupling constant is only ~90 K, one may describe
the ground state by an S =2 spin Hamiltonian. The anisotropy is mainly
uniaxial (DS,2) and the exchange term contains small contributions from
next-nearest neighbours in addition to the (antiferromagnetic) nearest-
neighbour interaction. Hutchings ef al. (1970) have measured the spin-
wave dispersion, finding the interactions other than between nearest
neighbours to be only about 5%, of the nearest-neighbour exchange. From
their results one can calculate an effective exchange Jjk= —2-69 K,
leading to a Curie-Weiss 6=86 K, which compares favourably with
~82K as measured by Foner (1964). For the anisotropy constant
Hutchings et al. obtained Djk= —4-65 K.
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The transition temperatures vary slightly in the various publications,
but most agree to 7',=78-3 + 0-2 K. Such a high value is a disadvantage
in specific heat measurements, since it will be difficult to separate the
magnetic specific heat from the lattice contribution. In spite of this,
Stout and Catalano (1955) have succeeded in making a reliable subtraction
of the lattice part, mainly because they were able to estimate the phonon
contribution from the heat capacity of the isomorphous, non-magnetic
zinc compound. According to their results, about 879, of the total
magnetic entropy R In (28 + 1) is gained below 7', which may be compared
to the value of 929, predicted for the f.c.c. Ising lattice with §=2 (Domb
and Miedema 1964). For the b.c.c. Ising model there are no theoretical
calculations available, but one may obtain an estimate of about 88-5%,
by considering the difference between f.c.c. and b.c.c. for §=1.

Another critical parameter that can be compared with theory is the
transition temperature 7' /0. With T =78-3 K and =86 K we derive
T.0=091. The value for Ising b.c.c. with §=2 may be obtained in a
similar manner as above from the f.c.c. result (0-864), giving 7',/0=0-84.
The rather large difference might be due to a temperature dependence of
the exchange, since § was calculated from interaction energies measured
at 4-2 K. Analyses of high-temperature data (y, C,) by Lines (1967 a)
(see also Domb and Miedema 1964), although subject to large errors, have
indeed yielded a higher (69,) estimate for the exchange, bringing down
T,./6 to 0-86. In particular the magnetic energy parameters are not in
agreement with Ising model predictions (in contrast to the entropy para-
meters), and point to a larger value for §. This may be understood from
the expected failure of the Ising §=2 formalism at high temperature,
mentioned above.

On the whole, however, FeF, can be considered as being a fairly good
example of a b.c.c. Ising model with §=2. To illustrate the effect of a
change in spin value, we have therefore compared in fig. 51 its magnetic
gpecific heat with that of CoCs,Cl;, which as we have seen above approxi-
mates the §=14 b.c.c. Ising model. One may observe that the experiment
neatly confirms the expected increase in ¢, with S. The effects of short-
range order, reflected in the high-temperature tail, are predicted to become
less important by increasing § and this is also apparent from fig. 51.

The specific heat in the critical region has been studied by Salamon and
Ikushima (1971). The critical behaviour was found to be similar to that
observed in compounds with lower S (see § 4.4). Other experiments on
FeF, include Mossbauer (Wertheim and Buchanan 1967), ultrasonic
(Shapira 1970), N.M.R. (Gottlieb and Heller 1971) and neutron diffraction
studies (Hutchings ef al. 1972 a). Some of these bear upon the critical
behaviour and will also be mentioned in § 4.4.

In concluding the discussion of highly anisotropic 3-d magnets we
mention the only Ising-like ferromagnets that to our knowledge have been
found so far, namely the group of compounds R(OH); with R=Tb, Dy
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Fig. 51
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Comparison of the specific heats of two highly anisotropic materials with dif-
ferent 8. The (effective) number of nearest neighbours is eight in
both cases. This figure illustrates the qualitative differences arising
from a change in 8. For references to the data see the text.

and Ho (Wolf et al. 1968). Of these, Th(OH), seems to be the best
approximation of the Ising model, the first excited level lying 170 K
above the ground doublet (Scott ef al. 1969). In the case of Dy and Ho,
specific heat measurements indicated the existence of lower-lying excited
levels (Meissner and Wolf 1969). The transition temperatures are all
within the liquid helium region (7',=3-71 K for Th(OH);).

From the evaluation of the dipolar and exchange interactions in
Th(OH), by Skjeltrop and Wolf (1971), it turns out that the range de-
pendence of the interactions is quite complex, due to cancellations between
dipolar and non-dipolar contributions within the various shells of neigh-
bours on the one hand and between the total contributions of these shells
on the other. For instance, the dipolar part of the first neighbour inter-
action (z;=2) is nearly wholly cancelled by the exchange contribution.
The second neighbour interactions (z,=6) appear to be predominating,
but further neighbour contributions are substantial, to say the least.
Therefore, although the interactions are of the Ising type, one would not
expect to find agreement with a nearest-neighbour only model, except
perhaps very close to T, Indeed, the critical behaviour of the ferro-
magnetic susceptibility, which according to Wolf et al. (1968) obeys a
power law with a critical index y near to the 3-d Ising value of 1-25,
seems to be confined to a rather narrow range above 7',. The value of
the Curie—Weiss constant obtained by Skjeltrop and Wolf is §=4-47 K,
in agreement with the results deduced from susceptibility, caloric and
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optical measurements (Scott and Wolf 1969). This leads to 7,/ =0-83,
pointing to a fairly high effective coordination number.

Next we turn to the representatives of the 3-d Heisenberg model.
Evidently, since a large number of materials exist that are fairly isotropic,
one has to choose a certain maximum value for the anisotropy allowed for
a compound in order to be considered a reasonable approximant of the
Heisenberg model. Although there is a certain amount of arbitrariness
in such a choice, we have confined ourselves to substances in which the
ratio H ,/Hy of anisotropy to exchange field is not larger than about 19/.
In some respects this is already too large a value, for instance, as far as
the critical behaviour is concerned. In the preceding pages it has been
mentioned that the presence of anisotropy will cause a changeover from
Heisenberg to Ising character if 7', is approximated closely enough.
The distance of the changeover point (or region) from 7T, depends on
H,/Hy and theoretical work shows that in the case of an anisotropy of
19, the changeover already occurs outside the critical region, which for
the magnetization and the susceptibility extends to 1—7",/7' ~10-2 and
101, respectively. On the other hand, 1%, will be low enough to justify
comparisons of the general appearance of the specific heat curve with
Heisenberg model predictions.

The examples that remain after applying this criterion have been
compiled in table 12. It may be seen that (thanks to the existence of
the cubic perovskite structure) we have been provided with two extremely
isotropic materials, KNiF; and RbMnF,, having S=1 and S=3$, re-
spectively. For 8=} we are not quite as fortunate, which originates
for most part from the fact that Cu?+ compounds are particularly notorious
for their Jahn—Teller distortions (e.g. KCuF}).

CuCl, . 2H,0

This is the only example of a 3-d antiferromagnetic Cu compound that
we could find (Cu compounds tend to be ferromagnetic). At the same
time it is one of the earliest investigated antiferromagnets. Although by
no means an ideal example, we shall argue that its behaviour agrees
qualitatively with what is expected for a S=14, 3-d Heisenberg system.
In this respect the present analysis is a bit different from earlier treat-
ments (Marshall 1958, Nagai 1963, Oguchi 1955, and Hewson ef al. 1965),
in which the effects of short-range order as observed in the specific heat
and susceptibility were ascribed mainly to a chain-like character. How-
ever, it appears that the relative importance of short-range order is
certainly not larger than expected from the calculations for a 3-d S=1
Heisenberg antiferromagnet. That these effects are larger than commonly
observed in 3-d systems, arises merely from the low spin value. There is
thus no @ priori reason to assume a chain model in order to explain the
observed behaviour.

For instance, the specific heat, reproduced in fig. 52 from data of Clay
and Staveley (1966), shows no sign of a ‘ shoulder * above the peak at 7',

AP. K
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Fig. 52
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Specific heats of CuCl,.2H,0 and neodymium gallium garnet (NdGaG).
Both materials have S=4 and are fairly isotropic, in particular the
Cu compound. For references to the data see the text.

which would be indicative of a pronounced chain character. The entropy
change above T, is about 339, of £ In 2 (Friedberg 1952), which is of the
same order as (but even less than) expected for the Heisenberg s.c.
ferromagnet (389,). The difference between 7', and the temperature
T ..x of the maximum in y, was reported to be about 15%, of T, .
(Van der Marel et al. 1955). De Jongh (unpublished) has used the high-
temperature series expansion for the §=1, s.c., Heisenberg antiferro-
magnet (Baker ef al. 1967 b) to locate the susceptibility maximum. In
combination with the prediction for the transition temperature given by
Rushbrooke and Wood (1963), the difference is found to be 209, of 7', .-
(see also below). Again the agreement is satisfactory.

Nevertheless the exchange will likely be a bit smaller in one crystallo-
graphic direction. Indication of a chain character may be deduced from
the orthorhombic crystal structure, in which chains of octahedra linked
by edges are found along the ¢ axis. The copper ions are in the centres
of the octahedra and each ion has its two nearest neighbours along the
¢ axis, being connected with these via two Cu—Cl-Cu paths. The super-
exchange paths connecting it with the four next-nearest neighbours,
which are in the a-b plane, involve at least two ligands (Cl or O). The
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nearest-neighbour interaction is antiferromagnetic, the (net) coupling
within the a-b plane is ferromagnetic. This leads to the picture of anti-
ferromagnetic chains coupled by a weaker (ferromagnetic) coupling.
Alternatively one may conceive the structure as consisting of ferro-
magnetic layers, with an antiferromagnetic coupling J,; between them that
is stronger than the intralayer interaction J;. Evidence for a slight
canting of the moments out of the a-b plane (which is favoured by the
dipolar coupling) into the direction of the ¢ axis has been given by
Umebayashi et al. (1968). This effect has been predicted by Moriya and
later by Joshua (1970).

The net antiferromagnetic interaction may best be estimated from the
field needed to saturate the system at temperatures 7'<7T,. From the
measurements of Van der Sluys e al. (1967) one deduces
H,=(150 £10) kOe. Considering that the experiment was performed
on a powdered sample and that the orthorhombic anisotropy does not
exceed 19, one may safely put H,=2Hy*, so that Hyt=(75 + 5) kOe.
The g values have been measured by Gerritsen ef al. (1955), who obtained
9,=219; g,=2:04 and g, = 2-25 (see also Rao and Narasinhamurty 1963).
With the g value for a powder, g=2-16, we then calculate the antiferro-
magnetic exchange to be z,./ /k=—(11 +1) K. Assuming two anti-
ferromagnetic neighbours this leads to an antiferromagnetic exchange
along the ¢ axis of strength J,/k~ —55K. The ferromagnetic inter-
action in the a-b plane cannot be deduced from the existing data. One
may only estimate it to be about five times smaller than J,; in the follow-
ing way. From the theoretical value 7',/8 ~0-6 for a s.c., §=1, ferro or
antiferromagnet and the measured 7',=4-36, one obtains a mean value
for the interaction per magnetic neighbour of about 7/3 K. With six
neighbours and z,;|J|/k~11K, z,=2, this leaves a ferromagnetic
interaction of about 1 K,

Kvidence for zero-point spin deviations is found from the perpendi-
cular susceptibility extrapolated to 7'=0, in a similar way as discussed in
preceding sections. Using the value z,.J,¢/k= —11 K derived from H,
we calculate the y, in the b direction at 0 K to be y,5(0) =3-5 x 10~2 cm?/
mole from the MF formula : y (0)=Nyg2ug?/42|J|. This may be com-
pared to the experimental value x 2(0)=2-56 x 10-2 cm?3/mole found by
Van der Marel et al. (1955) for this direction. Since the anisotropy fields
are not larger than 1%, of the exchange field, one is apt to explain this
large reduction of (27 £ 5)%, of y,(0) as being nearly wholly due to zero-
point motions. Spin-wave theory (see, e.g., Keffer 1966) predicts a 259,
reduction of x,(0) in the case of a s.c. isotropic antiferromagnet, so that
once again the order of magnitude is correct.

The orthorhombic anisotropy may be estimated in the following way.
From the spin-flop field Hgp~6-5kOe (Hardeman and Poulis 1955,
Butterworth and Zidell 1969), the anisotropy within the a—b plane is
calculated as H '~ 280 Oe from the relations Hgp? ~2H#H I~ H H 1.
From AFMR results Joenk (1962) has found the out-of-plane anisotropy
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H,1 to be about three times as large as H,I. Thus we have H,!/
Hy~4x10% and H 1 /Hy~1-2%x 1072

Summing up we may say that CuCl, . 2H,0 has a fairly small anisotropy
and behaves grosso modo as expected for a 3-d S=1 Heisenberg anti-
ferromagnet. In spite of its imperfections it remains the best example
of this particular model available at present.

NdGaG

In a recent paper, Onn et al. (1967) have reported specific heat measure-
ments on a number of gallium garnets, some of which appear to approxi-
mate the antiferromagnetic, 8 =1, Heisenberg model. We have therefore
included Nd and Sm gallium garnet in table 12. From the total entropy
changes, which are near to R In 2, one concludes that only the lowest
doublet is populated. The critical parameters derived from the specific
heat are in reasonable agreement with the predictions for a Heisenberg
model with low coordination number (which is likely to be z=4 in these
garnets). Note that the theoretical values apply to ferromagnets. Esti-
mates of the dipolar contributions to the exchange yield rather small values.

However, it is very likely that, although the g values are not quite as
anisotropic as in DAG (Wolf ef al. 1962), the anisotropy in these garnets
will still be far larger than in CuCl, . 2H,0 (quantitative values have not
yet been obtained). This will be the explanation for the fact that the
specific heat curve of NdGa(, also plotted in fig. 52, lies above the result
for the Cu compound. The latter is therefore most probably a better
approximation.

KNiF,

This cubic perovskite is an extremely close approximation of a 3-d
nearest-neighbour only Heisenberg system. Although not yet known
quantitatively, the anisotropy will be very small. Dipolar contributions
cancel because of the cubic symmetry, which is retained also at low
temperatures (Okazaki and Suemune 1961 b, Scatturin ef al. 1961). As
concerns the crystal-field anisotropy, we may compare KNiF, with
K,NiF,, since in both cases the Ni%* ions are surrounded by an octahedron
of F~ions. In K,NiF, this octahedron has a small tetragonal distortion
of about 1-5%,, which, as we have seen in the above pages, gives rise to
a uniaxial anisotropy of the order of 10-3. Since for KNiF; there is
no indication of such an effect, one expects the anisotropy to be at least
one or two orders of magnitude smaller., Furthermore, there exists
evidence that next-nearest neighbour interactions are a mere 5x 10=3 of
the nearest-neighbour exchange (Yamaguchi and Sakamoto 1969). The
only setback is the high position of the transition point, T,=246 K
(Nouet et al. 1972) which greatly hampers an accurate determination of
the magnetic specific heat.

Lines (1967 b) has given an extensive discussion of KNiFy and has been
able to obtain a fairly accurate estimate of the exchange by analysing the
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measured powder susceptibility (Hirakawa et al. 1960) in terms of the high-
temperature series expansion. From the fit of the paramagnetic suscepti-
bility to this expansion he obtains J/k=43 + 2 K. The series expansion
also indicated the position of the maximum in the susceptibility. Relat-
ing this to the experimentally observed 7T(ym.x)=275K, Lines finds
Jjk~45K. Furthermore, withJ/k=43 K, the experimental 7' /0=0-716
is in good agreement with the prediction 7',/8 = 0-721 for an s.c. Heisenberg
antiferromagnet with §=1 (Rushbrooke and Wood 1963, Rushbrooke
et al. 1973), also derived from analyses of series expansions. Although
Chinn et al. (1971) obtained J/k= —50-8 +0-6 K from the analysis of
their two-magnon Raman scattering experiments, we will adhere to the
value J/k= —44 K, since also in the case of K,NiF, the J/k determined
by these authors was more than 109, higher than the other results (see
above).

Also in the case of KNiF;, having S=1, one should expect a substantial
reduction of the x, (0) arising from zero-point motions. For S=1,
spin-wave theory predicts a 139, reduction. Unfortunately there is
only a powder susceptibility measurement available, but one may put
Xp(0)=%x,(0)+x, . and calculate the experimental y, (0) from the
measured x,(0)=90x10"%cm?/g and the temperature independent
Van Vleck term y, , =2-4x 10-% cm3/g, as determined by Lines (this will
include the diamagnetic contribution). The result y,(0)=1-53 x 10~3 cm3/
mole may be compared with the value y, (0)=Ng?uy?/4z|J|=1-80 x 103
cm3/mole calculated with ¢g=2-25 and J/k=44 K, yielding an apparent
reduction of ~159%,, in reasonable agreement with expectation, considering
the uncertainties involved.

Another test of zero-point spin deviation in this material has been
accomplished by Hutehings and Guggenheim (1970) who, from neutron
diffraction measurements, deduced the effective moment to be <8,> =0-851
(£0-050). In this experiment the reduction of the observed moment
arises from the combination of zero-point effects (prediction :
<8,>=8-—0-078 for zero anisotropy) and of covalency (prediction still
rather uncertain). As regards the order of magnitude, the observed
reduction (~15%,) of the magnetic moment is in accord with theoretical
calculations that take into account both covalency and zero-point effects.
The experimental accuracy, however, was too limited to enable a choice
between the different theoretical estimates of both effects.

RbMnF,

This isomorphous compound is at least as ideal as KNiF;. Its aniso-
tropy has been measured and is a minute H,/Hy~5%x10-%¢! From
X-ray studies Teaney ef al. (1966) concluded that departures from cubic
symmetry larger than a few parts in 10° were not present. Hardly any
thermal expansion effect is seen at T, (=83-0 K). Second-neighbour
interactions will be of the same order as in KNiF;. In short: KNil,
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and RbMnF; are most certainly the best approximations of the nearest-
neighbour only Heisenberg model known at present.

The spin-wave dispersion relation in RbMnF, has been measured by
Windsor and Stevenson (1966) with neutron diffraction. It has been
reproduced in fig. 58 of § 4.2 as being the best example available of the
isotropic antiferromagnetic dispersion relation. The anisotropy gap is
80 small (0-4 K) that it is not discernible, so that all the data essentially
fall on a sine curve, representing the behaviourin the absence of anisotropy.
The authors found no detectable next-nearest neighbour interactions,
and determined the nearest-neighbour exchange as Jjk= —34+0-3 K,
in agreement with earlier determinations. From AFMR experiments,
Teaney et al. (1962) and Freiser et al. (1963) calculated the anisotropy,
which corresponds to a field of 4-5 Oe only (four-fold symmetry).

A more accurate value for J/k may be deduced from the susceptibility
data (single crystal) of Breed (1969). Due to the small value of H , the
critical field is only about 3 kOe. Accordingly, for fields exceeding this
value measurements in any direction will yield the perpendicular suscepti-
bility, since also with the field parallel to the easy axis the moments will
have swung to the perpendicular orientation. This of course mimics the
behaviour of an ideally isotropic Heisenberg antiferromagnet, which does
not differentiate between parallel and perpendicular, since the y, is
only defined for H,#0. Evidently this is the reason why one expects
the y of the ideal isotropic model to be identical (at least at 7'=0) to the
¥, as given by the spin-wave theory in the limit H , —0.

Breed’s experimental results in fields H > Hgy, are shown in fig. 53 (a),
where they have been fitted to the series expansion in the high-temperature
region. The H.T.S. curves for S=4§ and S=1 shown here have been
calculated (De Jongh, unpublished) using the coefficients of the s.c.
lattice (7 and 10, for S=3 and 1, respectively) given by Rushbrooke and
Wood (1958), Stephenson et al. (1968) and Baker ef al. (1967 b). Most
gratifyingly, the maximum in y is indicated by the series (7',,/60=0-80
and 0-77 for S=} and §, respectively). Below the maximum the in-
accuracy of the predictions (obtained by extrapolation to an infinite
number of terms) increages very rapidly, so that the apparent agreement
between theory and experiment for 7 ,< T < T ,,,, for RbMnF; may be
fortuitous. The 7'.’s indicated in the figure (7',/0=0-64 and 0-72 for
S8 =1 and §, respectively) are theoretical values for the s.c. lattice obtained
by Rushbrooke and Wood (1963), that should be accurate within a few
per cent. The experimental value for RbMnF; is 7,/0~0-70, using
T,=83-:0K (Teaney et al. 1966, Golding 1971) and J/k=3-40 +0-05 K
derived from the fit of the y data for 7'<120Kf. The horizontal
arrows labelled @ and b in fig. 53 indicate the values for y,(0) predicted
by the spin-wave theory (see Keffer 1966) for the s.c. lattice with S=§

and S=1, respectively. One may see that good agreement is obtained

1 For T>100 K a systematic decrease of J with T was found, that can be
correlated to the observed thermal expansion (Teaney ef al. 1966).
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(@) Measurements of the (perpendicular) susceptibility of RbMunF, by Breed

(1969), fitted to the high-temperature series expansion (H.T.S.) for the
s.c., §=4, Heisenberg antiferromagnet. The molecular field prediction
(MF) and the H.T.S. result for S=1 are also shown. The horizontal
arrows a and b indicate the spin-wave predictions for y (0). The
vertical arrows indicate the predicted positions of the maxima in the
susceptibility (7',,,) and of the transition temperatures (7',). Both
follow from H.T.S. expansions, the latter having been reported by
Rushbrooke and Wood (1963). (6) The perpendicular and parallel
susceptibilities of MnF,, which is a typical example of a fairly isotropic
3-d antiferromagnet.
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for RbMnF,;, and that the predicted reduction of y, (0) with respect to
the MF theory (about 5%, for 8=3%) is verified, the experimental error in
x being of the order of 19,. As outlined in the preceding pages, this
reduction is the consequence of zero-point spin deviations. Another
test of the spin-wave theory is provided by the work of Montgomery
(1966) who found clear evidence for a 7 dependence of the magnetic
specific heat at low temperatures, in accordance with simple spin-wave
theory (see fig. 66, § 4.2).

Critical indices for the staggered susceptibility, sublattice magnetiza-
tion and inverse correlation range have been deduced by Lau ef al. (1969)
from inelastic neutron scattering near 7T, Together with the indices
for the specific heat reported by Teaney (1966) and Golding (1971) they
form a more or less complete set of critical parameters that is of great
value in testing Heisenberg model and scaling law predictions (§ 4.4).

MnF,

Similarly extensive information regarding the critical indices is avail-
able for MnF, (Schulhof ef al. 1970, 1972, Heller 1966, Teaney 1965). By
comparing the results for the two manganese compounds one may study
the influence of anisotropy, since this is much larger in MnF,
(H /Hg~1-6x10-2). This matter will be taken up in § 4.4.

The (rutile) structure of MnF, is body centred tetragonal, the direction
of the moments being along the ¢ axis. (2,=4-87A; ¢,=3-31 A). The
main interactions are a weak ferromagnetic interaction along {001] and
an antiferromagnetic interaction along [111] of magnitude J/k= —1-76 K.
Apparently the exchange paths are such as to make the coupling between
nearest neighbours (along the ¢ axis) much weaker than that between the
central spin and those at the cell corners (next-nearest neighbours). The
accurate value for J/k has been calculated by Trapp and Stout (1963) from
their measurements of the perpendicular susceptibility (taking into
account zero-point spin deviation). The estimate 0-3 +0-1 K for the
exchange along the ¢ axis (and ~0 K for the exchange along [100] and
[010]) follows from the work of Brown et al. (1961) and Okazaki ef al.
(1964), who used paramagnetic resonance and neutron diffraction tech-
niques, respectively.

The (uniaxial) anisotropy may be calculated from the spin-wave gap
as measured by zero-field, zero-temperature AFMR by Johnson and
Nethercot (1959). They found w/y=(9-33 £+ 0-05) x 10* Oe, in excellent
agreement with the value 9-3 + 0-2 x 10* Oe obtained by Jacobs (1961) for
the spin-flop field. With the aid of the formula (w/y)?=2HgzH , —H ,?
and the above-mentioned value for the antiferromagnetic exchange, one
deduces H,=82200e (H,/Hy;~1-6x10"2), which should be accurate
within 29). It turns out that the anisotropy is for the most part of
dipolar origin. XKeffer (1952) calculated the dipolar contribution to be
8300 Oe. Correction for zero-point reduction (2-4%,) reduces this to
8100 O¢. The remaining part of about 100 Oe, due to ecrystal-field
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effects, is considerably smaller than Keffer’s estimate of 500 Oe, yet it
is about twice as large as that reported for K,MnF, (Folen 1972).

