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ABSTRACT 

I n  this  paper  we shall review the theoretical and experimental  results 
obtained on simple magnetic model systems. We shall consider the Heisen- 
berg, X Y  and Ising type of interaction (ferro and antiferromagnetic),  on 
magnet ic  lattices of dimensionali ty 1, 2 and 3. 

Par t icular  a t t en t ion  will be paid to the approx imat ion  of these model 
sys tems  in real crystals, viz. how they  can be realized or be expected to 
exist in nature.  A large number  of magnetic  compounds  which, according 
to the  available experimental  information,  meet  the requirements  set by  one 
or the other of the various models are considered and  their  properties dis- 
cussed. Many examples will be given tha t  demonst ra te  to wha t  extent  
exper iments  on simple magnetic sys tems suppor t  theoretical descriptions of 
magnetic  ordering phenomena  and contr ibute  to their  understanding.  I t  
will also be indicated in which direction there is a need and/or  a possibility 
for future  work.  
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§ 1. INTRODUCTION 

1.1. Magnetic model systems 

Most of the progress in theoretical and experimental investigations on 
critical phenomena has resulted from the introduction of a large variety 
of lattice models. In that  way theoretical physicists have been able to 
obtain exact or approximate solutions for the behaviour of thermodynamic 
quantities near phase transitions, calculations that  would otherwise not 
have been possible, due in most cases to the insurmountable mathematical 
problems associated with cooperative phenomena. In these model 
systems the magnetic interaction is more or less simplified, while the 
dimensionality of the lattice may be varied. As an illustration, consider 
the interaction Hamiltonian 

~ f  = - 2J ~ fasceS/+ b (Si~Sj x + S~YS~ y) ] (1.1) 
i> j  

where summation is taken over nearest neighbouring spins and J is the 
exchange constant. If we put a = b = ] we obtain the Heisenberg model, 
in which the interaction is wholly isotropic. The other extreme, the 
anisotropie Ising interaction, is obtained by setting a =  1 and b=O. 
The third case a = 0, b = 1, is called the XY model, or the planar Heisenberg 
model if one puts the additional requirement tha t  the spins are constrained 
to lie within the xy plane. 

A useful concept in this connection is that  of an order parameter, tha t  
is a quanti ty which is a measure of the amount of ordering present in the 
system below the critical point~. In magnetic systems the spontaneous 
magnetization may be taken as the order parameter and it is readily seen 
tha t  in the Ising model this is a scalar quanti ty (one-dimensional vector), 
since the magnetization can only point up or down. In the Heisenberg 
and the planar Heisenberg model, the order parameter is a three and a 
two-dimensional vector, respectively. 

t Throughout this paper we will denote by the symbol T¢ the (critical) 
temperature at which the system undergoes a transition to long-range order. 
We will not use different symbols for ferro and antiferromagnets (Curie and 
l~el  point). 



Experiments on simple magnetic model systems 

Apart from the dimension of the order parameter (spin-dimensionality) 
one may choose a lattice of arbitrary dimensionality, the one, two and 
three-dimensional lattices being the most frequently studied. In addition 
the spin value may be varied; the quantities S~ in (1.1) denote spin 
operators for quantum-mechanical systems with S = ½, 1, ~ . . . .  , or they 
represent classical vectors in the ease of the classical models. The latter 
are treated by replacing J in (1.1) by J'/S ~ and allowing S to tend to 
infinity. 

Another variable quantity is the sign of the exchange constant J 
which can be either positive or negative, giving rise to ferro or anti- 
ferromagnetism, respectively. Also, intermediate models have been 
studied in which the ratio of the constants a and b in (1.1) can take any 
value, e.g. Yang and ¥ang  (1966), Dalton and Wood (1967). Further- 
more one may extend the range of the interaction by including interac- 
tions with next-nearest (or still further) neighbours, in this way obtaining 
information about the influence of further neighbour interactions upon 
the critical behaviour. Finally, also vector order parameters of a dimen- 
sion higher than 3 have been studied, the limit of infinite spin-dimen- 
sionality being equivalent to the so-called spherical model (Berlin and Kac 
1952, Stanley 1968 c). 