The eritical temperature is 7',=67-34 K (Heller 1966), although values
differing slightly from sample to sample have been reported (Teaney
1965). With the exchange constants given above one calculates
T.0~0-79, which may be compared with the prediction 0-75 for the
b.c.c. Heisenberg antiferromagnet with S=3% (Rushbrooke and Wood
1963). The entropy gained at 7, is 8549 of RIn6 (Stout and
Catalano 1955), whereas for the b.c.c. ferromagnetic S=3% Heisenberg
model the value is 819, (Rushbrooke e/ al. 1973). Tt is not likely that
these discrepancies may be attributed to the anisotropy. Dalton and
Wood (1967) have studied the influence of anisotropy on the critical para-
meters of §=1 Heisenberg ferromagnets. From their results one can
conclude that an anisotropy of 1-29%, is too small to produce shifts of this
magnitude from the pure Heisenberg values. More probably the origin
will be a somewhat higher effective coordination number than z= 8, due to
the various interactions present.

The susceptibility of MnF, is shown in fig. 53 (b). The perpendicular
susceptibility is quite similar to that of RbMnF,. Since the spin-flop
field is about 10° Oe, the parallel susceptibility can be easily measured in
fairly high fields. The behaviour shown in fig. 53 (b) is typical for fairly
isotropic 3-d antiferromagnets. We also mention the spin-wave analysis
of the susceptibility by Kanamori and Itoh (1968) (experimental data of
Trapp and Stout 1963).

Next we turn our attention to the known examples of the isotropic 3-d
ferromagnet. These are also very few in number, in fact there are only
two magnetic systems that receive consideration ; the series of compounds
M,CuX, . 2H,0, where M=K, Rb, Cs or NH, and X =CI or Br, and
EuO and EuS. As we shall see, these materials are still far from ideal,
at least when one wants to make a comparison with nearest-neighbour
only Heisenberg models. To the above list one may add CrBr,, but
with the proviso that only the critical behaviour is considered, since farther
away from T, the layered character of this compound will have its
influence on the thermodynamic behaviour. For this reason we have
not included CrBr; in this section, but we will mention the results obtained
in the critical region in § 4.4.

M,CuX, . 2H,0(M=K, Rb, Cs or NH,; X =Cl or Br)

The salts of this general formula have a body-centred tetragonal unit
cell. Hach Cu?t ion is surrounded by an approximate octahedron of
four chlorine or bromine ions and two water molecules, the latter lying
along the c¢ axis, whereas the halogen ions are within the a-a plane.
Since the c¢,/a, ratios are of the order of 1-05, the magnetic structure may
be considered as being approximately b.c.c.

The earlier measurements were caloric and magnetic experiments on

K,CuCl, . 2H,0 and (NH,),CuCl,. 2H,0 by Miedema et al. (1963),
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subsequently extended to Rb,CuCl, . 2H,0 and (NH,),CuBr, . 2H,0
(Miedema et al. 1965). The main results of these investigations are the heat
capacity data shownin fig. 54 and the spin-wave specificheat, tobediscussed
in §4.2. Later publications of various authors have been concerned mainly
with (NH,),CuBr, . 2H,0, in particular with the critical behaviour.
This is another magnetic substance of which there is a more or less a
complete set of critical indices available (see §4.4). Lastly, the com-
pound Rb,CuBr, . 2H,0 may be added to the above list of isomorphous
salts.

Fig. 54
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Heat capacities of four isomorphous ferromagnetic copper salts (S=3%), the
magnetic structure of which is approximately b.c.c., although with
substantial next-nearest neighbour interactions. (After Miedema et al.
1965.)

One may observe that the specific heat data of the four isomorphous
salts in fig. 54 seem to fall on a single curve, in spite of the expected
differences in anisotropy and other deviations that may exist. This led
Miedema et al. to conclude that the common curve in fig. 54 will be a
good approximation of the b.c.c. Heisenberg ferromagnet with mainly
nearest-neighbour interactions. However, although qualitatively the
curve is indeed representative for the S=% Heisenberg ferromagnet, a
closer comparison of the critical parameters of the specific heat with
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Heisenberg model predictions points to the presence of substantial
further neighbour interactions (cf. table 12). This was already recog-
nized by Wood and Dalton in 1966, who analysed the experimental data
on (NH,),CuCl, . 2H,0 and K,CuCl,.2H,0 and concluded the relative
strength of the next-nearest neighbour interaction to be about 259, of
the nearest-neighbour exchange. They did not mention the anisotropy
as a possible mechanism to explain the observed shifts in the critical
parameters with respect to the nearest-neighbour model. It turns out
indeed that the anisotropy is too small to have an appreciable effect.
For the bromine compounds the anisotropy is H,/Hp~7x10-3 (Velu
et al. 1972, Suzuki and Watanabe 1967, 1971), for the chlorine compounds
it will be probably even less. In fact Ford and Jeffries (1966) have
produced the estimate H,<100e for K,CuCl,.2H,0, leading to
H,/Hzy<6x10"%. One may estimate the effect of an anisotropy of 19,
on T ./6 and on — E_|RT with the aid of the calculations of Dalton and
Wood (1967) on the anisotropic Heisenberg model. Interpolating between
their values one obtains an upward shift of 19, in 7,/# and a downward
shift of 39 in — E /RT,, both with respect to the values of the fully
isotropic b.c.c. ferromagnet (0-63 and 0-46 respectively). Clearly the
effect is much to small too account for the experimentally found deviations
from the nearest-neighbour model (table 12).

Recently, Van Amstel ef ol. (1974) have measured the (effective)
exchange constants of Cu(NH,),Br,.2H,0 and CuRb,Br,.2H,0 and
also re-examined the earlier data on J/k of the other compounds. Their
results for J/k and T /0 are listed in table 12. Comparing these 7T/
values with those of the equivalent neighbour Heisenberg models also
given in table 12, one is apt to conclude that the further neighbour
interactions are even more substantial than as estimated by Wood and
Dalton. These results, combined with the critical parameters of the
specific heat, point to an effective number of equivalent neighbours of
at least 17. Van Amstel ef al. point out that such a high number is quite
possible in view of the crystal structure, since an examination of the
superexchange paths connecting the various neighbours shows that the
interactions between first, second and third neighbours may very well be
comparable in strength. Summing up one may say that these materials
are fairly isotropic but certainly not good examples of the nearest-
neighbour only, b.c.c., Heisenberg ferromagnet. Instead the properties
resemble those of the equivalent neighbour model with first and second
neighbours.

The other experimental work that is not mentioned here is mostly
concerned with measurements of the susceptibility and magnetization.
The discussion of these papers is postponed to § 4.4.

EuO and EuS

These magnetic semiconductors have the rock-salt structure, in which
Eu?* ions form a f.c.c. lattice. The large spin S=% and the very small
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anisotropy, which amounts to H ,/Hy ~2 x 10~ for EuS (Franzblau ef al.
1967) and H,/Hy~7x107* for EuO (Miyata and Argyle 1967), make a
comparison with the classical Heisenberg model appropriate. A dis-
advantage of KuO is that the magnetic properties are rather strongly
dependent on stoichiometry. McGuire ef al. (1972) have reported evidence
of considerable contributions to the exchange from excess Fu. With
increasing Eu concentration the Curie-Weiss 8 was found to vary from
76 K to 84 K (the 8’s were determined from data above 200 K). More-
over, both EuO and EuS have the same complication as the Cu com-
pounds discussed above, namely, the existence of substantial next-
nearest neighbour interactions.

The reported values for the exchange constants vary somewhat accord-
ing to the method of measurement. For EuO, Boyd (1966) has obtained
JJk=(0-75 3 0-025) K and J,/k=(—0-098 + 0-004) K from a spin-wave
theoretical analysis of the magnetization. Henderson et al. (1970)
applied a similar analysis to the low-temperature specific heat, find-
ing J,/k=(075 £ 0:02) K and J,/k=(—0-084 +0-02) K. Contrastingly,
Passell et al. (1971) deduced Ji/k=(0-602 + 0-008) K and J,/k=(0-155

+ 0-014) K from the spin-wave dispersion curve, as measured with neutron

diffraction. Since Passell ef al. seem to be quite sure about the positive
sign of J,, there is a clear disagreement between their result and the
specific heat and N.M.R. analyses. An even larger positive value for
J, was reported by Menyuk et al. (1971), who obtained J,/k={(0-53
+0-005) K and J,/k=(0-26 £ 0-1) K. The discrepancies between these
various J [k values could be caused by the effect of an excess of europium,
described above (for EuS there is a reasonable agreement between the
J |k values of Passell et al. and those derived from N.M.R. and specific
heat measurements, so that the methods of analysis do not seem to be
at fault). Since the authors give no information about the chemical
analyses of their samples it is not possible to decide which determination
is best. Also the resulting 7T',/6 values give no clear indication. The
nearest-neighbour only f.c.c. ferromagnet with §=7% is predicted to have
T.0=078 (Rushbrooke and Wood 1958), for the equivalent next-
nearest neighbour model the value is 0-85 (Rushbrooke et al. 1973). The
combinations of Boyd and of Henderson et al. both yield 7,/6=0-78,
whereas Passell’s gives 0-81 and that of Menyuk ef al. 0-83 (in all these
calculations 7,=69 K has been adopted). Although one expects the
value to lie in between 0-78 and 0-85, probably near 0-80 in view of the
ratio |J,/J,|, there is certainly no clear choice possible. We would
conclude therefore that J,/k~0-6 K and |J,/J,|~0-2 with evidence in
favour of J, to be positive. The critical energy parameters listed in
table 12 are taken from the work of Argyle et al. (1967).

Fortunately the situation is better in EuS. Callaway and McCollum
(1963) obtained J,/k=(0-17 + 0-02) K and J,/k=(—0-013 + 0-032) K from
the specific heat ; Charap and Boyd (1964),J,/k=(0-20 £ 0-01) KandJ,/k=
(—0-08 F0-02) K from the magnetization. The values of Passell et al. (1971)
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are J,/k=(0-234 + 0-016) K and J,/k=(—0:098 + 0-014) K. We conclude
therefore to J,/k=(0-21+0-03) K and J,/k~ —0-09 K, yielding with
T.=16-4 K a value T,/0=0-81.

Of the many interesting experiments we mention further the work of
Matthias et al. (1961), who discovered the ferromagnetism in EuO, the
N.M.R. measurements of Heller and Benedek (1965) on EuS, the thermal
expansion experiment of Argyle et al. (1967) on EuO (critical energy para-
meters), the specific heat measurements of Teaney et al. (1968) on EusS,
and the neutron diffraction work of Als-Nielsen et al. (1971) that produced
values for the critical indices 8, y and v. We will discuss the results of
some of the above papers in the next section, in the sections on spin-wave
theory (4.2) and on critical behaviour (4.4).

3.3.3. Concluding remarks

The above discussion concludes the list of interesting examples of
simple magnetic model systems given in this section and in the preceding
ones. Within the outline of the present review, 3-d systems play their
role in that they are the closest approximation of the molecular field
model, in accordance with the general picture given in the introduction
that explains the qualitative behaviour in terms of correlation functions.
It is gratifying to observe how close the agreement between theory and
experiment is on this point. Thus we have seen how in 3-d antiferro-
magnets the difference between 7', and the temperature at which the
maximum in y occurs is typically of the order of 10%, of 7' (x,,.), Whereas
it is a huge 509, in the 2-d cases. Likewise, the changes in entropy and
energy above T, are very much smaller in three than in two dimensions,
as expected. Moreover, also in quantitative respect the experiments
satisfactorily confirm the theoretical results.

Lastly we have observed the importance of quantum-mechanical effects
from the influence of the spin value on the specific heat or the quantity
T./6. The experimental results do corroborate the theoretical predic-
tions in that within a given magnetic lattice the differences between the
observed behaviour and MF theory are enhanced by decreasing S, becom-
ing especially apparent for §=1.

Since the critical behaviour found in 3-d systems will be treated in a
§ 4.4, we will now proceed to the last section.

§ 4. SPECTAL TOPICS. FURTHER COMPARISON OF THEORY AND
EXPERIMENT

In the preceding sections we have had occasion many times to fit
experimental results to existing theories. In most cases specific heat or
susceptibility measurements were concerned.

The present section will be devoted to a closer examination of to which
extent various existing theoretical approaches have been or can be
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checked by the experimental work. Evidently we shall rely heavily on
the examples already presented above.

The main topics that we shall consider are spin-wave theory, series
expansions, critical behaviour, and the field-dependent properties of
magnetic substances. In the first section, moreover, some of the new
developments in the application of neutron scattering to the study of
magnetic substances will be discussed. This clearly is appropriate,
since this technique has played a very important role recently in the
research on 1-d and 2-d systems, as well as in testing spin-wave theory
and in the determination of critical exponents.

4.1. Neutron diffraction

In this section we will briefly mention some of the principles of this
technique, in particular in connection with the study of spin waves and
its important contribution to the field of 1-d and 2-d magnetism. An
extensive review of the theory of magnetic neutron scattering has been
given by Marshall and Lowde (1968). The interested reader may also
consult the recent book of Marshall and Lovesey (1971).

Besides the nuclear scattering common to all solids, arising from the
diffraction of the incident neutron beam by the nuclei of the atoms in
magnetic crystals, there is an additional magnetic scattering, due to the
interaction between the magnetic moment of the neutron and that of the
electrons. One may distinguish between elastic scattering, that may be
used for the determination of the magnetic structure, and inelastic scatter-
ing which supplies a means of studying the magnetic excitations by
measuring the changes in energy on coilision, caused by the creation or
annihilation of a magnon. In this way the spin-wave dispersion at low
temperature or the evolution of a spin wave of a particular wave-vector
with temperature may be studied.

Since the intensity of the magnetic Bragg scattering at zero field is
proportional to the square of the spontaneous magnetization, the tempera-
ture dependence of the Bragg peaks yields the behaviour of the magnetiza-
tion or sublattice magnetization and thus the critical exponent 8. In
addition to the coherent Bragg scattering, which evidently vanishes at
T., an important contribution to the elastic scattering at small values of
wave-vector k& arises from the critical or diffuse scattering. This critical
scattering becomes predominant as 7', is approached and since it is due
to fluctuations of regions of short-range order it is also present above T'.
Although it is therefore of dynamic origin and thus partly inelastic, the
critical scattering near to 7', and for small angles of scattering is for most
part elastic, the conditions being that the transit time of a neutron through
a region of correlated spins is short compared with the fluctuations in
the magnetization, and that the inelasticity of the scattering is small as
compared to k7. It may be shown that in this so-called quasi-elastic
approximation the critical scattering is simply proportional to the
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wave-vector dependent susceptibility so that the peak in the eritical
scattering for k=0 observed at 7', reflects the susceptibility divergence.

Neutron scattering therefore provides us with a method of not only
measuring the ferromagnetic susceptibility but also the staggered suscepti-
bility of an antiferromagnet, which at first sight sounds like a rather
hypothetical quantity in view of the apparent difficulty in realizing a
staggered field in the laboratory. Since an antiferromagnet in a staggered
field is equivalent to a ferromagnet in a normal field, one may indeed
directly compare the critical exponent o obtained from the staggered
susceptibility of an antiferromagnet with that of its ferromagnetic
counterpart, or with theoretical predictions for the latter (§4.4). The
sublattice magnetization of an antiferromagnet is evidently also a staggered
quantity, but, as we have seen, in this case other measuring techniques
besides neutron diffraction are available (N.M.R., Mossbauer effect,
magnetoelectric effect).

In addition to the static susceptibility y(0) the behaviour as a function
of wave-vector is of interest. At 7T =7, theory predicts the wave-
vector dependent susceptibility to diverge as a function of k according to
(Ritchie and Fisher 1972, Fisher and Burford 1967)

2(K) xo(k) ~1/k* (k—>0; T=T,). (4.1)

In this expression the wave-vector dependent susceptibility is normalized
by the susceptibility y,(k) of a paramagnetic system, and is defined by

(k) xo(k) = X exp (ik . r)x(r). (4.2)

Moreover y(k) for T =T, is predicted to behave as (Fisher and Burford
1967)

2k, T)/xo(k) ~ (s + -2 27 (1c® + fle?) (4.3)
where ¢(T') is a slowly varying function of order 0-05, >~ 1, and « has the

dimension of a length and is called the effective inverse range of correla-
tion. Instead of (4.3) the approximate formula

£k, T)/xo(k) ~ 1/ (s® + k21712 (4.4)
is often used. The inverse range of correlation is expected to vanish at

T, according to
Ty~ -T./Ty for T-T., (4.5)

A similar formula applies for T'<T,. Thus the wave-vector dependent
scattering intensity involves the two critical exponents » and v in addition
to the exponent y describing the (static) susceptibility divergence

%(0)/xo~ (L=T/T)™. (4.6)

Theory predicts these three exponents to be related by (2—n)v=y. In
the classical Ornstein-Zernike theory n=0 and v=0-5 so that y=2v=1,

A.P. L
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the mean-field value. According to the Ornstein-Zernike theory (4.4)
thus reduces to

R0} xo~ 1/ (®+ k). (4.7)

For the 2-d Ising model v=1 and n=1%, whereas for the 3-d Ising model
y~0:64 and y~0-06. The Lorentzian form (4.7) of the scattering will
therefore give a reasonable description of the scattering in 3-d crystals,
but will be wholly inadequate in the 2-d case.

The parameter «(7T'), which is defined more formally as the reciprocal
of the k2 term in the expansion of 1/{(k) in powers of & (Fisher and Burford
1967), should be distinguished from the true inverse range of correlation
k, that appears in the exponential factor exp (—«y), through which
according to general theoretical expectations the decay of the correlations
T'(r) is thought to be predominated. In the critical region « and «, are
expected to be approximately equal, at least proportional, but away from
T, they will differ considerably (Fisher and Burford 1967).

Apart from the difference in the values for the critical exponents,
there are other marked differences between the elastic scattering in
systems of magnetic dimensionality one, two or three. This was pointed
out by Birgeneau et al. (1969, 1970 b) in the work on 2-d K,NiF, and by
Skalyo et al. (1970) in their study of the linear chain CsMnCl; . 2H,0.
The argument is exemplified in fig. 55, taken from the latter paper. In
the usual 3-d situation, Bragg scattering will be observed at the reciprocal
lattice points. However, if the long-range order extends only in two or
in one dimensions, the Bragg condition will occur with respect to lines
and planes in reciprocal space, respectively. Thus in 2-d systems,
for instance, instead of Bragg peaks one will observe Bragg ridges. A
similar argument also applies for the diffusive part of the scattering
which should thus take the form of a ridge or a plane in 2-d and 1-d
systems, respectively. Accordingly, the k dependence of the suscepti-
bility will be such that k is measured from the reciprocal lattice line or
plane, respectively.

Reversing the argument, the observation of such 1-d or 2-d magnetic
scattering provides convincing proof for the apparent lower dimensionality
of the magnetic system. In the preceding sections we have already
mentioned how the measurements of the spin-wave dispersion curves by
inelastic scattering give evidence for the nature of the magnetic ordering
by showing the lack of dispersion in the directions perpendicular to the
magnetic reciprocal lattice planes or lines in 1-d or 2-d systems, re-
spectively (figs. 24 and 37). Additional proof is supplied by the elastic
measurements, and as an example we have reproduced in fig. 56 (), (b), (¢),
the pioneering work of Birgeneau et al. (1969, 1970 b) on K,NiF,. The
existence of a ridge may be readily established from scans of the type A
and B shown in fig. 56 (@). In fig. 56 (b) it is seen from the data taken at
99 K and 95 K (the transition point is at 97-23 K) that such 2-d behaviour
is indeed present as far as the critical scattering is concerned. Scan B
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Fig. 55

REAL SPACE RECIPROCAL SPACE
® UP SPINS 0 NUCLEAR
o DOWN SPINS B BRAGG PEAKS

Illustration of the type of magnetic Bragg scattering that may be expected
from various types of magnetic ordering in a 3-d crystal. From top to
bottom we have 3, 2, and 1-d magnetic ordering, giving rise to magnetic
Bragg peaks, lines and planes, respectively. (After Skalyo et al. 1970.)

along (1, 0,7) (along the top of the ridge) gives a fairly constant value
far above the background, the decrease in intensity at large ! being
caused by geometrical factors. On the other hand, scan A along (k, 0,
0-25), perpendicular to the ridge, shows a sharp peak with a linewidth
determined by the instrumental resolution. In cooling through the
transition, sharp Bragg peaks appear on top of the ridge at the magnetic
reciprocal lattice points, as is observed from the data taken at 95 K.
Approximate integration indicated that the intensity in the Bragg peak
is just that lost by the ridge. As shown in fig. 56 (c) the Bragg peak
intensity increases very rapidly as the temperature is lowered, at the same
time the ridge intensity decreases. It may be seen that the ridge reaches
its limiting intensity and linewidth at 7',, and that the behaviour in the
paramagnetic region is analogous to the critical scattering in a 3-d system,
the difference being that the temperature scale is greatly expanded.
From the measured linewidth one may obtain the length over which the

L2
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Fig. 56 (continued)
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(@) Chemical and magnetic structure of K,NiF,, showing the antiferromagnetic
arrangement of the nickel spins. There are two magnetic domains ;
inversion of the central spin exchanges the ¢ and b axes. The open and
filled circles in the reciprocal lattice refer to these different domains,
the double circles correspond to the nuclear Bragg peaks. The thick
lines indicate the magnetic reciprocal-lattice rods. Two types of scans
have been indicated by A and B. (b) The upper set of curves corresponds
to scans of the type B along the top of the ridge, the lower set to scans A
across the ridge. (c) Top : scattering intensity at the (1, 0, 0) peak as a
function of temperature. Bottom : scattering intensity of the (1,0,
0-25) peak and linewidth for scan A as a function of temperature. (After
Birgeneau et al. 1970 b.)

spins are correlated. As Birgeneau ef al. point out, in K,NiF,, even at
T=2T, the estimated length is still 23 A (within the planes), whereas
Cooper and Nathans (1966) have reported that in KMnF, at T=1-1 1T,
the correlation length has already decreased to 12 A.

Since no evidence of 3-d critical scattering is observed both above and
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below T, the conclusion is that the diffuse scattering is indeed wholly
2-d in form. This supports the picture, obtained by various pieces of
evidence, that in this system the occurrence of a phase transition is really
caused by the 2-d properties and that the 3-d correlations play a very
minor role. The most probable explanation for the occurrence of long-
range order (cf. § 3.2.1) is that as the temperature is lowered to the value
at which the staggered susceptibility is predicted to diverge, the correla-
tions become of such a long range that the anisotropy may trigger the
occurrence of long-range order within the layers; and once long-range
order is established in two dimensions it will of necessity occur also in the
third, since even the smallest interplanar interaction is then amplified
by N, the number of spins within a plane. That the long-range order is
most probably established by the anisotropy rather than by the (much
smaller) interplanar coupling has already been discussed in §3.2. Itis
also in accord with the results found by Birgeneau ef al. (1971 b) for the
behaviour of the parallel and the perpendicular susceptibility.

In contrast to the diffuse scattering, the Bragg scattering is 3-d in
form (fig. 56 (b)) and no evidence of 1-d or 2-d Bragg scattering has to
our knowledge been found as yet. However, the temperature dependence
of the sublattice magnetization, as deduced from the intensity of the
Bragg peak, displays a 2-d character as close to 7', as one part in 104
(fig. 47). Evidently the critical point must be even more closely ap-
proached before it becomes apparent also from this aspect that the long-
range order is in reality not confined to the layers but extends to the
third dimension too.

In concluding this section we draw attention to the recent work of
Birgeneau ef al. (1971 a) and Hutchings et al. (1972 b) on the linear chain
antiferromagnet [(CD,;),N][MnCl;]. As in the case of CsMnCl; . 21,0,
planes of critical scattering were observed from 40 K down to the lowest
temperature reached (11K, 7,=0-84 K). The high spin value §=}
justifies a comparison of the data with the exact theory of Fisher (1964)
for the classical linear Heisenberg chain, and in fact it was found that the
dependence of the scattering on both wave-vector and temperature could
be accounted for by this theory qualitatively as well as quantitatively.
The interesting point is of course that this is one of the few cases in which
an exact theoretical result is available (one does not expect much difference
in behaviour between S=% and S=c0). As an illustration we show in
fig. 57 the behaviour of the zero-angle cross section do(g=0)/dw and the
inverse correlation length « as a function of temperature. The fit to
theory only involves the exchange constant, and the value obtained agrees
favourably with those derived from other measurements. Since for the
ideal chain the transition to long-range order occurs at T =0, both
theoretical curves vanish at the origin. Due to the extremely small
value of the interchain coupling in the experimental system, its actual
transition temperature is so low that no deviations from the ideal be-
haviour can be observed in these plots.
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The zero wave-vector scattering cross section (top) and the inverse correlation
length (bottom) of the linear chain antiferromagnet [(CDy),N]MnCl,]
as a function of temperature. Solid curves are fits to Fisher’s exact
theory for the classical linear Heisenberg chain. (After Birgeneau ef al.
1971 a.)

4.2. Spin wave theory

Spin-wave theory has proven to be a most valuable tool in describing
the low-temperature properties of magnetic substances, even in its most
simple form, in which no account is taken of the interactions between
the individually excited spin waves (unrenormalized spin-wave theory).
We may cite from Dyson’s (1956) well-known paper on the theory of
spin-wave interactions : ‘ The practical conclusion is simply this, that
the linear Bloch theory with non-interacting spin waves is good enough
for all practical purposes”, meaning that in the temperature range
0<T<3T, in which spin-wave theory is expected to be applicable
quantitatively as a low-temperature approximation, the effects of re-
normalization are not likely to be observable. We shall not describe
here the way in which spin-wave theory and its experimental verification
have evolved historically, since there exists an extensive review paper by
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Keffer (1966), covering both the theoretical and the experimental results
obtained before 1965. Instead we shall confine ourselves to some promi-
nent results that have been obtained after the appearance of Keffer’s work.

Perhaps the most fundamental probe available to the experimentalist
to study spin waves is neutron scattering. Quantities like the heat
capacity and the magnetization, the observed behaviour of which may
be compared with spin-wave predictions, involve an integral over the
entire spin-wave spectrum. However, in a neutron scattering experiment
one can select a spin wave of a particular wave-vector k and study its
dependence on temperature. As mentioned above, the observation of
these spin-wave modes is possible by measuring the energy changes
involved in the inelastic scattering events in which magnons are created
or annihilated. By combining measurements of different k at a particular
temperature one obtains the quantity that is of prime importance, the
dispersion relation. Knowledge of this functional relationship between
energy and wave-vector is a priority to all calculations of thermodynamic
properties. In the absence of anisotropy the dispersion is of the form
fiw =4Js(1 —cos ka) for ferromagnets, or, for small &, #fw~(2JSa?)k?,
@ being the lattice constant. In the presence of anisotropy a term gupH ,
is added to the (1 —coska) term. In the case of antiferromagnets, the
theory suffers from the fact that the ground state is unknown, because
the fully aligned Néel state is not an eigen-state of the Hamiltonian.
However, one may take the Néel state as a starting point and afterwards
apply corrections for the fact that it is only an approximation of the true
ground state. We shall come back to the effects of zero-point spin
deviation at the end of this section.

The dispersion for antiferromagnets thus obtained is of the form
fiw=2|J |S sin ka, which, for small k, reduces to the linear relationship
fiw=2|J |Ska, in contrast to the quadratic dispersion in ferromagnets.
The effect of anisotropy is much more pronounced in antiferromagnets
than in ferromagnets because in the former it is enhanced by interplay
with the exchange field. This can be readily seen from the expression
for the k=0 mode, which becomes fiw =gugp(2H ,Hy+ H %)% when an
anisotropy field H, is present. Consequently the ° anisotropy gap’ is
usually quite large in antiferromagnets, since Iy is of the order of 105-
10~% OQe. But in the compound RbMnF, the anisotropy is so small that
the presence of the gap could not be detected within the experimental
limits. The dispersion relation, as reported by Windsor and Stevenson
(1966), is shown in fig. 58. Since the gap is only about 0-4 K, all measur-
ing points lie on the sine curve appropriate to the fully isotropic case.

Other antiferromagnetic dispersion curve have already been shown in
figs. 24 and 37. In those cases the lack of dispersion in one or two direc-
tions in reciprocal space was used to demonstrate that the magnetic
character was 2-d or 1-d in form, respectively. An example of a
ferromagnetic dispersion relation is given in fig. 59, showing data of
Passell et al. (1971) on EuO.
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Spin-wave dispersion relation in a single crystal of RbMnF,; at 42 K, with k
vectors distributed over a [110] plane. Solid curves are dispersions
along the indicated directions calculated with a nearest-neighbour
exchange J/k=—34K (+0-3K). The anisotropy gap is so small
(0-4 K) that the measuring points near to the origin do not deviate from
the linear behaviour expected for a fully isotropic antiferromagnet.
(After Windsor and Stevenson 1966.)
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Spin-wave dispersion in a polyerystalline sample of EuO. The solid curves
have been calculated for a number of directions using best fits for the
first and second-neighbour interactions: J,/k==0-602 +0-008 K and
Jolk=0-155 £ 0-014 K. The zone boundaries in the (100) and (111)
directions have been indicated. (After Passell ef al. 1972.)
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The effects of interactions between magnons has been mentioned above.
Dyson (1956) distinguishes two reasons why the picture of a linear super-
position of spin waves is incorrect. Since each spin wave reduces the
magnetization by one unit of #, so that it will be completely reversed if
2N,S spin waves are excited, it is clear that there must be some repulsive
interaction between them in order to prevent the unlimited excitement of
spin waves (kinematical interaction). Secondly there is an atiractive
interaction arising from the fact that the energy required to excite a spin
wave will be lower if the spins are already partially reversed (dynamical
interaction). From Dyson’s calculations it emerges that the kinematical
interaction will be negligible except when magnons of very short wave-
length are excited, which is the case when the critical point is closely
approached. For practical purposes therefore the dynamical interaction
will be predominating, so that one expects the spin-wave energies to
decrease when the temperature is raised. As cited above, in the tempera-
ture region 7 < 37, which is the range in which experimental results on
the magnetization may be adequately fitted to the truncated series
expansions in kT/|J|S given by the spin-wave theory, the effect of the
dynamical interaction term will be too small to be detected. A possible
way of observing the effect, however, is to follow the evolution of the
spin-wave modes with temperature, with the aid of neutron scattering.
Such a study has been accomplished by Turberfield et al. (1965) in MnF,.
Tigure 60 (a) shows the spectra of neutrons of initial wavelength 3-0 A
as a function of energy gain. At T ~0 (T/T,~0-06) a sharp magnon
line is observed, whose shape is determined by the experimental resolu-
tion. As the temperature is raised the line broadens and the spin-wave
energy decreases. As T, (=67-33 K) is approached the full width at
half maximum becomes comparable with the energy itself. Finally the
spin-wave peak is lost in critical scattering.

These spin-wave peaks were used to obtain the dispersion at different
temperatures, as shown in fig. 60 (b). The solid lines were calculated by
Low (1965) taking into account the dynamical interactions. Since the
observed differences with the experimental data are less than 109,
whereas the observed linewidths are of the same order or larger, these
measurements constitute a clear verification of the renormalization of the
spin-wave energies.

In a similar experiment on RbMnF, (7',=83 K), Nathans ef al. (1968)
were able to show that short wavelength magnon-like excitations may
even persist to temperatures above T,. The temperature dependence of
a magnon with wave-vector k=0-2 A-1 near 7', is depicted in fig. 61.
As the temperature is raised through 7', one observes a broadening and
an energy renormalization of the two spin-wave peaks on both sides of
the narrow central peak (zero energy transfer). The latter is due to
Bragg scattering and accordingly vanishes at 7',. Above T, the magnon
peaks are still clearly in evidence and in addition a central diffusive peak
is observed.
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(@) Spin-wave energy spectra of neutrons of initial wavelength 3-0 A, as measured
at different temperatures in MoF, (7,=67-33 K). (b) Spin-wave dis-
persion curves for MnF, at different temperatures. The experimental
points have been obtained from spectra such as shown in fig. 60 (a).
The solid curves have been calculated from spin-wave theory taking
into account dynamical interactions between pairs of magnons. (After
Turberfield et al. 1965.)

The presence of magnons or magnon-type excitations in the para-
magnetic regime needs some further consideration. A simple physical
model explaining the possibility of such paramagnetic spin waves has
been put forward by Marshall (1965). Even in the absence of long-range
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order, above 7', there will exist regions of correlated spins as a conse-
quence of the short-range order. The extent of such a region is deter-
mined by the correlation length. One may imagine that damped
excitations, or quasi spin waves of wavelengths shorter than the correla-
tion length may exist, propagating within these slowly varying correlated
regions with lifetimes limited by the characteristic times associated with
changes in the local order. As the temperature is raised the correlation
length decreases so that one expects the paramagnetic magnons to broaden
and finally disappear.

Fig. 61
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Temperature dependence of the inelastic scattering at k=0-2 A-* in RbMnF,
near the critical point 7,~83 K. Two magnon peaks are observed,
corresponding to energy gain and loss according to whether a magnon is
annihilated or destroyed in the scattering process. In addition there
is a central Bragg peak for T'<T, The peaks for energy gain are
higher because of a weighing term in the resolution function of the
instrument. (After Nathans et al. 1968.)
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The usefulness of this concept is clearly demonstrated by the recent
experiments on the 1-d and 2-d Heisenberg systems, in which the para-
magnetic region extends to much lower temperatures relative to J/k, as
compared with 3-d systems. It has been discussed in the preceding
sections that these 1-d and 2-d systems would ideally have no long-range
order except at 7'=0, the fact that experimentally long-range order is
found below finite transition temperatures 7', being the consequence of
the existing deviations from the ideal model. We have also seen that
for the 2-d Heisenberg antiferromagnets 2-d spin-wave theory is an
excellent low-temperature approximation of the behaviour observed in
the ordered region. From figs. 29, 37 and 38 and it may be seen how the
magnon dispersion, the antiferromaguetic parallel and perpendicular
susceptibilities and the sublattice magnetization may all be fitted to the
predictions of 2-d spin-wave theory.

"~ But we are now particularly interested in the behaviour above T,
that is in the temperature range where there is indeed no long-range order,
also experimentally. As a consequence of the low dimensionality the
length over which the spins are correlated will be considerably larger than
in 3-d systems at the same temperature relative to T',. Thus one expects

Fig. 62
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The transition temperature is 7', =97-2 K. Note that these scans were
taken at constant energy, those of fig. 61 at constant k. (After Skalyo
et al. 1969 a.)
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more pronounced magnon modes above 7',. In fig. 62 the temperature
dependence is shown of a magnon of wavelength ~110 A in the 2-d
antiferromagnet K NiF,, for which 7,=97-2 K. The surprising feature
emerging from these measurements of Skalyo et al. (1969 a) is that there is
no appreciable difference between the magnon spectrum observed at
T=1-08 T, with that at T'=0-8 T’ (in linewidth or in k value), even for
such a relatively long wavelength. It is only at T'=1-5 T, that the
110 A magnon mode is lost in the diffusive mode. In the above we have
already mentioned that in K,NiF, the estimated correlation length at
T=2T,is 23 A, whereas in KMnF, at 7=1-1 7', the correlation length
is down to 11 A already, explaining the difference in behaviour observed
in comparing figs. 61 and 62.

The impression left by the experiments shown in these figures is that
as far as magnons with finite (not too small) k are concerned, nothing
special happens at 7', itself, the prime quantity determining their gradual
disappearance as the temperature is raised being the correlation length.
Also for the renormalization, 7', is not the important parameter. In
fig. 60 (b) one observes that at T/T,=0-92 the magnon energies in MnF,
have decreased by about 30-409%,, whereas in K,NiF,, even at 7'/T =11,
there is still no measurable renormalization effect (fig. 62). The dif-
ference may be brought back to the fact that in 2-d systems 7', is much
lowered with respect to J/k. The predictions of spin-wave theory for the
thermodynamic quantities, on the other hand, are in the form of series
expansions in powers of ¥T'/|J|S and the renormalization is taken into
account by additional terms in the expansion. Therefore the appropriate
parameter is not T'/T, but kT/|J|S. At the transition temperature
kT[|J|S equals about 15 in MnF, and 2 in K,NiF,, so that in MnF, the
ratio of thermal to exchange energy at 7', is about eight times as large as
in K,NiF,, explaining the lack of renormalization in the latter as com-
pared to the former.

In the 1-d Heisenberg antiferromagnet [(CD;) N|[MnCl,] the picture
just sketched is even more clearly confirmed. In this substance the
interchain interaction is so weak that the transition to long-range order
is as low as 0-84 K, whereas the Curie-Weiss temperature is about 75 K |
In their recent study Hutchings et al. (1972 b) report that the magnon
spectra, measured at 7'=1-9 K, are fully accounted for by a simple two-
sublattice spin-wave theory for the linear Heisenberg chain. The
dispersion relation of these 1-d spin waves at 4-4 K is a perfect sine curve
and the value for the intra-chain exchange calculated from the fit to the
theoretical dispersion is in agreement with that obtained from the suscepti-
bility. Thus in spite of the fact that there is no long-range order, spin
wave-like excitations are observed over most of the Brillouin zone. This
at first sight surprising result is corroborated by the recent theoretical
work of McLean and Blume {1973) on the spin-wave excitations in linear
Heisenberg chains, who were able to account for the observed spectra at
least qualitatively, in particular for the temperature dependence of the
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magnon lines. As our last example we have reproduced in fig. 63 the
evolution of the A=64 A excitation with temperature. Clearly the fact
that 7’ is at 0-84 K is of no interest here, rather one should note that at
20 K the correlation length / is about 22 A, even smaller than the magnon
wavelength. This suggests that the condition for the existence of these
excitations is k=2n/A>«, where « is the inverse correlation length,
rather than A<{. The results for other k values confirm this. The most
recent measurements of Birgeneau et al. (1972 a) for values of wave-vector
k*=k—m[a<0-015 nja likewise indicate that the excitations are changed
from magnon-like to overdamped behaviour as k is varied from greater
to less than «. Clearly, these exciting new developments have opened
up new areas of theoretical and experimental research in the field of spin
waves.

We now turn to a number of experimental verifications of spin-wave
theoretical predictions for the behaviour of thermodynamic quantities,
like the heat capacity and the magnetization. Let us first consider the
specific heat. The predicted limiting low-temperature behaviour for
systems of different dimensionality d may be conveniently memorized
by the mnemonic formula O~ 7% where d is the dimensionality and # is
defined as the exponent in the dispersion relation w~k". For phonons
and antiferromagnetic magnons n=1, for ferromagnetic magnons n=2.
Thus the lattice heat capacity of a 3-d system goes with 7%, which is the
well-known low-temperature Debye approximation, the spin-wave
specific heat of a 3-d ferromagnet as 7972, of a 2-d ferromagnet as 7T,
ete. ... One should not forget that these terms are only the first terms
in series expansions in £7'/|J|S. TFor instance the specific heat of a 3-d
ferromagnet is approximated to higher order by (Dyson 1956)

C ol R=ag(kT |82+ ay (kT |T S 2 + ankT|JS) 2+ az(kT/JS)t.  (4.8)

In fig. 64 (a) the low-temperature heat capacity of Cu(NH,),Br,. 2H,0
as measured by Miedema et al. is plotted as C,(T'/T,)*? versus T|T.,.
In this way the first coefficient a, is obtained from the intercept at 7'=0
and the second coefficient @, from the derivative at T'=0. The value for
J kT, following from the comparison of the experimental and theoretical
values for g, is in reasonable agreement with the experimentally deter-
mined J/kT ,=035. Also ay/a, agrees with theory. This may also be
inferred from fig. 64 (b) where the data for 7'> 0-2 7', are compared with
the Dyson series (4.8) using J/kT,=0-35. The agreement between
experiment and theory may be extended to slightly higher temperatures
(up to kT [JS ~ 3) if instead of the truncated series (4.8) the full expression
for C,, involving an integral over the Brillouin zone is used. In the
calculation renormalization was accounted for, the correction being about
13% at T=0-6 T,. The fit is quite good, although it should be borne in
mind that the result is rather sensitive to the J/kT, value, and recent
experiments suggest that J/k7T ,=0-34 would be more accurate for this
salt (Van Amstel ef al. 1974).
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Fig. 64
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(a) The magnetic heat capacity of Cu(NH,),Br, . 2H,0 in the spin-wave region.
The data are plotted as C,(T/T,)~%? versus T/T, in order to de-
monstrate the existence of the 7'%2 and T'%2 terms in the Dyson series
for 0. (b) The same data for 7>0-27',. The broken line is the pre-
diction from the Dyson series (eqn. (4.8)), the solid curve was calculated
using the full expression for the heat capacity, integrated over the
Brillouin zone. In both cases J/kT,=0-35 has been assumed, in
accordance with other experimental determinations of this quantity.
(After Miedema et al. 1965.)

According to the spin-wave theory the heat capacity of a ferromagnet
will be reduced on applying a magnetic field. This has been verified by
Passenheim et al. (1966), whose data on EuS are shown in fig. 65. Also
in this case the spin-wave predictions were calculated by integrating
over the Brillouin zone, but a correction for renormalization effects was

A.P. M
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unfortunately not applied. The values for the first and second-neighbour
exchange giving best fifs are in agreement with those obtained by Passell
et al. (1971) from the spin-wave dispersion curve. Note that at T=4 K,
kT|JS ~5-5.

Fig. 65
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Magnetic heat capacity of EuS measured at two different field values and
H=0. The solid curves have been calculated from spin-wave theory.
(After Passenheim ef al. 1966.)

The T spin-wave term in the magnetic specific heat of a 3-d antiferro-
magnet is more difficult to demonstrate experimentally. This arises
because of the above-mentioned large anisotropy gaps occurring in anti-
ferromagnets even when the anisotropy is fairly small, as a consequence
of the inter-play between Hy and H,. Nevertheless, Montgomery (1966)
has found evidence for the 7™ term in the extremely isotropic compounds
RbMnF, and KMnF,. His data on RbMnF; have been reproduced in
fig. 66. In zero magnetic field the data could be accurately fitted to the
equation =277 T—2+40-334 13 (C in mJ/mole K). The first term is the
hyperfine specific heat, the second is the sum of the lattice and spin-wave
contributions that both have the same temperature dependence. The
slight increase observed on application of a field of 14-1 kOe is attributed
to impurities.
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Fig. 66
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The low-temperature specific heat of the 3-d Heisenberg ferromagnet RbMnF,
as measured by Montgomery (1966).

Applications of spin-wave theory in describing the temperature de-
pendence of the spontaneous magnetization may be found in Keffer’s
review paper {e.g. MnF,). Of the recent results we mention the analysis
of Charap and Boyd (1964) of their N.M.R. data on EuS and Wielinga and
Huiskamp’s results (1969) on (NH,),CuBr, . 2H,0, that nicely fit the
calculations of Loly (1968) (see also Velu et al. 1972). Although appreci-
able next-nearest neighbour interactions are present in these ferromagnetic
compounds, this discrepancy is not too serious in the case of the spon-
taneous magnetization, since the results turn out to be rather insensitive
to the presence of next-nearest neighbour interactions. Also one may
incorporate a second-neighbour interaction within the theory. Never-
theless it is a pity that a clear-cut, nearest-neighbour only ferromagnetic
insulator is yet to be discovered.

Turning next to systems of lower dimensionality we show in fig. 67
the measurements of Colpa (1972 b) of the low-temperature specific heat of
one of the 2-d ferromagnetic copper compounds. As expected, the heat
capacity depends linearly on temperature. However, we have men-
tioned in § 3.2.2 that the values for the exchange constants of these salts,

M2
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The low-temperature specific heat of the 2.d Heisenberg ferromagnet
(CH,NH,),CuCl,, as measured by Colpa (1972 b).

calculated from the coefficients of the linear term, are systematically
lower (109%,) than those obtained from the high-temperature suscepti-
bility. A possible temperature effect may not be excluded, although the
exchange is in that case mostly increasing with decreasing temperature.
As explained in § 3.2.2 we suspect the discrepancy to be due to a failure of
spin-wave theory to account quantitatively for the observed behaviour
if both the dimensionality and the spin value are low. Quite generally,
one may expect spin-wave theory to become a better approximation as
the dimensionality and the spin value are increased. In particular, for
magnetic chains, the inadequacy of the spin-wave approach is exposed.
For an antiferromagnetic Heisenberg chain spin-wave theory predicts
a linear temperature dependence of the specific heat. The calcula-
tions of Bonner and Fisher (1964) on finite S=1 Heisenberg chains
corroborate this qualitatively, but yield an amplitude of the linear term
that is a factor 3 times smaller than the spin-wave result. Weng (1969)
has found this factor to be only 1-4 for the case S=1%. For ferro-
magnetic chains the heat capacity at low temperatures varies as the
square root of the temperature. In this case the amplitude estimates
from the calculations on closed finite rings differ a factor 1-3 from the
spin-wave result for both §=} and S=1. 1In §3.1.2 we have seen (fig.
20 (a), (b)) that the experimental specific heat data for S=1 are in
remarkably good agreement with the curve obtained by Bonner and
Fisher, also near to the region where the dependence on temperature is
approximately linear.

+ It has been suggested that the S=43 antiferromagnetic linear chain is
actually not a boson but a fermion problem. For recent experimental indica-
tions to this end see Ehrenfreund ef al. (1973).
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Concerning the antiferromagnetic susceptibility of Heisenberg chains,
spin-wave theory erroneously predicts a diverging y, as 70, in contrast
with the finite, spin-dependent values obtained in better treatments
(Griffiths 1964 a, Bonner and Fisher 1964, Fisher 1964, Weng 1969). For
this particular example the perturbational approach of Davis (1960) yields
better results than spin-wave theory in that it does give finite values for
x.(T=0), although these are in poor agreement with the other calcula-
tions. For §=} Davis obtains y,(0)/x,°=0-11, where y,° is the molecular
tield prediction for the perpendicular susceptibility. This may be com-
pared to Griffiths’ result x,(0)/y,%=0-405. For 8=} Davis’s value is
x:(0)/x,°=0-83, whercas Weng finds 0-59.

For the 2-d antiferromagnets with S>1 the experimental values of
x.(0)/x.° are in close agreement with spin-wave theory, in any case
much closer than with the predictions obtained by Davis (1960) and
Walker (unpublished) from a perturbation theoretical approach (see
De Jongh 1972 b, ¢ and also below). For the only example with §=1}
presently available (CuF,.2H,0), the reverse is the case. This could
indicate a similar discrepancy with spin-wave theory as found above for
the specific heat of the 2-d Heisenberg ferromagnets with S=%. On
the other hand, the value of |J’/J] of this compound is fairly high ( ~ 10-2),
which could also be responsible for the fact that y,(0)/y,° is higher than
predicted by 2-d spin-wave theory.

For the 2-d antiferromagnets with S > 1, on the other hand, an extremely
good agreement with spin-wave theory (including renormalization) has
been found for a large variety of measurements, the only adjustable
parameters being the exchange and the (small) anisotropy. Since the
values for these parameters may be independently determined by methods
not involving the magnon approach, a wholly consistent picture is
obtained. As mentioned in § 3.2, in compounds such as K,NiF, and
K,MnF, the spin-wave dispersion (Birgeneau et al. 1969, 1973), the sub-
lattice magnetization (De Wijn et al. 1971, 1973 b) and the parallel and
perpendicular susceptibility (Breed 1967, 1969) can all be fitted to the
spin-wave theory for a 2-d Heisenberg antiferromagnet including a small
anisotropy. The exchange constants obtained in these various experi-
ments are in excellent accord, and are moreover equal within 19, to
those obtained from fitting the high-temperature susceptibility to the
exact series expansions (De Jongh 1972 ¢). From the good agreement
in two dimensions one would expect an even better accordance in three
dimensions. Indeed, we have already discussed many examples that
support this conclusion.