The original aim of theoretical physicists in devising these various 
model systems was to get a better understanding of experimental observa- 
tions. However, in studying lattice models of lower dimensionality 
(d= 1, 2), it appeared that  certain features of thermodynamic quantities, 
which were only minor effects in the behaviour observed at that  time, 
turned into gross features in the lower dimensional systems. At first 
this was a little distressing, since one had hoped that  the models would 
not be oversimplifications of reality so that  the main characteristics of 
the phase transition would remain preserved. But one has come to 
understand the origin of these effects and in fact the comparison of results 
obtained for different models has proven to be most rewarding, as it 
elucidates the way in which, for instance, the lattice dimensionality or 
the type or range of the interaction influences the general features of a 
phase transition. Moreover, during the last decade the situation in some 
way is reversed in that  experimental physicists are now supplying 
theorists with data which may be compared with models that  at first 
sight are most unorthodox. Part ly by accident, but in most cases by 
carefully choosing magnetic substances from the immense reservoir of 
compounds offered by chemistry and metallurgy, experimentalists have 
been able to find materials whose properties resemble quite closely those 
predicted for various theoretical models. Indeed, to such an extent tha t  
one sometimes wonders how artificial and unphysical such a model has 
to be, in order to prevent the discovery of an approximation in the 
laboratory ! 

I t  is the aim of this paper to describe how the conditions set by particu- 
lar models have been met experimentally and to survey the information 
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available, the experimental results having for most part  been obtained 
during the past ten years. Theoretical calculations will be mentioned in 
connection with the experiments. The reader who is interested in the 
details of the theory is referred to the reviews of Domb (1960), Fisher 
(1965 b, 1967), Stephenson (1971) and the book by Stanley (1971). 
In addition there are the series edited by  Rado and Suhl (' Magnetism ') 
and by Domb and Green (' Phase Transitions and Critical Phenomena '). 
Among the reviews which give more emphasis to the experimental data 
relevant to the present paper, we mention those of Domb and Miedema 
(1964), Huiskamp (1966), Heller (1967), Kadanoff et al .  (1967) and 
Wielinga (1971). Lastly we point to the work of Keffer (1966), who has 
given an extensive review of spin waves in theory and experiment. 

I t  must be emphasized that, although we shall be concerned only with 
magnetic systems in this paper, many of the Hamiltonians described 
above also allow for an interpretation other than a magnetic one. For  
instance, the Ising Hamiltonian may be used to describe the liquid-gas 
transition in a lattice gas, as well as the spontaneous phase separation 
observed in binary fluids and the ordering in alloys. The XY model is 
the magnetic analogue of a quantum fluid and is therefore of relevance to 
the theory of superfluidity and superconductivity. 

The layout of this paper is as follows. In the remainder of this intro- 
duction we shall discuss briefly the effects of lattice dimensionality and 
the type of interaction. We shall recall how these may be understood in 
a qualitative way by considering spin-spin correlations. In § 2 we will 
indicate how general rules can be given for finding compounds that  
approximate a particular model system. In the next section a collection 
of the hitherto discovered examples are tabulated with a short account 
of their individual properties, e.g. quantitative information (if available) 
about the deviations from the ideal model which evidently will be met 
in any experimental system. To give a full account of all the publications 
of the many workers in the field of magnetic transitions clearly is an 
impossible task and therefore we have aimed merely to offer the in- 
terested theoretician a guide to the available data, supplying simul- 
taneously to the experimentalist a survey of the existing theoretical work 
and of the extensive range of compounds already discovered. Accord- 
ingly, we want to apologize beforehand to those investigators whose work 
has not been included in the present review, through oversight or lack of 
space. 

As concerns the fundamental thermodynamic properties of 1, and 2 and 
3-d (d = dimensional) lattices (e.g. specific heat, susceptibility, etc.), com- 
parisons between theory and experiment will be found in § 3. The last 
section is devoted to a number of special subjects, namely results obtained 
from various theoretical approaches and their experimental verification. 
In reading § § 3 and 4, we think both theorists and experimentalists will 
share the joy of seeing how extremely well theory and experiment have 
been found to fit in many cases. Although there certainly remain a 
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number of problems to be solved, one may say that  a considerable amount 
of understanding of the physics in these magnetic model systems has 
already been reached. 