We will end this section by reviewing the experimental evidence found
for the existence of zero-point spin deviations in antiferromagnetic
substances, as predicted by Anderson (1952). As mentioned earlier, the
fully aligned Néel state is not an eigen-state of the Hamiltonian, so that
even at zero temperature the spins will be subject to deviations from this
orientation. However, as a starting point spin-wave theory takes the
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Néel state as the approximate ground state, correcting afterwards for the
zero-point motions. These corrections include a shift of the ground-state
energy. Since the presence of anisotropy stabilizes the two-sublattice
ground state, in the limit « = H , /Hy o0 the energy becomes equal to the
Ising approximation K= —2z|J|82N,. For finite « we have

E(a)=E {1 +e(x)/z8},

where ¢(x) varies from e(0) ~1/4z to zero for a—o0. As a second effect,
the magnetic moment per site is no longer given by gugS but by
gup(8—AS), the anisotropy dependent spin reduction AS(«x) likewise
reducing to zero as a«—>c0. Values for e(x) and AS(x) may be calculated
from spin-wave theory or other methods (e.g. Davis 1960, Keffer 1966,
Breed 1969, Lines 1970, Colpa et al. 1971). The value of AS(0) is roughly
given by 1/2z for the various lattices.

The effects of zero-point spin deviation constitute yet another example
of a phenomenon that is considerably more easily studied in lower dimen-
sional magnets, since they become the more pronounced the lower the
dimensionality (and the lower the spin value). In addition to the approxi-
mate expressions for e(0) and AS(0) given above, we may quote the explicit
values of AS(0) for the s.c. and the quadratic lattice, which are 0-078 and
0-197, respectively. During the past ten years substantial efforts have
been made in finding experimental proof for the existence of the zero-
point deviations, mainly by detecting their influence on the expectation
value of the magnetic moment. Initially the experiments were per-
formed on 3-d antiferromagnets, the magnetic moment being either
measured directly with neutron diffraction, or indirectly via the hyperfine
field, i.e. the field exerted by the magnetic moment on the nucleus of the
magnetic atom. The results were rather disappointing in that no definite
proof for the existence of spin reduction could be obtained. This was
partly due to the smallness of the effect in three dimensions, in particular
for the manganese compounds on which most of the investigations were
performed. These have S=4§, so that AS is only about 39, of S (that
nevertheless manganese was chosen arises because the Mn?* ion is in an
& state, so that oneis not troubled by orbital contributions to the magnetic
moment). Such a small effect is difficult to detect convincingly, more
s0 since in both methods of measurement one is troubled by additional
mechanisms that complicate the analysis. TFor instance, in determina-
tions of <8> by neutron diffraction, where (8> denotes the expectation
value of the magnetic moment in the preferential direction, one is hampered
by covalency effects. Covalency likewise reduces the magnetic moment
since it delocalizes small parts of the moments of neighbouring magnetic
ions onto the ligand in between them. A cancellation of these small parts
will reduce the effective moment. Furthermore, covalency affects the
form factor of the magnetic ion for neutron diffraction, accurate knowledge
of which is indispensable in order to obtain {§).
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In deducing (8> from the hyperfine structure interaction (h.f.s.)
A4S . I, one measures the hyperfine field, which is proportional to A{S>,
from specific heat or N.M.R. experiments. Consequently the value of the
h.f.s. constant 4 has to be known to a sufficiently high accuracy to enable
a reliable determination of (S). Earlier estimates of 4 from E.S.R.
experiments in magnetically diluted diamagnetic isomorphs led to contra-
dictory results, even to negative values of AS in 3-d antiferromagnets.
As an explanation for this unphysical result, Owen and Taylor (1966, 1968)
and Huang et al. (1966, 1967) suggested that the h.f.s. constant will be
larger in the antiferromagnetic salts than in the diamagnetic isomorphs.
This would be the consequence of a transfer of unpaired electron spin
from one magnetic ion to its nearest magnetic neighbours via the inter-
vening ligand (super-transferred hyperfine interaction). Such a process
will affect the splitting of the nuclear energy levels and thus the value of
A. In 3-d, S=4§, antiferromagnets the two effects are expected to be of
comparable magnitude, accounting for the observed behaviour.

In spite of this possible explanation one could still doubt the experi-
mental evidence for zero-point effects. Recently, however, various groups
of workers have together provided convincing experimental proof by
exploiting the newly discovered 2-d antiferromagnetic materials, in
particular K,MnF, and Rb,MnF,. Values for (8> of the same order of
magnitude as predicted by 2-d spin-wave theory were obtained in K,MnF,
by Loopstra et al. (1968) and by Rubinstein and Folen (1968), using neutron
diffraction and magnetic resonance, respectively. In 1970 Walstedt ef al.
reported on N.M.R. measurements in the two Mn compounds, finding
values for AS in seemingly complete agreement with theory. At about
the same time Colpa et al. (1971) evidenced the much larger spin reduction
in two as in three dimensions, by comparing the h.f.s. contributions to
the heat capacity of Rb,MnF, and RbMnF,. The various results for AS
in these manganese compounds have been gathered and reviewed by
Schrama (1973 a, b). From his experiments on X,MF, (X=K, Rb;
M=DMg, Zn, Cd) and XMF, diluted with manganese, he concludes to an
A value slightly different from that adopted by Walstedt ef al. (1970)
on the basis of fewer experimental results for A. Nevertheless, in
calculating the spin reductions from the h.f.s. fields measured by Walstedt
el al. using the new A4 values, Schrama ultimately obtained quite similar
results for AS as Walstedt ef al. because he also had to introduce a value
for the predicted effect A4, ; upon the hyperfine constant due to the
super-transferred hyperfine interaction, which differs from that calculated
by Owen and Taylor and Huang ef al. This point is clarified in table 13.
In the first and the second row values for the spin reduction in the listed
compounds are given as predicted by spin-wave and perturbation-theory,
respectively. The predictions have been corrected for the anisotropy, the
correction being only substantial (£ 15%) for the spin-wave predictions
for the 2-d salts. In the third row the experimental values are given,
uncorrected for the super-transferred hyperfine interaction, in the fourth
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Table 14. Values of a=H,/Hy and x,(0) of quasi 2-d Heisenberg compounds.
Using these, the experimental ratios y, (0)/x,%«) are obtained, where
x.%(«) is the anisotropy dependent MF prediction for the perpendicular
susceptibility y, %)= Nog?ug?/42|J[(1+«/2). The J/k values used are
listed in table 6. The experimental ratios are compared with those
predicted by spin-wave theory for the 2-d quadratic antiferromagnet.

%.(0)/x.°()
Compound N a=H,[Hy %2(0)exp.
(em3/mole) (Exp.) (Theor.)
CsFeF, £ 7 x10-3 6-06 x 102 0-92 0-90
RbFeF, 2 6-5x10-2 7-:31x10-3 0-94 0-90
Rb,MnF, 2 4-7Tx10-3 2-32x 102 0-92 0-90
K,MnF, 2 3-9x10-3 2:01 x 102 0-90 0-90
BaMnF, 2 31x10-* 305 x 102 0-89 0-89
BaNiF, 1 2 x10-2 2-98 x 103 0-80 0-78
Rb,NiF, 1 1 %102 22 x10-3 0-77 0-77
K,NiF, 1 2 x10-3 1-83 x 103 0-76 0-74
CuF,.2H,0 | % 3-7x10-2 526 x10-3 0-63 0-50

row the same but now corrected for the A4, ; per magnetic neighbour as
calculated by Owen and Taylor and Huang et @l. Finally in the last row a
correction A4, ; has been applied that is 2-25 times as large as the
theoretical value. Note that for AA,, ; =0 negative values for AS
result in three dimensions, as mentioned above. Note also that by using
the theoretical AA,, ; the agreement with spin-wave theory is still
unsatisfactory, especially in three dimensions where the experiment is
moreover far outside both spin-wave and perturbation theoretical predic-
tions. With the ‘ corrected’ A4, , ; per magnetic neighbour, on the
other hand, the agreement with spin-wave theory is perfect in two as well
asin three dimensions (z=4 and 6, respectively). Taking also into account
the success of spin-wave theory in describing the properties of 2-d (S>1)
and 3-d antiferromagnets, as witnessed above, one would conclude that
the spin-wave predictions for AS are most probably correct and that the
experimental results indicate the calculated effect on 4 due to the super-
transferred hyperfine interaction to be quantitatively in error.

Other experimental values for AS, encountered in the preceding pages,
are 0-20 + 0-03 for K,NiF, (S§=1) (De Wijn et al. 1971) and 0-24 for
Cu(HCOO), . 4H,0 (S=1) (Dupas and Renard 1970b). In both cases
the theoretical value is 0-18, taking into account the anisotropy. Also
for KNiF,; a considerable reduction has been observed (Hutchings and
Guggenheim 1970) but in this case the zero-point effect could not be
deduced unambiguously, due to the covalency effects. In addition, in
some of the chain compounds considerable reductions of AS have been
observed. For these systems, however, spin-wave theory is apparently
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in error since it predicts a reduction that diverges in the limit of zero
anisotropy (Kubo 1952), in disagreement with the calculations of Griffiths
(1964 a, b, ¢) and Bonner and Fisher (1964).

In a different approach De Jongh (1972 b, ¢) has shown how the exis-
tence of zero-point deviations can also be deduced experimentally from
their effects upon the perpendicular susceptibility. This has already
been mentioned in § 3.2.1 (cf. fig. 28). In this case both the spin reduc-
tion and the shift in the ground-state energy come into play, since both
have the effect of lowering y,(0) from the MF value y,° (cf. eqn. (3.6)).
Using the known values of J/k and «, theoretical and experimental results
for the quantity y,(0)/x,® have been calculated for a number of 2-d
antiferromagnets with different spin value (De Jongh 1972 ¢), as listed
in table 14. Note the good agreement for S=1 and §=4§. In the case
of §=1} the experimental reduction is too small, as discussed above. A
similar agreement for the perpendicular susceptibility is also found for the
3-d salts RbMnF, and KNiF; (see §3.3.2). It is remarked that these
findings for y, (0) show that covalency does not affect the perpendicular
susceptibility.

Summing up we may state that in the past five years quite convincing
experimental evidence for the existence of zero-point spin deviations has
been obtained, thanks mainly to the discovery of the quasi 2-d Heisenberg
antiferromagnets. As concerns the XY antiferromagnet, some evidence
for the presence of zero-point effects in this model has been encountered

Fig. 68
~A T A— X

T T T T L

cps)
(2]

— calculated
....transverse phonon
T o= longitudinal phpnon

’

12

FREQUENCY (10

CAET Lro) —

OB L4 o o T S &

0 05 0 0.5
(00g)— " «—(00L) ° REDUCED WAVEVECTOR

Magnon and phonon dispersion curves as measured in FeCO; by Wrege ef al.
(1971). The interesting features are firstly the independence of the
wave vector of the magnon dispersion (solid curve: calculated), as
expected for an Ising system, and secondly the apparent magnon-—
phonon coupling (note that the coupling only occurs with selected
phonon modes).
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in the 2-d compounds CoCl, . 6H,0 and CoBr, . 6H,0. Lastly we mention
that in some types of antiferromagnets zero-point effects will be entirely
negligible, as for instance in the case of ferromagnetic layers with a very
weak antiferromagnetic interlayer coupling. This is due to the fact
that the antiferromagnetic intersublattice (=interlayer) interaction is
so much smaller than the ferromagnetic intrasublattice (=intralayer)
interaction (De Jongh 1972 a).

We would like to end this section with the remark that in many analyses
of experiments the magnon and phonon effects are taken to be simply
independent. That this will not always be a valid assumption is evi-
denced by the ecalculations of Kittel (1958) on the magnon-phonon
interaction (see also Rives et al. 1969 for more recent references). This
interaction is best illustrated by the fact that the magnon and phonon
dispersion curves will intersect at some point in the w—k frame. As an
experimental verification we show in fig. 68 the dispersion relations of
FeCO,, as reported by Wrege ef al. (1971). Note that the magnetic
excitations interact selectively with a particular type of phonon mode.
A second reason for reproducing the measurements on this Ising-like
substance (with effective spin §=1) is that the magnon dispersion curve
forms a clear example of the wave-vector independent magnon dispersion
appropriate for an Ising system. Another good example of magnon—
phonon coupling is provided by the recent neutron diffraction study of
Rainford et al. (1972) on FeF,. A theoretical treatment has been given
by Lovesey (1972). In the two examples cited the coupling arises pre-
dominantly from the phonon modulation of the crystal field, so that the
interaction between spins and lattice is via the orbital moment by means
of the spin-orbit coupling. As another mechanism for the magnon—
phonon interaction we mention the phonon modulation of the exchange
integral.

4.3. Sertes expansions

In this section we want to stipulate the important role of series expan-
sions in the field of phase transitions. We have already witnessed in the
preceding pages how this approximate method of obtaining information
about the thermodynamic behaviour has been quite successful, in par-
ticular in the many cases where exact closed-form solutions are lacking.

The series for the various thermodynamic quantities are mostly expan-
gions in a high or low-temperature parameter. They are exact in the
sense that the calculated coefficients are exact results, but at the same
time they are approximations valid only in a certain temperature range,
since the number of terms that can be obtained is limited. At first sight
this might limit their applicability rather severely. However, the tech-
nique of analysing the truncated series has been highly developed and one
has managed to derive predictions from them in ranges of temperatures
widely outside their apparent validity, for instance even in the critical
region,
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This being no place to review the existing methods of analysis, we
only mention that at the root of many lies the assumption that the critical
behaviour of thermodynamic functions is in the form of simple power laws,
as we have already encountered above for the magnetization. In the
next section the reader will find a list of the most frequently used critical
exponents associated with these power laws. In many cases the pre-
dicted values for the exponents have been obtained from the analyses of
series expansions. The assumption of a power-law behaviour in the
critical region is not an arbitrary choice, but is based upon the fact that in
the exactly soluble models like the 2-d Ising model the critical behaviour
is of this form. The soluble models also present a testing ground for the
methods of analysis of the series, since one may compare the exactly known
behaviour of a thermodynamic function with that derived from a series
expansion analysis.

We will now briefly mention some of the successful results obtained with
the series expansion technique. Besides values for the critical exponents
they yield fairly accurate estimates of the critical temperature, as has for
instance been done by Rushbrooke and Wood (1958, 1963) for the 3-d
Heisenberg model. This is mostly accomplished by locating the tempera-
ture at which the (staggered) susceptibility diverges, since the series for
the susceptibility are usually rapidly converging. As we have seen,
such an analysis for the 2-d Heisenberg models has led to the postulate
of a new magnetic phase with an infinite susceptibility but without a
spontaneous magnetization.

Apart from the critical behaviour, predictions for the temperature
dependence of thermodynamic functions over quite a wide temperature
range have been obtained. Thus the analysis of Baker ef al. (1964) of
the series for the specific heat of the ferro and antiferromagnetic Heisenberg
chain nicely confirms the calculations of Bonner and Fisher (1964) down
to kT[|J| ~0-4. Sykes and Fisher (1962) deduced the behaviour of the
antiferromagnetic susceptibility for the 2-d and 3-d Ising model for all
temperatures. For the 3-d Ising and Heisenberg models and for the 2-d
Heisenberg model all the quantitative knowledge about the thermodynamic
behaviour is based upon series expansion analyses (in the case of the
isotropic models spin-wave theory, of course, provides an additional
source of information).

In summing up, series expansions have yielded important contribu-
tions to our knowledge of phase transitions. The many examples of
excellent fits of experimental results to the predictions obtained from
their analyses, as given in the preceding pages (cf. figs. 28, 34 (b), 40,
49, 50, 53), may serve as convincing proof of the usefulness and applic-
ability of this approach.

4.4. Critical behaviour

1f the transition point is approached closely enough one finally enters
the critical region, i.e. the temperature range around 7', in which the
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behaviour of the thermodynamic functions is governed by the asymptotic
power-law expressions (although more complex expressions have been
proposed and may not be excluded a priori). For a discussion of these
matters and definitions of critical exponents see, e.g., Fisher (1967) or
Stanley (1971). As to the extent of the critical region around 7', one
may say that—depending on the particular thermodynamic function—it
is confined to at most |T'—7',|/T,<102-10-1. By this we mean that
in this temperature range the behaviour of a function will not differ
perceivably from the asymptotic power-law form, so that the usual log—log
plot will result in a straight line with a slope equal to the value of the
critical exponent. It is very important to realize the finite extent of
the critical region and to know beforehand how close one has to come
near 7', in order to expect the power-law behaviour. For instance, in
the case of the specific heat of 3-d Ising models, which have only a weak
singularity at 7', one has to come closer than 10~ of 7', in order to have
a difference smaller than about 19, between the power-law behaviour
and the full expression for the specific heat (Sykes et al. 1967, Wielinga
1971).  Quite generally, in comparing experimental heat capacities with
theory, one should adhere to the full theoretical expression (Domb and
Bowers 1969). It is evident that the method of plotting experimental
data on a double logarithmic scale and drawing a  straight > line through
them without any further consideration will yield incorrect values for the
critical exponents, also in cases where the singularities are stronger.

We now give the asymptotic expressions for the thermodynamic func-
tions that we will consider. The theoretical predictions for the critical
exponents are listed in table 15.

Specific heat :

Cp/B~A(1-T Ty (T>T,; H=0), (4.9)
Op/B~A'(1-TT )= (T—>T,; H=0). (4.10)
Spontaneous magnetization :
M (T) M (0)~B1-T|T ) (T—>T,; H=0). (4.11)
Initial susceptibility :
xT/C~Cy 1T Ty (T->T,; H=0), (4.12)
xT|C~Cy =TT Yy (T—>T,; H=0). (4.13)
Critical isotherm :
H~DMH)*H-0; T=T,). (4.14)
Inverse correlation length:
k~NQ1-T Ty (T'-T,; H=0). (4.15)
k~N'(1-T|T ' (T->T, ; H=0). (4.16)

Wave-vector dependent susceptibility :
XE)~kr2 (k—0; T=T,). (4.17)
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As usual the primed exponents refer to the region below T',. It is further
noted that the power law for the susceptibility is different from the often
used form y~|{T—T.. We believe that the expression (4.12) is
more correct in comparing experiment with theory, since in theoretical
calculations one does not consider y itself, but the ‘ energetic ’ suscepti-
bility ¥T'/C. As pointed out by Wielinga (1971), in practical cases the y
value derived from a y/C versus (T'— T )T, plot will tend to be a few per
cent larger than that obtained from a y7'/C versus (T —T,)/T plot.
Equations (4.9) and (4.10) also contain the possibility of a loga-
rithmically diverging specific heat, since this is included in the case
a=0, which can be shown by considering that
lim 2= !
a—0 24

=In . (4.18)

The case «=0 further comprises a finite discontinuity at 7',, as is pre-
dicted for the specific heat by the MF theory.

Of considerable interest, though probably not open to direct experi-
mental investigation, are the so-called gap exponents A, (Essam and
Fisher 1963). Below 7T, we may consider the successive field derivatives
of the free energy F (in the limit H —0) :

(0F|oH)p=FO~1-T|T ) F©,
: (T<T,).
(0rF|oH ), = F™~ (1 =TT )20’ Fin-1),

Above T, all odd field derivatives of F(II, T') are zero for H =0, so that
one may define similarly

(2 F|oH?), = FC~ (1T |T) 24 mF@n-2 (T'>T).
Now since the specific heat C(H =0)~ (1 —T'/T )~ is the second tempera-

ture derivative of F, it follows that FO~(1-7/T 2 and since
FOMA(TY~(1—T|T,)#, one obtains the relationship

A/ =2—o —B. (4.19)
Furthermore, &~ yT/C~(1-—T|T )~ and hence

Ay =B+ (4.20)
Above T, we have likewise

20, =2—a+y, (4.21)

What is of importance is that in the case where the critical exponents
are known exactly, as for the 2-d Ising model and the MF model, it is
found that all gap exponents are equal. Thus in the MF theory a=a'=0,
B=1% and y=19'=1, so that A;'=A,=A,=%. For the 2-d, §=1, Ising
model o' =ax=0, 8=1 and, most likely, y=v'=1, yielding

A=Ay =N, =3.
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Numerical studies for the 2-d Ising model (Essam and Hunter 1968) are
indeed consistent with A,'=A,, =& for all n. For the 3-d Ising model
(8=1) the same authors obtained A’=A ~%§==1-56, although the possi-
bility A'=A~%2=1-625 could not be excluded. For instance eqns.
(4.19) to (4.21) are satisfied with a=oa'=%, B=+%; y=9"=% and
A=A"=%; These values for «, «', 8, y and " are consistent with the
best numerical estimates (cf. table 15). For the 3-d, S=1%, Heisenberg
model, Baker et al. (1967 b) found 2A =3-63 + 0-03, whereas Stephenson
and Wood (1968) concluded to 2A ~ 3-45 for the S= oo case. There is
therefore strong evidence in favour of the general assumption that the
gap exponents are equal for all n.

This assumption is also related to the scaling hypothesis. For instance,
the relationship o' + 28+ y' =2, obtained through equating A," and A,’,
is one of the scaling laws, and in fact scaling theory predicts A, =A,,
for all n. Originally put forward by Widom (1965), Domb and Hunter
(1965) and Kadanoff (1966), the scaling hypothesis has proven to be a
successful approach, to which many authors have contributed. For a
recent review see, e.g., Hankey and Stanley (1972). Though not giving
numerical values for the critical indices, scaling theory predicts relation-
ships between them, the scaling laws. Accordingly, the number of
independent critical exponents is restricted, so that from a knowledge
of two all others can be derived. In addition, the hypothesis yields
predictions concerning the form of the equation of state.

It can be argued (see, e.g., Stanley 1971) that the scaling hypothesis
comes down to the assumption that the free energy F(T', H) is a generalized
homogeneous function, meaning that there exist two parameters a, and

@y, such that
F(rerT, auHy=AF(T, H) (4.22)

for any value of the number A. It then transpires that the critical
exponents can all be expressed in terms of the two parameters a; and a,.
It is intriguing that such a unification of many various items can be
brought about by the introduction of a fairly simple mathematical
concept. We mention some of the scaling relations that are useful in
the present context (primed and unprimed exponents are equal) :

at+2B+y=2, (4.23)
a+B(6+1)=2, (4.24)

y=B(8-1), (4.25)
N=A=B+y=B8=1+}y—a)=2~a~B, (4.26)
y=v(2—n), (4.27)

vl=2—a, (4.28)
2—n=d(6—1)/(§+1). (4.29)

Here d, as before, denotes the lattice dimensionality.
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In view of the remark made in connection with the equalities between
the gap exponents, it will come as no surprise that most of the above
scaling relations are obeyed in the case of model systems for which the
exponents are known exactly, or to high accuracy (2-d Ising, MF, and
spherical model). In the case of the 3-d Ising and Heisenberg models
the possible errors in the exponent values are larger, but within the un-
certainties a set of critical exponents can be chosen that satisfy the scaling
relations. Experimental results also seem to be in agreement; in any
case no set of critical indices has yet been obtained on a magnetic substance
that invalidates them, as we shall see below. It is also remarked that
many of the scaling relations can be derived as inequalities on the basis
of thermodynamic arguments (see, e.g., Fisher 1967, Stanley 1971) under
certain assumptions. For instance, «+28+y>2 is the well-known
Rushbrooke inequality, whereas the inequality «+ B(8+1)>2 has been
derived by Griffiths (1965). Evidently, the scaling relations are useful
in the case of a model for which only two exponents have been determined
from series expansions. In that way Betts (1973) has deduced a set of
exponents for the 3-d XY model from the estimated « and y.

Another interesting recent development is the bilinear form hypothesis
(Betts et al. 1971, Stanley and Betts 1972). As a starting point this
theory takes the universality hypothesis (Griffiths 1970 b, Kadanoff 1970),
already quoted in the preceding sections, assuming the critical exponents
to depend only on the lattice dimensionality d and the spin dimensionality
D. The latter gives the dimensionality of the interacting spin vectors,
thus D=1, 2, and 3 corresponds to the Ising, the XY and the Heisenberg
model, respectively, the order parameter being a 1, 2 and 3-d vector. As
shown by Stanley (1968 c) the limit D—co (also S = o) yields the so-called
spherical model. The critical indices should be independent of spin value
8, and, at least close enough to 7', also of lattice anisotropy and spin-
space anisotropy, by which are meant the dependence of the exchange on
the direction in the crystal and on the spin components, respectively.
Current theoretical evidence indeed supports the spin independence and
seems to indicate that the exponents change discontinuously in going
from a 3-d to a 2-d lattice or from an Ising to a Heisenberg Hamiltonian
(retaining their 3-d or Ising values until the interaction in the third
dimension or the anisotropy have indeed become zero). Lastly, in the
case of short-range forces, the exponents are generally accepted to be
independent of the range of the interaction (as long as this remains
finite).

Taking then for a given dimension d a variation with D to be the only
possibility, Stanley and Betts propose a dependence of each exponent A
on D of the form A(D)= A(0)R,(D), where the factor R,(D) is the bilinear

form
b,+D
R (D)=2"—.
D) ¢+ D

(4.30)

For instance, the y values for the Ising, the XY and the Heisenberg

AP, N
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model (1-25, 1-33 and 1-38) are closely reproduced by the expression
y=2(4+ D)/(7+ D), or likewise by y=2(21+4D)/(36+4D). As pointed
out by Rushbrooke et al. (1973), for the Heisenberg model one may take
either of the so-obtained y’s and, if in addition § =5 is assumed, calculate
all other exponents from the scaling laws with y and 8. For the spherical
model §=75, whereas numerical work on the Ising and Heisenberg 3-d
models strongly suggests that & is close to 5. On the other hand, the
assumption &=2>5 invariably leads to the result =0 in three dimensions,
in view of the scaling relation 2 —n=d(6—1)/(6+1). Numerical studies
seem to exclude the possibility that n=0. Indeed, from %= 0-056 + 0-008
for the Ising mode! (Fisher and Burford 1967) and »=0-043 1 0-014 for
the Heisenberg model (Ritchie and Fisher 1972), one calculates
=468 F0-08 and 8=4-75F0-08 for Ising and Heisenberg models
respectively. Contrastingly, the numerical estimates favour a § value
slightly higher than 5. Similar discrepancies have been encountered by
Essam and Hunter (1968) in testing the relation 2A=y+dv and by
Fisher and Burford (1967) and Ritchie and Fisher (1972) in the case of
the equation dv=2—«. In some cases the discrepancies are clearly
outside the quoted errors in the numerical estimates. It is not quite
clear whether the deficiency lies in the numerical calculations or whether
the (dimension-dependent) scaling laws involving the correlation expo-
nents v and 7 are only approximately correct. Indications of the latter
possibility have been found by Stell (1968) and Domb (1968).

In turning now to the experimental results, we shall first confine our
attention to the 3-d compounds, and start with the specific heats. We
shall thereto rely heavily on the recent review of Wielinga (1971). It is
first remarked that in particular for specific heat measurements it is
useless to compare the experimental data with theoretical predictions of
the power-law form, since the asymptotic behaviour (eqn. (4.9)) is only
followed in a region so close to 7', that it is widely outside experimental
reach. Kven in high quality magnetic single crystals a considerable
rounding of the specific heat singularity (over a range of 10-2-10-2 of T',)
is the rule rather than the exception and this limits meaningful analyses to
the region |T'—T,|/T,>10"2-10-3, since the position of 7', becomes an
additional unknown parameter.

The only way out is therefore to derive a closed-form theoretical predic-
tion, valid over the whole temperature range. In the case of series
expansions with only positive terms, a useful method has been introduced
by Sykes et al. (1967) that was subsequently applied by Domb and Bowers
(1969) and by Wielinga (1968, 1971). Starting from the series expansion
of a thermodynamic function F(T')

N

F(T)= Y a,JJkT), (4.31)

n=0

of which only the first N coefficients @, are known, one assumes the
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asymptotic behaviour to be given by
F(T)~R(1—-T,T)>, (4.32)

where p is some appropriate critical index. With the aid of the usual
extrapolation methods (ratio method or Padé approximant values) values
for p and 7', are derived from the N known coefficients a,. In the next
step one forms the binomial expansion

RQ—T,/T)y»= f‘, Rb,(J [k T)", (4.33)
n=0

using the values obtained for p and T, in calculating the coefficients b,
(for any n). The constant R is determined as the limiting value of the
ratio’s R,=a,/b, for large n. The behaviour of F(T') over the whole
temperature range 0<1—7 [T'<1 can now be calculated from the
expression

F(TYy=R(1-T [Ty ?r+ % (@, — Rb,)(J [kT)". (4.34)
n=0

On substituting eqn. (4.33) into eqn. (4.34), one observes that the first
N terms of the right-hand side of (4.34) are identical with the N known
terms of the expansion (4.31). Thus expression (4.34) reduces to the
truncated series (4.31) in the high-temperature region. In the neighbour-
hood of T, the function #(T') is very well approximated by the asymptotic
term R( 1~— T.Ty> plus a constant P(T.), which is the value of the
correction polynomial in (4.34) :

P(T)= % — Rb,)(J kT, (4.35)

evaluated at T, It is also clear that the relative magnitude of the
constants R and P(7T,) will determine the extent of the critical region,
that is the temperature range around 7', in which the asymptotic power-
law term is expected to account within 19, for the behaviour of F(T).
The amplitudes R are of the order of unity for the specific heat, the
susceptibility and the magnetization. For the susceptibility the value
of P(T,) is typically an order of magnitude smaller, but for the specific
heat P(T ) is about equal to R, explaining the very narrow extent of the
critical region in the latter case. For further details and numerical results
for these parameters one is referred to the review of Wielinga (1971) and
the papers cited therein.

In figs. 69 and 70 are plotted the specific heat data on the 3-d Ising
compounds, treated above, for 7'> T, and T < T, respectively, together
with theoretical predictions for 3-d Ising lattices obtained in the just
described manner. Again we stipulate that only for relative temperatures
exceeding 10-3 (in some cases even 10~2) do the experimental results have
a real meaning, in view of the uncertainties in 7',. TFor comparison the

N2
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Fig. 69
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The magnetic specific heat of a number of 3-d Ising compounds for 7'> T,
The dashed curve gives the asymptotic power law behaviour of the s.c.
Ising model, assuming «=}%. The other curves are predictions for the
s.¢., b.c.c. and tetrahedral Ising lattices, calculated from series expan-
sions by Wielinga (1971) and Bléte (private communication) in the
manner described in the text.

dashed curve in fig. 69 displays the asymptotic power-law behaviour for
the s.c. lattice, calculated with 4=1-091 and «=1 (Wielinga 1971).
The experimental data are from Blote and Huiskamp (1969 ; CoRb,Cl;),
Wielinga et al. (1967 ; CoCs,yCl;), Keen ef al. (1967 ; DAG), Cashion et al.
(1968 ; DyAlOg) and Wright et al. (1971 ; DyPO,). In agreement with
the discussion given in § 3.3.2, the data for CoRb,Cl; and CoCs,Cl; fit
the s.c. and the f.c.c. curve, respectively, whereas the dysprosium com-
pounds DAG and DyPO, are well described by the diamond Ising model.
DyAlOQ, also shows a tendency expected for a low coordination number.

The theoretical curves in fig. 70 need some explanation. In the limit
T -0 the s.c. and diamond curve coincide, which is explained by the
exponential behaviour (exp (—2zJ/kT)) at the lowest temperatures. Since
the energy content below T, increases with the coordination number (cf.
table 11), one expects the s.c. curve to lie above the diamond curve, as is
indeed the case for 1—T/7T > 1071 At about 107! there is a crossing
point, but since obviously most of the energy content comes from the
region 1 —T'/T > 107, the net result for (¥, — E,)/RT . is still a bit higher
for the s.c. than for the diamond lattice.
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Fig. 70
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The magnetic specific heat of a number of 3-d Ising compounds for 7'< 7.
The drawn curves are predictions for the tetragonal and the s.c. lattice,
calculated from series expansions by Wielinga (1971) and Bléte (private
communication).

Theoretical results on the Heisenberg model have only been obtained
for T'> T, and spin values S=4% and S=oc0. As mentioned in the pre-
ceding pages, current expectations are that the Heisenberg specific heat
does not diverge but displays a cusp at 7', so that the heat capacity has a
finite maximum, although the temperature derivatives still diverge on
both sides of T',. Instead of

Co/RBR=401-T,/T) =+ P(T) (4.36)

the high-temperature expression for the specific heat then becomes
Om/R=A0_A1(1'—TG/T)_a+P0(T), (437)
where A4y and A4, are constants, <0, and Py(7T) is again a correction
polynomial. The expression (4.37) yields a finite maximum equal to
Ay+ Py(T) at the critical temperature. Forthef.c.c., §= o0, ferromagnet,

Domb and Bowers (1969) obtained «= — {5 and A,+ Py(7,)=10-00,
taking 7T./6=0-794. However, with the same 7' /6 value, the choice
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a=—% and Ay+ Py(T,)=5"7 leads to essentially the same specific heat
values (within 19,) in the range (1—T,/T)>10"% Moreover, Wielinga
(1971) has shown that the same applies to the combination 7',/0=0-792
(Stanley 1967), with « varying from —0-02 to —0-06. With = —0-04
the value of A,+ Py(T',) becomes 15-59.

Evidently it is difficult to differentiate experimentally between these
various possible combinations. Domb and Bowers (1969) and Wielinga
(1971) both compared their calculations with data of Van der Hoeven
et al. (1968) on EuS. With its high spin (S=%) and its low anisotropy
(H ,/Hyp~2 x 10-%) this salt is the nearest approximation of the classical
f.c.c. Heisenberg ferromagnet available. EuO would also qualify but
. unfortunately in this case the sample on which specific heat measurements

Fig. 71
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The magnetic specific heat of EuS (Van der Hoeven et al., 1968), compared
with the calculations of Wielinga (1971 ; curve a) and Domb and Bowers
(1969 ; curve b) from the series expansion for the specific heat of the
classical, f.c.c., Heisenberg ferromagnet (7> 1T ).
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were performed (Teaney ef al. 1966) contained a substantial amount of im-
purity, that apparently influences the heat capacity considerably (Wielinga
1971). 1In fig. 71 the EuS data have been reproduced, together with the
predictions of Wielinga (curve ¢ : a= —0-04, T,/6=0-792) and of Domb
and Bowers (curve b: o= —, 7',/0=0-794). Since the data seem to
favour the former calculation, one would think that Domb and Bowers’
estimate of 10 R for the finite Heisenberg limit is too low. In this respect
the following considerations are of importance. Firstly, the presence of
substantial further neighbour interactions in EuS will tend to increase
the asymmetry of the specific heat curve (cf. table 12), so that the experi-
mental data on the high-temperature side will be lower than for the ideal

Fig. 72
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The magnetic heat capacity of RbMnF; (Teaney et al., 1966) and MnF, (Teaney
1965) in the neighbourhood of 7',
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model. Secondly, the experimental specific heats are seen to decrease
with decreasing spin value (cf. figs. 72 and 73 below), also implying that
data taken on an §=% compound should be somewhat below the §=co
prediction. Thus one could conclude to an o of the order of —0-04 or
even to a logarithmic divergence (x=0, see Van der Hoeven et al. 1968)
on the basis of the data above 7, However, the experimental uncer-
tainties and the sensitivity of the theoretical predictions to the exact
value of 7',/8 do not warrant a firm conclusion, although a value o= —%
does seem to be outside the limits.

In any case it is clear that the Heisenberg limit is, by far, not reached
experimentally, since the rounded maximum reaches a height of about
3-6 Ronly. The mechanisms responsible for the experimentally observed
rounding are not yet clear. Finite size effects are not expected to play
a role for |7 —1T,|/T,>10"¢ (see, e.g., Fisher 1967). Various authors
have suggested a distribution of transition temperatures throughout the
sample as a possible explanation. This seems to be a plausible assump-
tion and, indeed, calculations taking into account such a spread in T,
have produced specific heat curves that mimic quite well the observed
behaviour (see, e.g., Wielinga et al. 1967). The fact that the experi-
mental lattices are not rigid but compressible also has an effect, but it is
generally accepted that this will sharpen the transition. For instance
Domb and Wyles (1969), in comparing specific heat data on GdVO, and
MnCl, . 4H,0 with model calculations, have discussed this possibility to

Fig. 73
— 1 _T/T, (TLT)
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The magnetic specific heat of CuK,Cl, . 2H,0 in the neighbourhood of T,
(Miedema. et al. 1965). The solid curve is the prediction obtained by
Baker et al. (1967 b) from the series expansion of the S=3%, b.c.c.
Heisenberg ferromagnet (7> T').
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explain the sharp uprise in the high-temperature specific heat of these
salts, observed between 10~4<1-—7 /T <103 It is remarked that
such an increase will lead to a high apparent value for the exponent «
(in expression (4.9)), in accordance with Fisher’s scheme for a renormaliza-
tion of the critical exponents by hidden variables (Fisher 1968), such as
impurity concentrations or extra degrees of freedom.

Returning to the EuS data of fig. 71, it is observed that the low-
temperature results strongly indicate a negative value for the exponent «’.
Thus Van der Hoeven ef al. (1968) deduced «' = —0-25 4 0-03 from their
analysis, which also corroborates the theoretical expectation of a finite
cuspin O at T

A quite similar pattern is followed by the data on RbMnF; (Teaney
et al. 1966) displayed in fig. 72. Notice the decrease in specific heat in
going from S8=% to §=4% and the fact that the anomaly is becoming
more symmetric around 7',. Also in this case the heat capacity is
apparently diverging logarithmically above 7', in the region accessible to
experiment, whereas for 7'< 7T, the downward curvature indicates a
negative o’. In summing up the experimental and theoretical evidence
just presented, we would therefore conclude that the indications for a
negative «', with o’ of the order of }, are rather strong, while the possi-
bility of a negative o, with 0 < |a| < & is also consistent with the results
obtained.

For comparison we have included in fig. 72 the heat capacity data
of MnF, (Teaney 1965). In view of the fairly large anisotropy
(Hp/Hg~1-6x1072 compared to 5x10-% in RbMnF;) one may expect
the critical behaviour to be Ising-like. Accordingly the specific heat
should have a higher asymmetry around 7',. Moreover since the 3-d
Ising specific heat most probably diverges logarithmically or with a
small positive value for the exponent, the anomaly should be much
sharper than in RbMnF, and in the experimental region the heat capacity
should behave as if it were diverging logarithmically (note that in the
region 103<1—7 /T < 107! the theoretical curves in fig. 70 may very
well be approximated by straight lines). All these features are indeed
confirmed by the MnF, data. Besides the anisotropy other effects will
play a role, for instance, the higher coordination number (z=8 compared
to z=6) and the considerable next-nearest neighbour interaction in MnF,
will also increase the asymmetry of the specific heat. But we expect that
the differences between the two manganese compounds are mainly due
to the anisotropy (cf. the small effect of z in figs. 69 and 70), although the
substantial thermal expansion observed in MnF, near 7', (Gibbons 1959)
may also have an effect (Domb and Wyles 1969).

As our last example we show in fig. 73 heat capacity data on
CuK,(l, . 2H,0 (Miedema ef al. 1965). Although of less quality than
the previous experiments (e.g. the value of 7', is known with less accuracy)
they fit into the same pattern. Also in this case the anisotropy is con-
siderable (~19%,) whereas the next-nearest neighbour interactions are
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such as to make an equivalent neighbour model with first and second
neighbours applicable. This may explain the large deviation of the
high-temperature specific heat from the prediction of Baker ef al. (1967 b)
for the S=1, b.c.c., Heisenberg lattice, which can be represented by the
expression

C/R=(T,/T)0-971 —0-668(1— T,/ T)"2] (4.38)

for temperatures 0-70 <7 ,/T <0-95, indicating a value 0-971 for the
finite Heisenberg maximum for the case S8=1. This value is most
probably an underestimate in view of the large value adopted for |«|.
The decrease in specific heat with decreasing S is, however, confirmed by
the experiment and again the behaviour is apparently logarithmic in the
relative temperature range 10-3-10-1,

Turning next to the spontaneous magnetization we firstly remark that
for this quantity the critical region extends appreciably farther away from
T, due to the fact that the singularity is stronger than for the heat
capacity. This is exemplified by fig. 74 where the predictions of various
models are displayed (Wielinga 1971). It is seen that for most models
the region in which the power-law behaviour is expected to hold with a
high accuracy, say better than 19, starts at about 1-7/T =4x 1072
One can therefore safely conclude that log-log plots of experimental
magnetization curves for 1—7/7T,<4x 1072 will yield meaningful B
and B values to compare with theory. Apart from the (exact) calculated
results for the MF model and the quadratic Ising lattice, the curves for
two cubic Ising models are shown, derived from series expansions in the
manner described above. For the Heisenberg model series predictions
are less conclusive (Baker ef al. 1970), although for 1—-7/T,>10 the
series analysis was in good accord with the curve obtained by Cooke and
Gersch (1967), using second-order Green function theory. The results
are represented by the solid curve in fig. 74. As a continuation in the
critical region, we have drawn the broken curve, which has a slope 0-36
in agreement, with most of the available predictions for the exponent S.
In drawing this curve we have further assumed that the transition to the
power-law behaviour occurs in a similar fashion as in the case of the 3-d
Ising models. :

In table 16 we have collected the values for 8 and B that have been
found for the 3-d compounds considered in this paper. As mentioned
before, the exponents are expected to be independent of spin value or,
for a given dimensionality, of the precise lattice structure. The ampli-
tude B, on the other hand, decreases with increasing S and coordination
number (Fisher 1967) and, furthermore, both 8 and B will be affected by
the anisotropy. This general pattern is followed by the results for B
in table 16, moreover the B values for the anisotropic and the isotropic
compounds tend to be closer to the Ising and to the Heisenberg predic-
tion, respectively. In this respect it is surprising that just for RbMnF,
the observed B value is within the uncertainty equal to the Ising result,
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Fig. 74 1570
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Theoretical predictions for the critical behaviour of the spontaneous magnetiza-
tion of various model systems. Solid curves : closed-form expression,
valid over the whole temperature range. Dot-dashed curves : asymp-
totic power-law behaviour. (After Wielinga 1971.)

being even lower than that obtained for MnF,, which is considerably
more anisotropic. Unfortunately, the RbMnF, value is only available in
the literature as a result quoted in the abstract of a conference paper
(Corliss et al. 1969), so that a check on the magnetization curve itself is not
possible. All we can say is that according to the authors the result was
obtained over one decade in relative temperature only, so that it might be
changed by more extended measurements, such as the very careful
N.M.R. study of MnF, by Heller (1966). In this work he was able to
apply a correction for the thermal expansion of the lattice, whereby the
exponent value changed from 0-333 + 0-003 to the result 0-335 + 0-005,
listed in table 16.

Other apparent discrepancies are the f’s of DAG and FeCl,, which are
too low as compared with the Ising prediction. In the case of FeCl,
this may be due to the range in 1— 7'/T, in which the data were analysed.
Below 10-2 there is only one measuring point near 1-2 x 10-%. If this is
disregarded, the remaining data between 10-3 and 102 may be equally
well fitted with a 8 of 0-31. In the case of DAG such an argument cannot
be applied but there may be other explanations, as for instance the non-
rigidity of the magnetic lattice. In fact, considering all the deviations
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from ideality that may interfere with the critical behaviour under experi-
mental conditions, it is surprising that the experimental findings are often
so close to the theoretical predictions.

Only few &’s have been measured until now. The available values
have been included in table 16. It may be seen that these are closer to a
value of about 4-3 than to the theoretical prediction §=5 for the 3-d
magnets. Inarecent analysis of experimental data on fluids and magnets,
Vicentini-Missoni ef al. (1970) also obtained 8 ~ 4-4 for both. Admittedly,
the value of § is very sensitive to the uncertainty in 7',. For instance,
Ho and Litster (1970) have observed that the value of § changed from 4-1
to 4-4 in going from (I'—T,)/T,=+6x10~% to —3x 10~4! This may
also provide an explanation for the widely different 8 values found for
Cu(NH,),Br, . 2H,0. 1In any case, the scarce experimental information
obtained thus far indicates that the theoretical prediction §=5 is probably
too large. It is of importance to remark that if the scaling relations are
valid, the exponent & will not be affected by the above mentioned re-
normalization by hidden variables (Fisher 1968).

In table 17 we have compiled the susceptibility parameters obtained
on the same materials. Since the susceptibility singularity is again
stronger than that of the spontaneous magnetization, the critical region
extends still further away from 7'.. Calculations (see, e.g., Wielinga 1971)
show that the power-law behaviour may be expected to set in at
1-T,/T ~0-2 already. The susceptibility exponent is thus the easiest
attainable critical index, since it may be obtained from measurements
over the widest possible range of temperatures.

Most of the y values in table 17 are seen to lie in between the Ising
result 1-25 and the Heisenberg prediction 1-40, adopted in this paper.
The latter is based upon the S=oo series (Bowers and Woolf 1969,
Ferer et al. 1971). For § =1 indications for a higher y (= 1-43) have been
found (Baker ef al. 1967 a, b). Bearing in mind the principle of uni-
versality (independence of S of the critical indices) and the fact that the
estimates of y for §=1 have ranged from 1-33 to 1-43 as more terms in
the susceptibility series came available, we have adhered to a ¢ universal ’
value of 1-40. For a discussion see Rushbrooke et al. (1973).

The fact that in many of the more or less isotropic salts the observed
y’s are considerably lower than the Heisenberg value has been attributed
by De Jongh ef al. (1970) to the effect of anisotropy. Current theoretical
research supports the hypothesis that further neighbour interactions will
not change the exponent values. Moreover in the existing work on the
Heisenberg model with anisotropic exchange (Dalton and Wood 1967,
Obokata et al. 1967, Jasnow and Wortis 1968), indications are found that
the exponent y changes discontinuously from a Heisenberg to an Ising
value upon the introduction of anisotropy, in agreement with the uni-
versality hypothesis. Coming back to the discussion of cross-over
behaviour in the preceding pages, one may expect in the case of anisotropy
to find a cross-over temperature or region in which the behaviour changes
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its character from a Heisenberg to an Ising value. With a typical experi-
mental anisotropy H ,/H;=10"3-10"% the cross-over may well occur in
the region 1073-10-1, accessible to the experiment. In that case log—
log plots of experimental results will yield intermediate y values, or, in
case the anisotropy is large enough, the Ising value itself, since then the
cross-over would occur outside the critical region. Indications for such
a behaviour have already been met above in the discussion of the heat
capacities and the B values. The same trend is observed in table 17, at
least that is the explanation we offer for the variation in y. Thus the
highly isotropic compounds (EuO, EuS, RbMnF,) have a o near 1-40
(cross-over temperature too close to T, to have an effect in the experi-
mental region), whereas the fairly anisotropic compounds MnF, and
CrBry (H,/Hg~1-6x1072) have a y nearly equal to 1:25 (cross-over
temperature outside the critical region already). The Cu salts are some-
where in between since they have a smaller anisotropy.

There remains then to discuss the high ¢ value in the anisotropic
compound FeF,. Re-examining the data of Hutchings et al. (1972 a), one
finds that they are equally well represented by y=1-34, in accordance
with the high error margin of 0-08. Correcting for the fact that y is plotted
versus T — 1T, instead of x7T versus 1—7 /T, brings vy down to 1-32.
A y value lower than about 1-30 however does not seem to be consistent
with the data, so that there remains a considerable discrepancy that is
not readily explained.

The source of the low y’s reported by Wielinga and Huiskamp (1969)
for Cu(NH,),Br, . 2H,0 and by Menyuk ef al. (1971) for EuO is more
eagily traced. In these experiments the initial susceptibility was obtained
from the isothermal magnetization as a function of field, by plotting the
results in the form of M2 versus H/M curves (Belov and Goryaga 1956,
Kouvel and Fisher 1964), deducing the susceptibility by extrapolating the
isotherms to M2=0. This method is inadequate to obtain the initial
susceptibility in the critical region and leads to too low values of v, as
witnessed by the other results for these compounds in table 17, found
with better techniques. The same argument may explain why the y
value for CrBr, is lower than the Ising prediction, since also in this case the
initial susceptibility was deduced from the magnetization.