1.2. Ellects o] dimensionality and type of interaction 

Changing the dimensionality of a magnetic lattice has a dramatic 
effect upon the thermodynamic properties. This can clearly be illustrated 
by considering the specific heat behaviour. In fig. 1 are compared the 
theoreticM specific heats of the Ising model for a 1, 2 and 3-d lattice, 
together with the molecular field (MF) prediction. We first remark 
that  the MF theory "fails to account even for the behaviour of the 3-d 
Ising model, which corresponds rather closely to what is mostly observed 
experimentally. The MF prediction for the transition point is too high, 
the specific heat shows a finite discontinuity instead of diverging, and is 
furthermore characterized by the absence of the characteristic 'high- 
temperature tail '. The latter is encountered in all the more sophisticated 
models as well as experimentally, and is due to the presence of short- 
range interactions above T c that  are not taken into account in the MF 
theory. Neglect of the short-range order is in fact the reason why the 
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Theoretical magnetic specific heats C m of the S = ½ Ising model for a 1, 2 and 
3-d lattice. The chain curve has been obtained by Ising (1925), who 
first performed calculations on the model that bears his name. The 
2-d curve is also an exact result, derived by Onsager (1944) for the 
quadratic lattice. The 3-d curve has been calculated by B16te and 
ttuiskamp (1969) and B15te (1972) for the simple cubic lattice from the 
high and low-temperature series expansions of C m given by Baker et al. 
(1963) and Sykes et al. (1972). For comparison, the molecular field 
prediction (MF) has been included. R denotes the gas constant and 
is the Curie-Weiss temperature (O=~zS(S+ 1)J/k), which is the transi- 
tion temperature according to the MF theory. 
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MF model breaks down if we approach the transition point closely enough, 
although it has been highly successful in describing the overall properties 
of (3-d) magnetic substances. 

Secondly, one may see by comparing, e.g., the To/O and the high- 
temperature tails that  the relative importance of the short-range order 
is greatly enhanced by lowering the lattice dimensionality. For the 2-d 
Ising model there still occurs a transition to long-range order at a finite 
temperature, reflected as a divergence in the specific heat, although T O is 
lowered further with respect to the MF prediction. However for the 
chain model T c has moved down to zero, and all of the entropy has to 
be removed by short-range interactions, resulting in a broad Schottky- 
type anomaly. 

Clearly, the deficiency of the MF theory is more crudely exposed the 
lower the dimensionality, and this is one of the reasons that  makes these 
1-d and 2-d systems such interesting objects of study. Moreover, since 
we know that  the origin of the deficiency lies in the introduction of an 
effective field, which replaces the interactions of a magnetic moment 
with its neighbours by an average taken over the entire system, it follows 
tha t  we may obtain a better understanding of the thermodynamic be- 
haviour of magnetic substances by studying the correlations between a 
given reference spin and its neighbours at a varying distance r. In an 
elucidating discussion, Fisher (]965 b) considered the static pair correla- 
tion functions 

r,(T)=(SoZS/)/~S(S+I) (r=0, 1,2 . . . .  oo), (1.2) 

where the brackets denote the expectation value and ½S(S+ 1) is just a 
normalization factor. The qualitative behaviour of the F, as a function 
of temperature for models possessing a finite transition point is sketched 
in fig. 2 (a). Although exact results have been obtained only for the 2-d 
Ising model (Kaufman and Onsager 1949, Fisher 1960 b), it can be 
argued tha t  most of the arguments given below will also have a more 
general validity. 

I t  is seen from fig. 2 (a) that, with the exception of the infinite range 
correlation F~ which vanishes at the transition point~, all curves display 
an inflcxion point at To. For the 2-d Ising lattice, singularities occur 
of the form 

r,(T)=A + BIT-  Tol In  IT-  Tol. (].3) 

As A and B are constants, it follows that  the curves have tangents with 
an infinite slope at T c. 