Concerning the susceptibility index y’, on the low-temperature side,
few results are as yet available. The values in table 17 for FeF, and
MnF, do not seem to favour the scaling result y=+’, although this
relationship is still fulfilled within the error margins. The ratios of the
amplitudes Cy/C," may be compared with the predicted 5-5-5 for the cubic
Ising magnets (e.g. Fisher 1967), the MF prediction of 2 and the value 55
found in beta-brass by Als-Nielsen (1969). For the 2-d Ising magnets
the ratio is about 37.

Finally in table 18 are listed the results obtained so far for the exponents
v, v and . Comparing these with the predicted Ising and Heisenberg
values (table 15), there seems to be an agreement in that for the isotropic



L. J. de Jongh and A. R. Miedema on

208

(1L6T) "0 12 USSPOINSIV | 1-0T X G-T—2-01 X3 L30-0 ¥ g0L-0 StH

(TL6T) '1v 12 USS[OIN-SIV | 1-0IXG —5-0TXT B £20-0+ 069-0 ony
I 10-:0+ L90-0 _

0 12 N 1-0L X¢@ |N1©.H X1 60-0+ 6S-0 _

(0L61) 1 T L-01 X & T5-0L X ¥ 800-0+ ¥2L-0 Eruway
$0-0
(T26T ‘0L6T) 17 12 JOUINYOS | [ QL X T —-0TX [ 20-0 ¥ 99-0

(126T) 10 2 PIPH |\ 1-0T X T —5-01X¥ 9-0 20-0 T $£9-0 U
spunoduon ordomosy

. 3 3-0T X € —e-0IXZI g0+ L0 _
(% GL6T) 10 42 WA ATS X8 —-01 X € $0-0F L90 S g0
spunoduroo ordoxostuy

Q0UBISOY] amjereduwio) L NIN A a

QATe[aI JO afuey]

‘Burreyyeos uonneu Aq
pourmIs)ep useq [e eaey Aoy, Ayqiqudessns quepuadop 10100A-0ARM T3 PUR Y3FUS[ UCIJR[SIION SSISAUL U YA PIJRIOOSEE
ore squetiodxe asey], °,N/AN owner sopmyydure oYy jo pue b pue a ‘4 sjueuodxe EOLIO 11 JO sen|BA [ejuewimedxy QI O[qe[,



Experiments on simple magnetic model systems 209

salts EuO, EuS and RbMnF;,, the index v is near to 0-71, whereas for the
fairly anisotropic compound MnF, it is about equal to the Ising value
0-65. Again FeF, is the exception, since despite its high anisotropy the
v value is more Heisenberg-like. The reported uncertainty is fairly large,
however. The experiments do not seem to favour the scaling relationship
v=1y', although, in this case too, agreement can still be reached within
the experimental uncertainties.

The results for 5 are even fewer in number and a comparison with theory
is as yet not meaningful, taking also into account the large possible errors
in the theoretical predictions. One may state, however, that indications
for an x> 0 have indeed been found in the experiments.

With the aid of tables 16-18 sets of critical indices are derived for a
number of compounds, with which some of the scaling relations may be
tested. This has been done in table 19. Admittedly, an accurate test
of these relations is as yet prohibited by the uncertainties in the listed
numbers, caused by the possible errors in the individual exponent values,
but a tentative comparison is certainly justified. Interestingly enough,
one observes that within the experimental uncertainties the scaling rela-
tions can indeed be satisfied. Concerning the gap exponents, it is seen
that the values for the highly isotropic Eu compounds and RbMnF; on
the one hand, and for the less isotropic materials MnF,, CrBry; and
Cu(NH,),Br, . 2H,0 on the other, are systematically closer to the
Heisenberg and Ising predictions, respectively. Evidently, FeF, again
forms the exception through its unexpectedly high y value.

Another way of testing the scaling predictions is via the magnetic
equation of state, i.e. the functional relationship among the variables
M, H and T (Domb and Hunter 1965, Widom 1965, Kadanoff 1966,
Griffiths 1967). Introducing the scaled variables

m=cle|#, (4.39)
h=H ||, (4.40)

where o=M|M(T=0) and e=(T—T,)/T,, the scaling relations predict
that & is a function of m only, so that the equation of state reads simply

h=h{m). (4.41)

It remains, of course, to establish the mathematical form of the function
k(m). However, eqn. (4¢.41) implies that if, instead of the usual magnetiza-
tion versus field isotherms, we plot m versus k, the different isotherms in
the critical region should fall on a single curve, one for 7'> 7', (> 0) and
one for T'< 7T, (e<0). Such analyses have recently been performed on
a variety of materials (magnetic substances and fluids) with remarkable
success. As an example that fits into the present context, we show in
fig. 75 the h—m plot of CrBr,, as reported by Ho and Litster (1969).
Obviously, two different approaches to the problem can be taken.
Determining the critical parameters in the usual way from log-log plots,
one may compute A and m and thus obtain an experimental prediction

A.P. (o]
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Fig. 75
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Scaled plot of the magnetization isotherms of CrBr;. (Ho and Litster 1969.)

for the form of the equation of state that may be compared with theory.
The analysis of Ho and Litster was performed in this spirit and the solid
and dashed curves in fig. 75 represent, in fact, different assumed forms
of the equation of state. Alternatively, a particular form may be assumed
a priori and a set of critical parameters is derived in fitting the experi-
mental isotherms to such a function. It would go too far to mention all
the various forms of the equation of state that have been proposed, all
the more since there exist review papers in which the interested reader
can find extensive information on the subject (Vicentini-Missoni et al.
1969, 1970). We merely mention a recent development in this field,
namely, the calculation of the equation of state from series expansions
(Gaunt and Domb 1970, Milosevié and Stanley 1972). Likewise we have
refrained from going into the topic of dynamic scaling, a rapidly developing

02
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new trend that constitutes a generalization of the static scaling
hypothesis to dynamic phenomena. The theory for isotropic magnetic
systems has been discussed by Hohenberg and Halperin (1970), in which
paper references to earlier work may be found, and has been extended to
anisotropic systems by Riedel and Wegner (see, e.g., Riedel, 1971).
Experimentally, neutron investigations have been performed on MnF,,
RbMnTF; and Fel,, which seem to be in good agreement with theory (see,
e.g., Lau et al. 1970, Schulhof ef al. 1970, 1971, Hutchings et al. 1972 a).

In this section we have thus far confined ourselves to the 3-d systems.
In the remainder the critical behaviour observed in the lower-dimensional
magnets, as discussed in §§ 3.1 and 3.2, will be briefly reviewed.

Concerning the 1-d systems we have seen that since the ideal 1-d system
does not possess a finite transition point, any critical behaviour that is
observed experimentally is of a 3-d character, the argument being that
no matter how small the interchain interaction J’ is in an assembly of
magnetic chains, any finite J’ will make such an assembly of a 3-d nature.
According to the universality hypothesis the critical behaviour is therefore
the same for all values of J'. This is nicely confirmed by the experiments
since, e.g., the spontaneous magnetization that is observed experimentally
below the (J'-induced) transition points, in all the investigated cases
shows a 3-d behaviour (8~1).

For the quasi 2-d systems the above argument must be slightly modified.
Evidently, since an assembly of weakly coupled magnetic layers is like-
wise essentially a 3-d system, one expects, according to the same reasoning,
that the critical behaviour will be 3-d if the transition point is approached
closely enough. However, the fact that the ideal 2-d Ising model itself
also possesses a transition to long-range order at a 7', differing from zero,
alters the situation, in that for small enough J' there can be an inter-
mediate critical region in which the 2-d character can manifest itself.
Closer to T, there occurs then a cross-over from 2-d to 3-d behaviour,
through the effect of the finite J’. If the inter-layer coupling is not too
small for the cross-over point to be reached experimentally, the cross-over
may be spread out over a considerable portion of the critical region, so
that log—log plots of the magnetization will appear to be rounded and B
values derived from measurements in one or two decades in relative
temperature may be in between the 3-d and the 2-d values.

This has been discussed at the end of § 3.2.3, where we have also pointed
out that any quasi 2-d spontaneous magnetization observed experi-
mentally must be anisotropy-induced, since in the isotropic Heisenberg
limit there is no transition to long-range order. Quite convincingly the
B values obtained on the more or less isotropic layer-type antiferro-
magnets with |J'/J|~10-8, are close to the 2-d Ising prediction B=4.
This culminates in the results found for the anisotropic salts K,CoF, and
Rb,CoF,, which have B={ within the experimental uncertainties !
Thus below 7', a cross-over effect in the quasi 2-d salts can only be caused
by the influence of J'. Until now no clear evidence for the expected kink
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in the log-log plot of the magnetization has been observed, presumably
because either J' is too small or else because of the mentioned spreading
of the cross-over temperature.

In the case of the susceptibility, above T',, the situation is different
because for the 2-d Heisenberg model there is likely also to be a transition
point at which the susceptibility diverges. Therefore two cross-overs
would in principle be found in the susceptibility of a quasi 2-d ferro-
magnet with small anisotropy (but with H,/Hy> |J'/J|), namely, a
first cross-over from 2-d isotropic to 2-d anisotropic behaviour, and, closer
to T, a second from 2-d anisotropic to 3-d anisotropic behaviour. Such
an argument could explain the features of the susceptibility behaviour
found in the layer-type ferromagnets (C, H,, ,NH,),CuX, (X =CI or Br;
n=0, 1, 2, ... 10). The properties of these salts have been discussed
in §3.2. Referring to that section for details, we mention that at the
temperatures where the small A-type anomalies are found in the heat
capacity (cf. fig. 43), apparently the susceptibility is found to diverge,
that is it reaches the limiting value expected for a ferromagnetic sample
as estimated on the basis of the sample shape. The compound
(CeH NH,;),CuCl, forms the exception, since in that case the antiferro-
magnetic interlayer coupling is strong enough to lower the susceptibility
from the diverging ferromagnetic curve long before the ferromagnetic
limit is reached (cf. the discussion in § 3.2 and fig. 42). As examples the
susceptibilities of (CH;NH;),CuCl, and (C,oH, NH,),CuCl, have been
plotted in fig. 76 on a double logarithmic scale (De Jongh to be published)
as xT/C versus 1—-T,T, where T, is the experimentally observed
transition point. For comparison the susceptibility of the 3-d ferro-
magnet Cu(NH,),Br, . 2H,0 (De Jongh e al. 1970) has been included in
the figure as the dashed line. Note that the 2-d susceptibilities tend to be
one or two orders of magnitude larger than that of the 3-d salt over most
of the critical region.

It is seen that in the high-temperature limit the susceptibility of both
2-d salts coincides with the high-temperature series expansion prediction
(H.T.S.) for the S=% Heisenberg quadratic ferromagnet (Baker et al.
1967 a, b). As T, is approached they begin to differ, which is ascribed
to a different degree of ideality. On the basis of the 7,/ value (cf.
table 7) one may conclude that (CH,NH,)CuCl, is a less ideal 2-d
Heisenberg ferromagnet than (C,,H,,NH,),CuCl,, the latter having the
lowest T'./0. 1t can further be seen from fig. 76 that we may interpret
the data of both salts in such a way as to distinguish three different regions.
Far away from T, straight lines may be drawn through the data that have
a slope y~2-7. In the intermediate region the apparent slope is about
y=1-75, which is the 2-d Ising valuet, whereas nearest to 7', the points

T It is not obvious that the cross-over should be to 2-d Tsing behaviour,
since the planar part of the anisotropy (H,I) is larger than the Ising part
(H,T) (ef. table 7). The behaviour in the intermediate region may thus be due
to a mixture of the effects of both anisotropies.
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Fig. 76
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The susceptibilities of the ferromagnetic layer-type compounds (CH,NH,),CuCl,
and (C;oH, NH,),CuCl,. For comparison the results obtained in the
3-d copper compound Cu(NH,),Br, . 2H,0 have been indicated by the
solid curve. The susceptibilities are plotted as y7'/C versus 1—7T./T,
where T is the experimentally observed transition temperature.

agree with a y of roughly 1-2, close to the 3-d Ising value of 1-25. All
susceptibilities have been corrected for demagnetizing effects to an in-
finitely long cylindrical sample shape. Note that the cross-over to 3-d
behaviour in the less ideal (CH;NHj),CuCl, occurs farther away from 7',
as is to be expected.

Another way of interpreting the cross-over phenomenon is the following.
We may conceive of an ideal transition temperature 7',i¢- at which the
susceptibility of the 2-d Heisenberg ferromagnet diverges. The devia-
tions from ideality in the experimental compounds will cause a shift of
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the experimental 7', with respect to 7',1d- in the direction of higher
temperature. For temperatures far away from 7T, (large compared to
the difference T',— T',14-) the susceptibility will then behave two-dimen-
sionally, as if it was going to diverge at 7' id-. But as 7' i¢- is approached,
the gystem ‘ remembers ’ its actual transition temperature and diverges
at T, due to the fact that close enough to 7', the deviations from ideality
start to have their influence. Accordingly if we would know the value of
T, and plot the susceptibility of the Cu compounds not as x7'/C
versus 1— 7' /T, but as y7'/C versus 1 — T 14-/T, the curves of the various
compounds should coincide at high temperatures. As 7T ,14-is approached
the curves of the individual compounds would start to diverge from this
common curve, one by one, according to the degree of ideality reached in
each compound.

In fig. 77 the susceptibilities of four of the Cu compounds have been
plotted as x7'/C versus 1— 7' 14-/T" in order to demonstrate that such a
picture can indeed be realized. Here 7' ,19- has been chosen such that the
curves coincide over the largest possible region, since a theoretical predic-
tion for T ,4- is not available. The percentage shifts (1',— T 14-)/T, of
the individual compounds have been indicated. The resulting value for
kT 14-/J is 0-435, leading to 7',14-/6=0-22, which gratifyingly is exactly
the same prediction for the ideal transition temperature as obtained by
Bloembergen from the extrapolation procedure in which he made use of
the energy contents of the small A-anomalies in the specific heat (cf.
§3.2.3 and table 9) ! Accordingly, the fractional shifts (17',—T,i¢)/T,
of the four compounds correspond quite well to the differences of their
measured T ,/6 values (cf. table 7) from 7' i4-/§. We add, lastly, that a
similar coincidence of the susceptibility curves of the various salts at
high temperatures arises naturally by plotting y7'/C versus kT'/J (cf. fig.
42). It is also remarked that here again the 7' i4-/6 obtained may still be
affected slightly by the planar anisotropy (H ), since the latter has
about the same value (~10-3) for all the compounds. Accordingly,
possible shifts of the experimental T,/6 values due to H,!' (into the
direction of the 2-d XY value 7',/0~0-45, Betts et al. 1973) are probably
not eliminated by the above extrapolation procedure.

Thus the picture sketched above is nicely confirmed. The least ideal
salt (C4H,NH,),CuBr, is the first to diverge from the common curve, at
the point where its susceptibility diverges at the actual 7, Last of
course comes the nearest to the ideal salt (C;H,NH;),CuCl,. One
could therefore regard this common curve, together with the extrapolation
provided by the straight line drawn through the data, as being representa-
tive of the susceptibility of the ideal, § =14, 2-d Heisenberg ferromagnet.
This straight line yields a slope y=2-7 +0-3 and an amplitude ('~ 3-3.
The y value obtained agrees quite well with the estimate y=3-0+0-5
obtained by Ritchie and Fisher (1973) from their analysis of the high-
temperature susceptibility series of quadratic Heisenberg ferromagnets
with different § (§=1- o).
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Fig. 77
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The susceptibilities of four ferromagnetic layer-type copper compounds plotted
as xT/C versus 17 1|7, where 7T 9 is the assumed transition
temperature of the ideal 2-d Heisenberg ferromagnet, that is in the
absence of anisotropy and interlayer coupling. Since a theoretical
prediction for 7' id- for the case §=1% is lacking we have determined
T e from the condition that the susceptibilities of the different com-
pounds not only coincide in the high-temperature region but also on the
same straight line over the largest possible temperature range. The
fractional shifts (T,— 7T ¢)/T,, where T, is the observed transition
temperature, are indicated by the vertical lines in the top of the figure, to
which the susceptibilities of the individual compounds diverge. They
are 3, 6, 10 and 189, for (C;(HyNH,),CuCl,, (CH,NH,),CuCl,,
(C;H,NH,),CuCl, and (C,H,NH,),CuBr,, respectively.
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For the quadratic antiferromagnets few results for the critical behaviour
above T, have been reported thus far. Rather surprisingly, Birgeneau
et al. (1971 b) found y ~1-0 and v ~0-57 in K,NiF,, values that are closer
to the MI' predictions than to the 2-d Ising results y=1-75 and v=1.
However, the data were obtained in one decade of relative temperature
only (1072-10-1) and in particular the susceptibility curve appears to be
rounded. We point out that a similar analysis as given above, assuming
a shifted experimental T, with respect to 7.9 can firstly straighten
the log—log plots of y and «, and secondly bring the y and » values near
to the 2-d Ising prediction. For instance, this could already be ac-
complished by taking a shift (7',—7,9-)/T, of a few per cent only.
Since in K,NiF, the value of |J'/J| is extremely small (~10-%), the shift
would be for the most part due to the anisotropy (H ,/Hy=2 x 1073).

4.5. Field-dependent behaviour

In recent years there has been a renewed interest in the study of
magnetic systems as a function of field. This arises, amongst other things,
from the analogues between the phase diagrams (H-T diagram) of certain
antiferromagnetic systems and those of a quantum lattice gas (*He),
3He-*He mixtures and systems undergoing structural phase transitions
(NH,Cl). Furthermore, one is interested to know whether or not the
critical behaviour (exponents) is affected by the presence of a field and,
if 80, in what manner.

It is of importance in this respect to distinguish between an ¢ ordering ’
field (applied field for a ferromagnet, staggered field for an antiferro-
magnet) and a ‘ disordering ’ field, which is an applied or a staggered field
in the case of an anti or a ferromagnet, respectively (Griffiths 1970 a).
For instance, a finite external field applied to a ferromagnet will destroy
the phase transition, whereas for an antiferromagnet the transition will
remain sharp, although the transition point will (in general) be shifted to
a lower temperature.

In this section we will be mainly concerned with the behaviour of
antiferromagnets in an applied (disordering) field. Some results on
ferromagnets will be mentioned too, but so far these have been scarce.

In the case of antiferromagnets, then, the behaviour in external fields
depends strongly on the particular type of antiferromagnetic system
considered. The degree and the type of anisotropy (exchange or single-
ion) plays an important role. Moreover the presence of ferromagnetic
interactions, in addition to the antiferromagnetic ones, may change the
character of the field-dependent transitions in a fundamental way.
This will become clear from the examples that we shall give below.

Let us first confine our attention to the Ising model, that is the case of
fully anisotropic exchange, and assume only nearest-neighbour anti-
ferromagnetic interactions to be present. In that case the antiferro-
magnetic phase diagram has the simple form already displayed in fig. 32
for the square lattice. At 7'=0 the spins become ferromagnetically
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aligned at a critical field H,=H,; where I, denotes the antiferro-
magnetic exchange field (gugH,;=2z|J|S). By raising the temperature,
the critical field H . (7) decreases continuously until it vanishes at the
critical point. Alternatively, one may say that the critical temperature
T (H) is decreasing with increasing field. The variation of 7' (H) with H
has been studied by Bienenstock (1966), locating 7’ ,(H) from the singu-
larity of the staggered susceptibility. He found that his results could be
summarized by the (empirical) formula

TO(‘H)/TC(O) = [1 - (H/Hc)z]g’ (4'42)

with ¢=0-87, 0-35 and 0-36 for the square, s.c. and b.c.c. Ising lattices,
respectively. For H < H,, this expression reduces to a quadratic de-
pendence of 7' (H) on H. The latter variation has also been found by
Fisher (1960 b) from his (exactly soluble) model of a decorated quadratic
lattice, already mentioned in § 3.2.1. He obtained the equation

sinh 4|J|/kT (H) = (2 + 24/2)*/2 cosh gupH [kT ,(I1), (4.43)

which for small fields yields 7 (H)/T.(0)~1—cy(H[H,? with ¢, a
constant. At low temperatures (H ~H ), on the other hand, eqn. (4.43)
gives a linear dependence of H ,(T') on temperature :

HO(T)/HC(O) ~1-- cl(T/Tc)’

where ¢, is another constant. The Bienenstock formula (4.42) only
yields a linear variation for £~ 1, but unfortunately his results for H ~ H
were not conclusive, due to a decreasing rate of convergence with increas-
ing H of the susceptibility series. From fig. 32 it is seen that the data on
the quasi 2-d Ising antiferromagnet CoCssBr; agree rather well with
Bienenstock’s results.

Among the other relevant features of Fisher’s decorated 2-d lattice
model is the fact that the locus of transition points in the H-T' diagram
is a second-order transition curve, except at T'=0, where the transition
becomes of first order. Thus the magnetization (first derivative of the
free energy) versus field isotherm for 7'=0 rises discontinuously to its
saturation value at H=H_ whereas for 7 >0 the behaviour of the
magnetization is continuous, although for 7'< T, anomalies of the form
[H(T)—H]In |H(T)—H| occur at the transition fields H (7). This
implies that the susceptibility (second derivative) as a function of field
for fixed T < T, will display a logarithmic singularity at H(T). Like-
wise, if instead of a vertical path in the H-T diagram a horizontal path
is followed, the susceptibility at fixed magnetic field as a function of
temperature possesses a logarithmic singularity at T (H). It is worth
while to note that these susceptibility anomalies at the boundary separat-
ing the antiferromagnetic from the paramagnetic phase in fact reflect the
specific heat singularity.

Next we will consider the field dependence of the Heisenberg anti-
ferromagnet with small anisotropy, which is the most extensively studied
example of field-dependent behaviour. In addition to a transition from
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an antiferromagnetic to the paramagnetic phase, this system displays the
phenomenon of spin-flopping over a certain range of temperatures below
T. This type of phase transition was predicted by Néel as far back as
1936, but was not discovered experimentally until 1952 (in CuCl, . 2H,0)
by the Leiden group. For references to the earlier theoretical and experi-
mental papers see, e.g., Néel (1957) and Gorter (1957).

The spin-flop transition is most easily explained by considering a
simple uniaxial two-sublattice MF model at 7'=0. If an external field
is applied parallel to the preferred axis of antiferromagnetic alignment,
the moments will have the tendency to orient themselves perpendicular
to the field, since in so doing they gain a magnetic energy of 1(x, — x,)Hz2
In small fields the anisotropy, that establishes the preferential direction,
will exceed the field term, but at a certain critical field the spins will flip
over to the perpendicular orientation. A further increase of H will
gradually rotate the sublattice moments, until at the critical field H,
their mean direction is parallel to the easy axis and the paramagnetic
phase is entered. At this point the antiferromagnetic interaction is
balanced by the applied field and the anisotropy field.

The behaviour of the magnetization and the initial (differential) sus-
ceptibility as a function of field expected on basis of this model is sketched

Fig. 78

0 —

H, H, H

The behaviour as a function of field of the isothermal magnetization and differen-
tial susceptibility of a weakly anisotropic antiferromagnet, according
to the MF theory for a temperature near 7'=0. The critical fields
H, and H, correspond to the spin-flop transition field Hg, and the
transition from the flopped to the paramagnetic phase (H ), respectively,
that are discussed in the text.
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in fig. 78. In the MF treatment the spin-flop transition is of first order
(discontinuity in M), whereas the transition from the spin-flopped to the
paramagnetic phase (SF—P transition) is of second order (M continuous
but y discontinuous). In between the two transition fields the magnetiza-
tion increases linearly with H according to

MM, =H|2H ;—H,). (4.44)
For fields applied perpendicular to the easy axis the spin-flop transition
obviously does not occur and the magnetization is given by

M/MS=H/(2HM+HA)> (4.45)
until for H=H, the saturation value M is reached. The formulae for
the critical fields are

Hop=(2H,H,—H "2, (4.46)
H,=2H, —H,. (4.47)

for fields parallel to the preferred direction and
H/ =2H,+H, (4.48)

if the field is applied perpendicular to the easy axis. These critical fields
are, of course, dependent on temperature and a theoretical phase diagram
is shown in fig. 79. In this diagram the first-order antiferromagnetic to
spin-flop transition (4F-SF) and the second-order SF-P transition
curves are seen to meet in a triple point, together with the boundary
separating the antiferromagnetic and the paramagnetic phase (4 F-P),
which is also thought to be of second order. A theoretical treatment of
the antiferromagnetic phase diagram within the M F approximation can
be found in the papers of Gorter and Van Peski-Tinbergen (1956) and of
Van Wier et al. (1959). The analogy with the phase diagram of the
quantum lattice gas has been pointed out by Fisher (see, e.g., Liu and
Fisher 1973). Recently, spin-wave theoretical calculations on the
Heisenberg antiferromagnet have been performed by Anderson and Callen
(1964) and by Feder and Pytte (1968) (see also Keffer 1966). Since the
spin-flop transition is of first order, hysteresis effects may be expected
to occur and in fact spin-wave theory yields expressions for upper and
lower spin-tlop fields, quite similar to the case of supercooling and super-
heating in the liquid-gas transition (Anderson and Callen 1964), How-
ever, clear experimental evidence for this effect has not yet been obtained
in the fairly isotropic antiferromagnets.

From eqns. (4.46) and (4.47) one observes that an increase in anisotropy
increases Hqp while it lowers H,. For H,=H_ the two critical fields
become equal. It is then no longer energetically favourable to have an
intermediate flopped phase ; since the anisotropy is so large, the moments
go over directly from an antiferromagnetic alignment (parallel to H) to a
ferromagnetic alignment, at a field value H,=H,;. Thus the situation
resembles that of the Ising antiferromagnet in that the energy involved is
just that needed to turn over one of the antiferromagnetically coupled
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Fig. 79
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Theoretical magnetic phase diagram of a weakly anisotropic antiferromagnet.

moments. A subclass of substances that falls into this category are the
so-called metamagnets that we will discuss next.

Originally this term was introduced for systems like FeCl,, that consist
of antiferromagnetically coupled ferromagnetic layers with ./, >.J,;. Due
to the large anisotropy, the transition from the antiferromagnetic to the
paramagnetic phase indeed occurs in the above fashion, with for 7'< T,
a discontinuous rise of the magnetization at the transition field to a value
near to saturation. However, there also exist ferromagnetic layer-type
systems with an antiferromagnetic inter-layer coupling which has a
smaller anisotropy, like e.g. (C,H,NH,),CuCl,, that shows a behaviour
similar to the ‘normal’ antiferromagnets with small anisotropy. A
metamagnet is therefore best defined as an array of antiferromagnetically
coupled ferromagnetic layers with an anisotropy that exceeds the anti-
ferromagnetic exchange field.

The A F—-P boundary of a metamagnet is, however, only of first order
up to a certain temperature 7'y < T, above which the transition changes
into second order. The point (H,, T) in the phase diagram is a tri-
critical point, i.e. a point where three critical lines meet. This is best ex-
plained by considering the metamagnetic phase diagram in A, I, T space,
as sketched in fig. 80, where H is the (staggered) ordering field (Griffiths
1970 a). The form of the phase diagram shown follows from MF
calculations and the Landau phenomenological theory (Griffiths 1970 a).
It is seen that there exist three surfaces that intersect along the dashed
line in the H-T plane, which is the experimentally observed line of first-
order transitions. The boundaries of these three surfaces at the high-
temperature side meet in the tri-critical point.
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Fig. 80
Ha

g}

Tt

Te

The theoretical phase diagram of a metamagnetic substance. H is the constant
{(non-ordering) field, H the staggered (ordering) field. The dashed line
is the intersection of three co-existence surfaces and is the experimentally
observed line of first order transitions terminating in the tri-critical
point (H,, T',). The phase boundary extending from the tri-critical
point towards the temperature axis is presumably of second order.

From both MF theory and calculations on Ising chains (Nagle and
Bonner 1971) it can be inferred that the ratio T',/T, depends on the ratio
[Jaz/Js| of antiferromagnetic inter-layer coupling and ferromagnetic
intra-layer exchange. If J; becomes large with respect to |J,|, the tri-
critical point approaches the critical point 7', (H=0). If there are only
antiferromagnetic interactions, the tri-critical point recedes to T'=0
(H=H,) and the H-T diagram becomes that of an ordinary anisotropic
antiferromagnet, as shown in fig. 81 (a). The same effects are found for
the more general case of an antiferromagnet with both antiferro and
ferromagnetic interactions (e.g. nearest and next-nearest neighbour inter-
actions). The H-7T diagram of the metamagnet is given in fig. 81 (b).
For completeness the phase diagram of a ferromagnet in a normal field
(or an antiferromagnet in a staggered field) is shown in fig. 81 (¢). In
that case the phase boundary is the H =0 axis up to T'=1T,, where for
T < 7T, this is a line of first-order transitions ending in the second-order
transition point T'=1T..

One of the interesting features of the metamagnetic phase diagram is the
field dependence of the critical exponents (8, y, ). Recent theoretical
investigations (Harbus and Stanley 1972, Riedel 1972, Arora and Landau
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A comparison of the magnetic phase diagrams of (a) a ‘ normal ’ antiferro-
magnet, (b) a metamagnet, (c) a ferromagnet.

1972) suggests that the exponents should retain their H =0 values up to
the tri-critical point, where they change discontinuously into tri-critical
values. It should be remarked that the particular path followed in the
H-T plane may be of importance. Until now no experimental investiga-
tions into this matter have, to our knowledge, been performed.

After having reviewed some of the principal aspects of the various
magnetic phase diagrams, we discuss a few experimental examples. This
will also give the opportunity to go a little deeper into the detailed features,
some of which remain as yet unsolved. Since the only clear-cut example
of a fully mapped phase diagram of an Ising antiferromagnet is that of the
2-d antiferromagnet CoCs;Br;, already treated above, we will first turn
to the Heisenberg antiferromagnet with small anisotropy, which is at the
same time the most extensively investigated category.

Fig. 82
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Experimental magnetization isotherm as observed by Van den Handel ef al.
(1952) in CuCl, . 2H,0. The applied field is parallel to the easy axis.
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The classical example of a spin-flop transition is that observed in
CuCl, . 2H,0 by Van den Handel et al. (1952), shown in fig. 82. Since in
this salt the exchange field and the anisotropy are both fairly small, the
spin-tlop transition occursin a moderate field of a few kOe. More generally
2H,; will be of the order of 10° Oe, so that with an anisotropy of 19},
Hgp will be about 10%-10° Oe (eqn. (4.46)). To observe the SF-P
transition one would then need fields near to 108 Oe (eqn. (4.47)), which
is clearly outside the limits of normal laboratory equipment. In order to
measure a complete phase diagram, one has therefore to take recourse to
the (hydrated) salts with small exchange fields. As mentioned in § 3.3
the SF—P transition field in CuCl, . 2H,0 is about 150 kOe. An example
of a non-hydrated salt that nevertheless has a low exchange field is
(3dAlO,. Magnetization curves obtained by Cashion et al. (1970) at
T|T,~0-13 are shown in fig. 83. In this salt (as in CuCl, . 2H,0) the
anisotropy is of orthorhombic symmetry, but within the easy plane a
similar treatment, as in the uniaxial case, may be applied. The data
shown are taken along the preferred and the next preferred axes and
confirm the expectations based upon the MF approximations confined in
eqns. (4.44)(4.48).

Fig. 83
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Experimental magnetization isotherms as observed in GdA10, by Cashion et al.
(1970). The internal field, that is the applied field corrected for de-
magnetizing effects, is parallel to the easy axis (M) and to the next
preferred axis (M ).

It is of importance to note that in fig. 83 the magnetization is plotted
against the internal field, that is the applied field corrected for de-
magnetizing effects, contrary to the CuCl,.2H,0 curves of fig. 82,
where M(H) is plotted versus the applied field. It is seen that the de-
magnetization correction is necessary in order to exhibit the first-order



Experiments on simple magnetic model systems 225

character of the transition (discontinuous jump in M(H)). TIn this respect
one may recall the analogy between the spin-flop transition and the ferro-
magnetic transition, which is also of first order for 7'< 7', (Anderson and
Callen 1964). In the latter the discontinuity in M(H), occurring at
H=0, is likewise masked by demagnetizing effects; plots of M(H)
versus the applied field yield a magnetization that increases linearly up
to saturation, with a slope given by the reciprocal of the demagnetizing
factor, as a consequence of the establishment of a domain structure. A
similar division in domains of flopped and non-flopped spins will occur in
the case of the spin-flop transition, since the increase in magnetization
as a consequence of spin-flopping will lower the internal field, through the
equation H,,, =H,, , —NM, to a value that is below the critical field
Hgy needed to overcome the anisotropy energy. A quite similar state-
ment applies to the first-order transition in the metamagnetic substances,
as we will see below.

As an example of a fully mapped antiferromagnetic phase diagram we
show in fig. 84 the phase boundaries of MnCl,.4H,0 as obtained by
Giauque ef al. (1970). The phase boundaries plotted here have been
determined from maxima in the specific heat, measured as a function of
temperature at constant fields, from maxima in the isentropic suscepti-
bility and, additionally, from minima in the isentropic (97/0H)g curves
(making use of the magnetocaloric effect). This illustrates at the same
time the variety of techniques that may be used in determining the phase

Fig. 84
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Experimental antiferromagnetic phase diagram as obtained by Giauque et al.
(1970) for MnCl, . 4H,0. (H is the applied field.)
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boundaries, in addition to the simple measurement of the M versus H
curves already mentioned. It should be emphasized, however, that it
may not be taken for granted that these different methods define
exactly the same boundary (see, e.g., Giauque et al. 1970). For instance,
the maximum in the susceptibility versus 7' curves need not coincide
with the specific heat maximum, in case both remain finite at the transition
point, as in any experiment. Still another method of locating the phase
boundaries is from measurements of the ultrasonic attentuation, as has
recently been applied by Shapira to a number of antiferromagnets (e.g.
Shapira 1971). The phase transitions appear as anomalies in the ultra-
sonic attenuation, that have a different shape according to the order of
the transition and to the mode of propagation.

In our opinion the most reliable criterion in determining the field-
dependent transition points will be the specific heat anomaly. As an
example the data of Reichert and Giauque (1969) and Giauque et al.
(1970) on MnCl, . 4H,0 are shown in fig. 85. Upon increasing the field
the specific heat anomaly apparently remains as sharp as for the case
H =0, although its height decreases. This has also been found in experi-
ments on other compounds. Since the heat capacity was measured as a
function of 7' at various constant H values, the anomaly traces the AF-P
and SF-P boundaries. One would expect that a measurement of the
specific heat as a function of field at constant temperatures below the

Fig. 85
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The specific heat of MnCl, . 4H,0 in various (constant) applied fields. (After
Reichert and Giauque (1969) and Giauque ef al. (1970).
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triple point will yield a sharp spike at the spin-flop transition, in addition
to the A-type anomaly at the transition to the paramagnetic state. These
spikes should reflect the latent heat of transition associated with the first-
order spin-flop transition.

At this point we would like to emphasize the advantage of the anti-
ferromagnetic systems consisting of antiferromagnetically coupled ferro-
magnetic layers in the study of field-dependent behaviour. Since the
antiferromagnetic interaction is in this case the (often extremely) weak
coupling between the layers, saturation can be reached in moderate fields
of a few kOe already. The metamagnetic substances will be discussed
below. Here we want to concentrate on the quite isotropic layer-type
compound (C,H,NH,),CuCl, already discussed in the preceding pages.
The phase diagram, as measured in the easy plane with theaid of differential
susceptibility measurements, is given in fig. 86 (de Jongh et al. 1972 b,
de Jongh 1972 a). It may be seen that the SF-P transition along the
preferred and next-preferred axes are of the order of 1500 Oe, whereas
the spin-flop transition is a mere 330 Oe. The critical field values are
consistent with an antiferromagnetic exchange field H,;~800 Oe¢ and
an in-plane anisotropy I ,'~80 Oe. Other interesting features are the

Fig. 86
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The antiferromagnetic phase diagram of (C,H NH,),CuCl, (De Jongh 1972 a).
The critical fields H, and H,* denote the spin-flop transition (Hgg)
and the transition from the flopped to the paramagnetic phase (H,),
respectively, as obtained when the field is parallel to the easy axis.
With H parallel to the next preferred direction, only the latter transition
is observed (H,P, corresponding to H, in eqn. (4.48)). The differences
between. H,® and H,? reflect the anisotropy within the easy phase (com-
pare also with fig. 83). H is the internal field.
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fact that Hgy decreases with temperature (compare fig. 84) and that the
triple point is very close to 7', (at T'/T ,=0-997, H =135 Oe).

The low values of the critical fields admit of a careful study of the critical
behaviour near the field-dependent transition points. In fig. 87 are
plotted a number of isotherms of the differential susceptibility versus the
applied field, from which the phase diagram shown in fig. 86 has been

Fig. 87
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The isothermal differential susceptibility of (C,H,NH,),CuCl, as a function of
a field applied parallel to the easy axis (uncorrected for demagnetizing
effects). The numbers indicate the values of the relative temperature
T|T, at which the isotherms were measured. Note that the suscepti-
bility is plotted on a logarithmic scale. The indicated value 1/DC is
the calculated limit for a ferromagnetic sample of the same dimensions
(D is the demagnetizing factor and C is here the Curie constant per unit
volume).

derived. The field is applied parallel to the easy axis. The general
behaviour is seen to be in agreement with the simple MF model discussed
above. The intercepts at the ordinate reflect the increase of the parallel
susceptibility in zero field as the critical temperature is approached. At
the spin-flop transition the susceptibility apparently diverges, since it
reaches values nearly equal to the ferromagnetic limit, calculated on the
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basis of the sample shape. In between Hgp and H, the susceptibility
attains values that depend only weakly on temperature and are near to
that of the perpendicular susceptibility. Moreover, the behaviour near
H, suggests, indeed, a discontinuity in the susceptibility in the limit
T—0. What is plotted is the real part x' of the a.c. susceptibility.
Although the imaginary part is zero for most of the field range, sharp
peaks in x” were observed at the spin-flop transitions, which is consistent
with the notion of a domain formation at Hgpy.

The peaks in the susceptibility at Hgy are seen to be very sharp, and
correcting the applied field for demagnetizing effects would make them
even sharper (this correction amounts to a few per cent of the applied
tield for H > Hgy). However, a diverging susceptibility merely implies
an infinite derivative of the M versus H curve at H = Hgp and not neces-
sarily a discontinuity in M, in which case a plot of y versus the applied
field should give a susceptibility that retains the limiting (ferromagnetic)
value over a certain finite field interval. Expanded plots of the experi-
mental y versus the applied field curves indicate indeed that x has its
maximum value over an interval of a few Oe, but it is hard to draw firm
conclusions from such a small field range. That the interval is so small
may of course be explained by the fact that the demagnetizing field just
above the spin-flop transition is only about 9 Oe. Considering the other
evidence obtained in, for example, GdAlO; and MnCl, . 4H,0, however,
where the magnetization jump can be made vertical within the uncertain-
ties involved in correcting the applied field for demagnetizing effects, one
would draw the conclusion that the SF transition is indeed of first order,
in the sense that there occurs a discontinuity in the magnetization. The
difference with the MF prediction is that the susceptibility is not constant
above and below the SF transition. In fact the divergences shown in
fig. 87 can be fitted to a power-law behaviour of the form

x/C~ Ry|(H — Hgy)|Hgp |, (4.49)

with p~2-3 over several decades in y/C. This is exemplified in fig. 88
for the data on the high-field side of the SF transition. In order to carry
out such an analysis, the value of the perpendicular susceptibility attained
in between Hgp and H, was subtracted from the measured y values, and
furthermore the data were corrected to an infinitely long cylindrical sample
shape. For H < Hgy a similar though less impressive fit to a power law
with the same p value could be obtained.

Another difference with the MF theory that is observed in fig. 87 is
the fact that in between Hgp and H, the susceptibility does not remain
constant but rises with H and even displays an anomaly at the SF-P
transition, rather than a discontinuous decrease. This was observed in
the flopped phase, with H parallel to the easy axis, as well as with the
field in the perpendicular orientation. The latter results are shown in
fig. 89, where y is now plotted on a linear scale, so that the peaks are seen
more clearly. It is observed that the amplitude of the singularity



230 L. J. de Jongh and A. R. Miedema on

Fig. 88
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Critical behaviour of the susceptibility near to the spin-flop transition field
(H,, corresponding to Hgp in the text) in (C,H NH,),CuCl,. The
relative temperatures T'/7', at which the isotherms were taken are :
O: 01275 A: 02095 O: 0292; x: 0:394; v : 0495; @:
0-600; A: 0691; m: 0788; +: 0870; W : 0955. The sus-
ceptibilities have been corrected to an infinitely long cylindrical sample
shape, but this correction is negligible for (H —H,)/H,>2x10-2. The
straight line represents a power-law divergence with an exponent of 2-3.
(eqn. (4.49)).

depends on temperature ; for 7’0 the MF prediction is the more closely
approximated.

Deviations of the perpendicular magnetization curves from linear
behaviour (constant y,) have been found in many other materials. As
examples we mention here EuTe (Jacobs and Silverstein 1964, Oliveira
et al. 1972), FeCl, (Carrara et al. 1969), and CoCl, . 6H,0 and CoBr, . 6H,0
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Fig. 89
15
. ' 09052 07,03 ]
K (b)
X2rc
1294
10 0 |
: ‘.
1 b : ‘I
S S
’ ooy
! (A S
. ‘ . &
UR T SR S T
5f Ny ! AR |
X ¥ 21
o\i‘.\\ % ?u ‘\? l‘
ST T
‘V;o\;—::‘!:‘r:‘ . SRRV
B Wi
0 . : e
g 1000
— = H De o

Critical behaviour of the perpendicular susceptibility of (C,H NH,),CuCl,

near to the transition to the paramagnetic phase. The (internal) field
is parallel to the next preferred axis. The numbers again indicate the

relative temperatures T[T .. The solid curves drawn through the data

on the low-field side of H, have been calculated from eqn. (4.50) with
A=152%x10-2 K1 and r=0-32.

(Metselaar and De Klerk 1973 a, b).

In EuTe the temperature dependence
of the amplitude of the singularity in y, at H, is similar to that observed

in (C,H NH,),CuCl, (Oliveira et al. 1972). Quite contrarily, the data on
CoBr, . 61,0 (Metselaar and De Klerk 1973 b), reproduced in fig. 90,
show an exactly opposite behaviour, in that the amplitude increases with
decreasing temperature. The magnetization curve of FeCl, reported by
Carrara et al. (1969) is again different, since even at a temperature as low
as T'~0-2 T, the magnetization was found to increase linearly for H > H ,
up to H ~6H , instead of saturating. These various phenomena may be

explained by considering the different mechanisms that can cause these
deviations from the simple MF prediction.

are mentioned in the literature.
(i) Zero-point spin deviations.

The following four mechanisms

A gradual suppression of the effects of
zero-point spin deviations upon y, will occur when the sublattice moments

are rotated by the field from an antiferromagnetic to a ferromagnetic
configuration (Kanamori and Yosida 1955, Jacobs and Silverstein 1964).

This result in an extra increase of the magnetization, in addition to the
MF term M =y, H{cf. eqn. (3.6)).

31
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Fig. 90
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The isothermal differential susceptibility of CoBr, . 6H,0O as a function of a
(applied) field parallel to the easy axis, for different temperatures.
The transition temperature is T ,=3-14 K. (After Metselaar and De
Klerk (1972 b.)

(i1) Besides the above effect, spin-wave theory predicts the occurrence
of instabilities at the SF-P transition (Feder and Pytte 1968), arising
from the fact that at H, the magnon dispersion relation changes suddenly
from a linear (antiferromagnetic) to a quadratic (ferromagnetic) wave-
vector dependence. This leads to a divergent term in the susceptibility
at H, (on both sides of H,) which, to first order in the 1/28 expansion, is
of the form y, ~HT(H,—H)'2 for H—->H_,~ and similarly for H—H *.

(iii) Anisotropy effects. Carrara ef al. (1969) have shown that for a
metamagnet (large anisotropy and H;> H ;) the susceptibility increases
for H->H.~, where the transition field is lowered from the MF prediction.
For H> H, the magnetization rises slowly with H towards saturation.

(iv) Biquadratic exchange, arising from the strain dependence of the
exchange energy (Kittel 1960, Jacobs and Silverstein 1964). This also
introduces an extra field-dependent term in the susceptibility that reaches
a maximum at H=H .

The last effect is difficult to estimate quantitatively, since for most
salts knowledge of the amount of magnetostriction is lacking. We feel
however that it will be small in most cases ; in any case it cannot explain
the temperature dependences of the amplitude of the singularity in x,
shown in figs. 89 and 90. Discarding mechanism (iv) therefore for the



Experiments on simple magnetic model systems 233

present discussion, we remark that the behaviour of Fe(l, is adequately
described by the mechanism (iii), as expected from its metamagnetic
properties (see below). For FeCl, and (C,H,NH,),CuCl, the mechanism
(i) can be disregarded as a possible source, since, by the fact that J;>J ,
the zero-point spin reduction will be very small (De Jongh 1972 a).
Calculations of Lebesque of our laboratory pertinent to the Cu compound
vield a reduction AS~10"% only. On the other hand, the anisotropy
mechanism (iii) does not apply for the fairly isotropic compounds EuTe,
(C;H;NH,),CuCl, and CoBr, . 6H,0. (Note that for the latter two the
anisotropy within the easy plane is considered.)

Thus, through the properties of the individual salts, we are in a position
to choose for one, in some cases two mechanisms. As mentioned, for
FeCl, the anisotropy effect will be predominant, although (ii) will perhaps
also contribute. For (C,H;NH,),CuCl, we can definitely choose for
mechanism (ii) and in fact the spin-wave calculations yield the proper
temperature dependence of the amplitude of the singularity. Guided by
Feder and Pytte’s result, De Jongh (1972 a) fitted the data for H < H , to
the formula

[x (H) = x . (0)]/x.(0)= AT(H[H )[1 - H[H ], (4.50)

where A and r are (positive) constants. It turned out that all the
measured isotherms between 0-12< 77T <0-96, for the field in the
perpendicular direction, as well as parallel to the easy axis for H > Hgy,
could be described within 1 to 29, by this formula up to fields H/H , < 0-98,
with the same values for 4 and 7 (r~0-32). The discrepancy with the
spin-wave prediction r=0-5 should not be taken too serious, amongst
other things because it is only the leading term in the 1/2S expansion.
The heavy curves drawn through the data for H < H, in fig. 89 are calcu-
lated from eqn. (4.50) with the experimental values for 4 and =. The
data for I > H_ are not easily analysed in a similar way because the
‘ paramagnetic * contribution to the susceptibility is difficult to subtract.
This contribution arises, of course, from the fact that for 7 > 0, after the
rotation of the mean directions of the sublattice moments towards the
easy axis is completed, there still remains the saturation of these sub-
lattice momenta to be accomplished.

The compound CoBr, . 6H,0, on the other hand, is a clear candidate
for mechanism (i), since through its 2-d XY character it will no doubt
have substantial zero-point spin deviations (cf. the discussion in § 3.2.2).
The effect of (i) should become the more apparent the lower the tempera-
ture, firstly because the contribution of (ii) decreases with temperature,
and secondly because the effects of the zero-point spin deviations will be
the larger the lower the temperature. The data of fig. 90 are seen to be
in good agreement with these simple arguments.

In EuTe one may expect a mixture of both effects (i) and (ii), but since
this is a 3-d compound with a high spin value the zero-point effects are
very small and thus mechanism (ii) will likely dominate. The data of
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Oliveira et al. (1972) show a temperature dependence of the amplitude
that is similar to that observed in the Cu compound. Unfortunately
these particular measurements were performed on a conducting sample.
In addition we may add that Jacobs and Silverstein (1964) analysed an
EuTe isotherm measured at 7'/T,~0-22 in terms of mechanism (i),
showing that even at this (low) temperature, zero-point reduction alone
cannot account for the observed behaviour.