Now it turns out that  many thermodynamic quantities may be related 
to the F, in a simple way. For instance, we may take F~ as a long-range- 
order parameter and in fact it can be shown tha t  (SoZS~ ~) is proportional 

t The self-correlation function F 0 evidently forms another exception. This 
is identical to unity in the models of interest in the present context. 
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to the  square of the  spontaneous magnet iza t ion  (Ms) t .  Fur the rmore ,  
in the case of neares t -neighbour  in teract ions  only, we m a y  wri te  for  the 
magnet ic  energy 

Um(T ) = - 2Voz [gl<SoZSiz>, (1.4) 

f rom which we see t ha t  the magnet ic  energy is s imply propor t ional  to 
F I (T  ). Here  N 0 is the to ta l  numbe r  of magnet ic  spins, z is the n u mb e r  
of neares t  neighbours  and J is the exchange constant .  

Fig. 2 
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(a) Qualitative temperature dependence of the static correlation functions 
F r (eqn. (1.2)). Plotted are F 1 and Foo (solid curves) and two functions 
with intermediate r (broken curves). (b) Behaviour of the magnetic 
energy, Um__- - [ F l l ,  as well as of the product of the antiferromagnetic 
parallel susceptibility and the temperature (C denotes Curie's constant), 
x T / C ~ I - I F 1 ] .  The broken curve gives the behaviour of the square 
of the spontaneous magnetization (Ms 2N F~), which should be equal 
to U m according to MF theory. (c) Temperature dependence of the 
magnetic specific heat, Cm=SUm/aT, as well as of the temperature 
derivative of xT/C. The broken curve again denotes the MF result. 
(d) Antiferromagnetic parallel susceptibility x/C versus the relative 
temperature T/T  o (in (a), (b) and (d) the position of To has been indi- 
cated by the open circles). (After Fisher 1965 b.) 

t Throughout this paper we shall adhere to this statement and shall not go 
into the theoretical problems involved in establishing this relationship. Like- 
wise, we shall disregard the subtle difference between long-long-range order 
and short-long-range order. The interested reader may find a discussion of 
these questions in the paper of Fisher and Jasnow (1971) as well as references 
to earlier papers bearing on this subject, 
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Suitably normalized, the behaviour of Um(T ) is that  given in fig. 2 (b) 
(solid curve), bearing in mind that U m is a negative quantity. By  taking 
the temperature derivative of this curve, the specific heat is obtained 
(fig. 2 (c)) and obviously this will rise logarithmically to infinity at To 
if U m possesses a singularity of the form given by (1.3). Furthermore, 
we observe that  the presence of short-range correlations above To accounts 
indeed for the appearance of a high-temperature tail in the specific heat. 

The failure of the MF theory is now also readily traced, since in that  
theory, in the absence of short-range correlations, U m ~ Ms~~ P~. The 
corresponding results for the energy and specific heat are given by the 
dashed curves in fig. 2 (b), (c). 

Another quantity that  is closely related to the correlation functions is 
the magnetic susceptibility. According to the fluctuation theorem of 
statistical mechanics the susceptibility in the limit of zero field (initial 
susceptibility) is given by 

xY/C= 1+ E r,(T), (1.5) 
r ¢ o  

where C denotes the Curie constant. For a paramagnetic system, all 
F, ( r e 0 )  being zero, eqn. (1.5) simply states Curie's law. For a purely 
ferromagnetic system the sum in (1.5) contains only positive terms and 
diverges at To. On the other hand, in the case of an antiferromagnetic 
interaction the terms in the series are alternating in sign and it has been 
argued by Fisher (1962) that  one may replace the sum in (1.5) by  

xT /C  _~ 1 - I(T) ] FI(T) I , (1.6) 

where the funct ion/ (T)  accounts for all the omitted terms in the series. 
I t  turns out t h a t / ( T )  is of order unity at To and moreover is only very 
slowly varying with temperature, so that  in our qualitative picture we 
may neglect its presence. I t  is then easily seen that  

xT /C  ~ 1 -  ]Um(T)[. (1.7) 