In conclusion we may say that the experiments on the isotropic anti-
ferromagnets strongly support the first-order character of the spin-flop
transition, although the nature of the susceptibility divergence at Hyp
is certainly different from the MF theory (as yet there is no theoretical
treatment available to explain the data in fig. 88). In the case of the
SF-P transition spin-wave theory predicts divergences in the suscepti-
bility at I ,, which would make the transition to be still of second order,
as it is in the MF approximation although this predicts discontinuities in y.
Indeed, anomalies in the experimental susceptibilities are found at H,
the dependence on temperature being in apparent agreement with spin-
wave theory. However, the possibility of finite cusps in the suscepti-
bility cannot be excluded by the experiments, so that the SF—P transition
could still be of an order higher than 2. This question must be solved
by further theoretical and experimental work.

The same problem arises when one considers the nature of the AF-P
transition (for temperatures above the triple point) which is believed to
be of second order. The field-dependent heat capacity (e.g. fig. 85)
seems to support this, since for the experimental examples available the
specific heat anomaly apparently remains sharp, as for H =0, although
the height of the experimental maxima decreases with H. Also the
peaks in the susceptibility observed at the AF-P boundary in e.g.
Mn(Cl, . 4H,0 (Giauque ef al. 1970), GdAlO, (Blazey ef al. 1971) and
(C.H,NH,),CuCl, (De Jongh et al. 1972 b) have more the character of
finite cusps than divergences, although the peaks in the latter two
examples are more pronounced than in the first. It has yet to be in-
vestigated whether the small size of the observed anomalies arises from
the experimental conditions (naturally the experimental specific heat
singularities are also always finite even for H=0). In any case, if the
AF-P transition be of order higher than 2 this would mean either that the
transition at H=0 (T'=1T,) is a special point, since the transition at 7',
is generally accepted to be of second order, or that this latter assumption
is false and that also for H =0 the transition is of higher order. Neither
of these possibilities is in accordance with current theoretical ideas on the
subject, which expect the order of the transition not to be affected by a
magnetic field and thus equal to 2.

Lastly we turn to the experimental examples of metamagnetic behaviour.
We have already mentioned FeCl,; other materials are FeBr,, CoCl,,
DAG (with H parallel to the [111] axis) and Ni(NO,),. 2H,0. The
magnetization isotherms of FeCl, measured by Jacobs and Lawrence
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(2) Magnetization isotherms of the metamagnet FeCl, as measured by Jacobs
and Lawrence (1967).

The transition temperature is 7,=23-5 K.
{b) The metamagnetic phase diagram of FeCl,, showing the first-order
transition line (solid curve) and the higher order line (dashed curve).
The tri-critical point is estimated to be at about 20-4 K.
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(1967) are shown in fig. 91 (a). One observes that up to 77=20-4 K the
curves of the magnetization versus the applied field show a linear portion,
with a slope that is independent of temperature. Within the (unfortu-
nately large) experimental errors, this slope equals the reciprocal of the
demagnetizing factor of the sample, in agreement with the expected
first-order character of the transition. For higher temperatures the
linear region apparently is absent, instead the curves display an inflexion
point, indicating a transition of higher order. Correcting for demagnetiz-
ing effects, a phase diagram is obtained (fig. 91 (b)) that is in qualitative
agreement with the theoretical expectation outlined above. Considerable
hysteresis in the metamagnetic transition was reported.

Additional evidence for the first-order character of the transition is
provided, for example, by the work on Ni(NO,),.2H,0 (Schmidt and
Friedberg 1970) and DAG (Landau et ol. 1971), in which case the de-
magnetizing factor of the sample was known to much higher accuracy
(about 19, for DAG), and the discontinuities in the magnetization versus
the internal field curves were indeed found to be vertical within the error
involved in the demagnetizing correction. In between the value for the
applied field at which the magnetization starts to rise and that at which
it levels of, the system is in a mixed state of co-existing antiferromagnetic
and paramagnetic regions. By making a plot of applied field versus
temperature one obtains a phase diagram as shown in fig. 92 for DAG
(Landau ef al. 1971). The different symbols refer to the various thermal
and magnetic measurements used in locating the phase boundaries. From
such a graph one may determine accurately the value of the tri-critical
point. Correction for the demagnetizing factor (N =>5-35) of the sample

Fig. 92
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The metamagnetic phase diagram of dysprosium aluminium garnet plotted as
H, .. versus T (solid curve) and H, , versus T (dashed curve). N
denotes the demagnetizing factor of the sample. (After Landau et al.
1971.)
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yields the broken curve that is similar to the one shown for FeCl,. It is
interesting to observe that within the experimental accuracy there occurs
no kink at the tri-critical point.

Instead of the H,,, versus 7' plot one can also draw a magnetization
versus 1" diagram, given in fig. 93. Below the tri-critical point there are
two branches, which are the loci of the ends of the vertical discontinuities
in the magnetization isotherms. Between the tri-critical point and 7',
the AF-P phase boundary was identified by the maxima in the isothermal
susceptibility measured as a function of field. A similar diagram for
Ni(NOy), . 2H,0 was constructed by Schmidt and Friedberg. It is this
M-T diagram that is the analogue of the composition-temperature
diagram for ®He—*He mixtures (Griffiths 1970 a). In the latter the tri-
critical temperature corresponds to that below which spontaneous phase
separation takes place. The upper and lower branches below the tri-
critical point give the temperature variation of the 3He-rich and the
“He-rich phases, respectively. The boundary in between the tri-critical
point and 7', is the line of A transitions of the single phase.

Fig. 93
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The M-T diagram of DAG, which can be considered to be a magnetic analogue
of the composition-temperature diagram for 3He—4*He mixtures.

Among the other interesting features emerging from the study of
Landau ef al. on DAG is the fact that the specific heat, measured as a
funection of temperature in constant internal fields, displays sharp,
possibly infinite, peaks at the first-order transitions below the tri-critical
point. These peaks reflect the latent heat of transition accompanying
the first-order transition. About the nature of the phase boundary in
between 7', and the tri-critical point, the same questions pertain as to
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the AF-P transition in the isotropic antiferromagnets. Although sharp
peaks are observed in the heat capacity and the susceptibility, they appear
to be finite so that it is still doubtful what the order of this transition will
be. We remark in conclusion that in the experiments on antiferro-
magnetic substances performed thus far, the temperature dependence of
the AF—P phase boundary has always been found to be of parabolic form,
in agreement with theory.

In concluding this section we briefly comment on the field-dependent
behaviour in ferromagnets. To our knowledge the only experiments
performed so far are the specific heat measurements of Miedema et al.
(1963) on CuK,Cl, . 2H,0 and those on EuS by Teaney ef al. (1968). In
both cases the application of a constant field changes the appearance of
the specific heat curve from a sharp peak into an apparently non-anomalous
curve with a rounded maximum, the position of which was, in the case of
CuK,Cl, . 2H,0, found to decrease firstly with respect to 7', in small
fields, and then moving upwards again as the field increases to higher
values. A decrease of the temperature of the maximum as a function of
field was also observed in EuS. These features seem to be consistent
with the expectation quoted above that the transition in an isotropic
ferromagnet will be destroyed on application of a non-zero external field.

However, Teaney et al., analysing their data in terms of a complex
critical temperature, claim that the apparent logarithmic divergence,
found for H=0 as T—>T.* (see above), is preserved in non-zero fields.
They attribute the observed rounding to inhomogeneous magnetization
and report some evidence for this by comparing the rounding found in a
spherical sample with that in a cylindrically shaped specimen, for which
it was found to be considerably larger.

Leaving it to the reader to judge the merits of the approach of Teaney
et al. (1968), we mention the paper of Wojtowicz and Rayl (1968) that
was inspired by the work of Griffiths and Arrott (see Arrott 1968).
Within the MF approximation, Wojtowicz and Rayl show the possible
existence of transitions from a non-uniformly to a uniformly magnetized
state in an isotropic ferromagnet with dipolar interactions included. In
low fields these transitions are reflected as sharp anomalies in the heat
capacity, which occur at a temperature that decreases roughly quadratically
with field and broaden as the field is increased. Furthermore, these sharp
peaks are superimposed upon much broader maxima associated with the
development of long-range order in the uniform state by the field.
Although the existence of the sharp anomalies is as yet not verified by the
experiments, the shape and temperature dependence of the broad maxima
are qualitatively in good accord with the observations in CuK,Cl, . 2H,0.
Yet another mechanism for the occurrence of field-induced phase transi-
tions in the experimental ferromagnets may be the presence of anisotropy,
as shown by calculations bearing on this problem (see, e.g., Pfeifer 1971,
Durczewski 1970). In this case the transition temperature also decreases
with field.
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Lastly we mention that in the work on EuS (Van der Hoeven et al.
1968) the specific heat at the critical isotherm was found to vary loga-
rithmically with field. Moreover the authors analysed their data in
different fields in terms of an equation of state, rather similarly to the
example given above in § 4.4.

§ 5. CONCLUDING REMARKS

The first aim in writing this paper has been to present a catalogue of
those magnetic crystals that from experimental investigations have proven
to be approximate representatives of one of the simple models used in
theoretical descriptions of magnetic ordering phenomena. The present
review clearly lacks completeness, i.e. it covers a limited variation in the
type of magnetic interaction only and furthermore has been concentrated
on insulators. We have considered three different dimensionalities for
the spin (Ising, X-Y or Heisenberg), three magnetic lattice dimensionali-
ties and two signs for the exchange interaction. However, we did not
include magnetic crystals with predominantly dipolar interactions,
magnetic metals in-which the magnetic moments are not localized (itinerant
magnets) and metals in which the interactions between localized moments
are of the long-range, oscillating type (Rudermann—Kittel interaction).

The choice made has been influenced by the authors’ own interests and
activities. One may say that the selection comes down to a preference
for those magnetic systems that on the one hand are the relatively most
simple ones and on the other hand the most extensively investigated
substances.

In addition to the systematic presentation of a collection of simple
magnetic systems, i.e. how they can be conceived and where they have
been found in Nature, we have tried to make clear why this type of research
in magnetism has drawn so much attention. We have collected a number
of experiments which present convincing experimental verification of
theoretical predictions derived in fields as the theory of spin waves, series
expansion methods and theories which treat the critical behaviour that
accompanies phase transitions in general. Concerning the latter, we
restricted ourselves to magnetic phase transitions, which means a severe
limitation in view of the extensive literature on, for instance, gas-liquid
phase transitions or ordering phenomena in alloys.

Having viewed the present collection of crystals that approximate
simple magnetic models, one may ask which types are already sufficiently
covered experimentally and for which types there is still a need for more
complete experimental information. Firstly, considering the one-
dimensional systems, we conclude that in fact only for Heisenberg
antiferromagnetic chains is the situation completely satisfactory. Ap-
parently, ferromagnetic Heisenberg chains and both ferro and antiferro-
magnetic Ising chains are more difficult to realize. A reason for this
may be the large reduction of the spin moment that is inherent in an
isotropic low-dimensional antiferromagnetic system. In spite of the
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fact that there are no good examples of Ising chains, however, one cannot
positively conclude that it would be worth while to put considerable
experimental effort into finding better ones. The theory for one-
dimensional Ising systems is exact, while for Heisenberg ferromagnetic
chains, too, the theoretical predictions derived by extrapolation from
properties of rings with a finite, increasing number of spins are apparently
sufficiently accurate to warrant the assumption that no new surprising
phenomena are to be discovered by doing more experiments. Un-
doubtedly all of the thermodynamic behaviour can be calculated accu-
rately enough theoretically, while the specific properties that have to do
with an exceptionally large degree of short-range magnetic order can be
(and have been) investigated equally well in the one-dimensional
Heisenberg antiferromagnets, of which so many representatives are known
at present. Generally speaking, we would say that a search for still
more examples of simple magnetic model systems would be justified only
in the case where the additional experimental work is expected to provide
new contributions to the mutual stimulation of theory and experiment.

An interest in one-dimensional systems that remains is connected with
studies of the magnetic interaction in insulators (its quantitative value).
Low-dimensional magnetic systems offer the possibility of a relatively
accurate and easy determination of the value of the exchange constant ;
also, the much smaller interaction between magnetic atoms of neighbour-
ing chains, which gives information concerning complicated exchange
paths, will be reflected in the experimental 7', values.

Turning next to the two-dimensional magnetic systems, we can conclude
that there is a large number of Heisenberg substances, ferromagnetic as
well as antiferromagnetic. The number of crystals in which the two-
dimensional Ising model is approximated is again much smaller but like-
wise this does not necessarily imply a real need for further experimental
research. The zero-field two-dimensional Ising problem is exactly
soluble and also the field-dependent properties of the  ideal system * can
be adequately studied theoretically so that there seems to be no need of
additional experimental verification. Note ‘that the situation for
Heisenberg magnets in two dimensions is fully different. Here the
theory is far from complete, whereas experimentally it has been possible
for instance to derive with good accuracy the specific heat of the quadratic
Heisenberg ferromagnet with 8§ =1, theoretical predictions being restricted
to the low and high-temperature limiting cases only. Surprisingly, the
series expansion analyses have led to the prediction of a phase transition
in the magnetic susceptibility (Stanley and Kaplan 1966). Experiments
have confirmed that this should be a phase transition to a state of infinite
susceptibility but no spontaneous magnetization.

We suggest that a search for new examples of two-dimensional magnetic
crystals is not necessary. Any forthcoming fundamental question, which
is in principle open for experimental studies, can likely be answered
from an investigation of the series of compounds known.



Experiments on simple magnetic model systems 241

Similar to one-dimensional magnetic crystals, two-dimensional com-
pounds will remain attractive for investigations of magnetic interaction
constants, Apart from an accurate determination of the value of the
main exchange constant, the quasi two-dimensional crystals in addition
often offer the possibility of studying in detail the interaction in the third
dimension and the effects of magnetic anisotropy.

Surprisingly enough, the number of fair approximations of simple
models in three dimensions is quite limited. The few good examples do
agree with theoretical predictions, but a conclusion of how important it
would be to have more or better experimental realizations of three-
dimensional Ising and Heisenberg magnets cannot be drawn straight-
forwardly, amongst other things because of the approximate nature of
the theoretical results obtained so far.

In this section we did not mention the XY model until now. In this
case both theoretical and experimental information are far from complete.
For instance, the spin-wave theory for the planar models has received
little attention. Quite generally, one expects an XY system to behave
as intermediate between Ising and Heisenberg (critical exponents); in
the special case of two-dimensional lattices the XY model is similar to
the Heisenberg model, in that it will also possess the new type of phase
transition to a state of infinite susceptibility without long-range order.

Further experiments on XY type crystals would therefore be quite
interesting. However, the XY models is relatively difficult to realize.
In Fe?* and Ni?* compounds, in which the crystal field would produce a
singlet state lying lowest in the absence of magnetic interactions, the
XY model can only be a relatively poor approximation. At the higher
temperatures these substances will behave as anisotropic Heisenberg
rather than XY systems, and for this reason the effective spin value is no
simple constant. We suggest that compounds similar to CoCl, . 6H,0
are more attractive in studying the XY model. One would like to have
an isolated crystal-field doublet to be the only populated level at tempera-
tures of the order of the exchange constant (effective S=1%), while the
XY character then arises from the anisotropy in the g tensor (g, >g,).
There are possibilities in finding ¢, >¢, among rare-earth ions, but in
that case it is difficult to produce magnetic interactions that are pre-
dominantly of the exchange type.

A conclusion that can be drawn from § 4.2 is that the applicability of
the spin-wave approximation in describing the low-temperature properties
of magnetically ordered crystals is beyond doubt, including the case of
antiferromagnetism with the inherent phenomenon of zero-point spin
deviations. For chains with only short-range order the situation is not
fully clear. Apparently it makes sense to speak about spin-wave-like
excitations also in systems which have no long-range order. It is possible
to study the dispersion relations in neutron scattering experiments, but
in particular the static properties of one-dimensional systems (specific
heat and suceptibility) only qualitatively agree with simple spin-wave

AP, Q
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theory. The key to the solution of this problem may lie in the study of
those spin-wave-like excitations which have wavelengths nearly equal to
the correlation length, i.e. neutron diffraction experiments in which for a
specific £ value or energy the effect of a varying degree of short-range
order is studied. In this respect neutron scattering experiments have a
clear advantage over magnetic resonance experiments in which the
temperature dependence of the linewidth (N.M.R., E.S.R.) is used as a
tool to study the effects of the anomalously large degree of short-range
order in low-dimensional magnetic crystals (Nagata and Date 1964,
Bucci and Guidi 1970, Maarschall 1970, de Wijn, Walker, Davis and
Guggenheim 1973 b). A resonance linewidth represents an integral
property over the full spectrum of excitations, whereas in a neutron
diffraction study an excitation of a particular frequency may be selected.

Closely connected to the problem of how to describe spin waves at
temperatures above 7' is the question of how to renormalize the dispersion
relation as a function of temperature. The energies of long wavelength
spin waves become renormalized according to the spontaneous magnetiza-
tion, short wavelength excitations on the other hand apparently have
their frequencies renormalized according to the magnetic energy. For
intermediate frequencies one has no clear idea yet as to how renormaliza-
tion effects have to be taken into account.

Returning to the correlation length, we want to stipulate the prime
importance of this quantity in understanding the behaviour of quasi one
or two-dimensional systems. Differentiating between the inter-planar
(or inter-chain) correlations and those within the magnetic layers (or
chains), we have seen in the preceding pages that the former quite often
play a very minor role, becoming manifest only at the lowest tempera-
tures. In addition to the difference in strength between the inter and
intra-layer interaction, this may be attributed to the difference in the
dependence on temperature and on distance of the correlations in two
and in three dimensions. Theoretical work (Jasnow and TFisher 1967,
Lines 1970) has shown that the correlations in two-dimensional systems
fall of considerably more slowly with distance than in three dimensions.
The fact that at the same £7T'/J the correlation length is much larger in
e.g. two dimensions, explains the large degree of short-range intra-
planar order, long before the inter-planar correlations come into play.
Thus the behaviour as a function of temperature of an array of nearly
isolated layers is two-dimensional over a very wide temperature range,
until, sometimes extremely close to 7', the effect of the correlations in
the third dimension is felt. This contrasts with the situation in thin
magnetic films, for which one may argue that they will also approximate
a two-dimensional system when the film thickness becomes of the same
order as the lattice constant. In the case of thin films the high-tempera-
ture properties will be that of the bulk material, since only as the tempera-
ture is lowered to 7', will the correlation length become comparable with
the film thickness, so that a two-dimensional character may manifest
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itself. We remark that thin films in general present a more difficult
problem than crystals consisting of nearly isolated layers, since in the
former the boundary effects are of considerably more importance than in
the latter.

In §4.3 we have stipulated the usefulness of predictions based on
series expansion methods. It is surprising that a truncated series can
provide accurate quantitative results for thermodynamic properties of
interest at temperatures as close to 7', as 19%,. Also the results derived
for critical exponents appear to be quite satisfactory.

In § 4.4 we have witnessed that unusual values for the critical exponents
B and y (i.e. values different from those of three-dimensional lattices)
have indeed been observed experimentally. The experimental analysis
in these cases has to be performed in a temperature region slightly away
from T, rather than as near to 7', as possible. For instance, studying
two-dimensional Heisenberg compounds a relatively weak interaction in
the third dimension or a small anisotropy will lead to a three-dimensional
or Ising-type critical behaviour, respectively, at temperatures which are
sufficiently near to 7, (In practical cases this may amount to
(T—-T,)|T,~10-3-10"2 already.)

A conclusion of §4.4 is that the experimental information on critical
behaviour agrees with theoretical expectations. Further experiments,
in particular on systems with unusual exponent values, would be of much
interest, but within the group of systems covered in the present paper this
will be difficult. Approximately one-dimensional lattices will show three-
dimensional critical behaviour (if any), quasi two-dimensional crystals too
will show three-dimensional behaviour at temperatures sufficiently close
to T',, which region may in the highly anisotropic cases be preceded by
one where it is two-dimensional Ising-like. Likewise an approximate
two-dimensional Heisenberg compound may, away from T, show the
critical behaviour characteristic for the ideal system. For this model
two cross-overs may be observed as T, is approached, namely, firstly
from two-dimensional Heisenberg to two-dimensional Ising (or XY) and
thereafter to three-dimensional Ising behaviour. Obviously a critical
exponent for the heat capacity may in this case only be observed in the
three-dimensional (or in the two-dimensional Ising) region.

We suggest that in addition to giving much attention to the dependence
of critical exponents on lattice dimensionality, one should like to have
more information on sets of critical exponents for magnetic systems
unusual in other ways, viz. magnetic systems having long-range interac-
tions, magnetic crystals with well-defined temperature-dependent inter-
action constants or dilute magnetic systems (crystals in which a fraction
of the magnetic sites is occupied by diamagnetic atoms).

One may conclude from § 4.5 that there is still a lot of interesting work
to be done concerning field-dependent properties and field-induced phase
transitions in general. Since one is restricted to long-range ordered systems,
one basically deals with either 3-d or 2-d-Ising systems. Nevertheless,

A.P. R
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approximately low-dimensional crystals have an advantage that, when
considering their three-dimensional magnetic properties at temperatures
below 7', the magnetic field region of interest when studying transitions
in the H-T phase diagram is often restricted to easily accessible low field
values.

Fig. 94
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The magnetic heat capacity of K,PbCu(NO,);, an example of an f.c.c. anti-
ferromagnet with S=4. The curve displays the broad maximum
(height about Cj/R=0-3) characteristic for magnetic systems that
(ideally) would have no transition to long-range order. The temperature
of the maximum is about 3 K. The small anomaly found at 7'~0-5 K
could be interpreted as a transition to long-range order, caused by next-
nearest neighbour interactions. This temperature should be compared
to the molecular field prediction for the transition temperature, which
is of the order of 8 ~10 K, as deduced from estimates of the exchange
constant. (After Bléte, private communication ; see also Huiskamp
(1966).)

Concentrating a little more on possibilities for future work it will come
as no surprise that we suggest that one should pay more attention to
some of the magnetic systems that have not been treated in the present
review. For instance, we did not consider the f.c.c. or triangular anti-
ferromagnets that have transition temperatures strongly dependent on
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the value of the second nearest-neighbour interaction, since they will not
show long-range order in the case of only nearest-neighbour interactions
(see fig. 94). Also one may study magnetic ordering in the case of only
dipolar interactions, in helical spin systems, weak ferromagnets, metallic
itinerant magnets, alloys of rare-earth metals with localized moments
coupled by the mechanism of magnetically polarized conduction electrons
diluted magnetic insulators and the magnetic substances whose properties’
are affected by the size of the crystal. Here a lot of interesting work is
still to be done, theoretically as well as experimentally.

Fig. 95
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¢ Staring crowd ’ analogue of phase tradsition. (a) ‘normal’ phase. (b) ‘condensed’ phase.

The ° staring crowd > phenomenon (Mattuck and Johansson 1968) is an illustra-
tion of the fact that phase transitions are certainly not confined to
physics but is a more general phenomenon that can be found everywhere
in Nature whenever one deals with a system consisting of elements
between which there exists some sort of feed-back mechanism (exchange).
Tf one of the elements (spins, human beings) gets conditioned in a certain
fashion—in the above example the attention of one of the persons is
attracted by something at the window—the neighbouring elements
become conditioned in a similar way, even though there is no external
force present that compels them to do so (they may see nothing at all
at the window in question). Another example from daily life is the
‘ spontaneous buying > of luxury goods as colour-television sets, new
cars, etc., which occurs when a given person has enough neighbours
around him that possess such an item.
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The main point at this moment for doing such research may be to get
additional evidence supporting the ideas of a universal description of
phase transitions in terms of a few parameters. Taking this argument
as a start, it is only a small step to fields outside magnetism, phase transi-
tions being of importance for molecular physics and metallurgy as well as
for biology and as illustrated by fig. 95 also, for example, for the social
sciences.

A final conclusion to be drawn from the present paper concerns materials
science in magnetism. In the above we have learned that it has been
possible to find experimental approximants of various highly artificial
theoretical models which theoreticians are forced to use. In many cases
the compounds were not discovered by accident but have been searched
for systematically. This leads us to the optimistic conclusion that, if it
is made sufficiently clear which combination of properties has to be looked
for, even the apparently most unlikely combinations may be realized in
practice.
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