This relation between the energy and the antiferromagnetic susceptibility 
can also be derived from general thermodynamic arguments (Sawatzky 
and Bloom 1962, Skalyo et al. 1967) and has been tested for a variety of 
antiferromagnets (Fisher 1962, Wolf and W y a t t  1964, Skalyo et al. 1967). 
Consequently, the curve for U m in fig. 2 (b) also represents the qualitative 
behaviour of )IT/C (explaining the term 'energetic susceptibili ty '  for 
the quanti ty )iT/C). Of much importance is the result for the suscepti- 
bility itself depicted in fig. 2 (d), obtained by dividing )IT/C (fig. 2 (b)) 
by  the temperature. One may observe that  the relationship given by 
(1.7) implies that  the maximum of the antiferromagnetic susceptibility 
must  occur somewhat above To, whereas at T c itself the temperature 
derivative of the susceptibility reaches infinity, at least for the Ising 
model, where the specific heat is predicted to diverge in two and three 
dimensions. For the Heisenberg model C m is expected to display a 
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finite cusp at To for d =  3, in which case ~x/~T will also remain finite, 
passing through a maximum at To. Although in this discussion the 
parallel susceptibility is considered, a similar result has been obtained 
for the perpendicular susceptibility (Fisher 1963). The difference between 
To and the temperature of the maximum Tma X again reflects the presence 
of short-range order above To and therefore will be enhanced by lowering 
the dimensionMity. Obviously, in the MF theory both temperatures 
coincide. 

Thus we have seen that  the short-range-order effects are reflected 
amongst other things in the specific heat tail and in the difference 
Tma x - T c. The important quanti ty in this respect is the constant A 
in (1.3), since this gives the amount of magnetic energy that  is still 
present at T~. I t  will come as no surprise that  for the Ising model Sykes 
and Fisher (1962) found this amount to be about two to three times larger 
for the 2-d than for the 3-d lattices. 

We shall now illustrate the above arguments with a few examples. In 
fig. 3 the theoretical specific heats of the Ising model in two and three 
dimensions are once more compared, this time on a temperature scale 
relative to To, so that  the enlargement of the high-temperature tail can 
be seen more clearly. Quantitatively, the ratio of the areas under the 
specific heat curve below and above To is 3-1 for the f.e.e, and 0-41 for the 
quadratic lattice (see, e.g., Domb and Miedema 1964). In fig. 4 a similar 

4 

Cm/R 

f, 

0 
0 

Fig. 3 

i 
ISING, S=1/2 
_ _  s q .  

==-----= f.c,c. 

0.5 1.0 1.5 2.0 
T/T c 

TheoretieM specific heats of the S=½- Ising model. Solid curve: square 
(simple quadratic) lattice; dotted curve: face-centred cubic lattice. 
(After Domb 1960.) 
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comparison is made for the antiferromagnetie susceptibility. Besides the 
larger reduction of T o for the 2-d lattice with respect to the MF prediction 
O=2zS(S+ 1)J/3k, we observe the huge enlargement of the difference 
Tma x -  T¢, and also of the ratio X( Tmax)/X( To), on lowering the dimen- 
sionality, in accordance with the quali tat ive arguments  sketched above. 
As a last example we show in fig. 5 the spontaneous magnetizat ion of a 
2-d and a 3-d Ising model. For  the t r iangular  lattice i t  is seen tha t  
Ms(T ) retains near saturat ion values up to much higher relative tempera- 
tures as compared with the f.c.c, lattice. This is associated with a lower 
value of the critical exponent  fi in the  power law 

M~(T)/Ms(O ) ~ (1 - T/To)Z, (1.8) 

which describes the vanishing of the long-range order as T O is approached 
(for a definition of the critical exponents  associated with the thermo- 
dynamic  functions see, e.g., Fisher 1967). For  3-d lattices fl is about  ½, 
whereas the  2-d Ising lattices have fi = ~ (compare with the MF predic- 
t ion f i= 1). We m a y  once more use our quali tat ive picture by  saying 
tha t ,  since below To the correlation functions will very rapidly approach 
the limiting F~ when studied as a function of r (with the exception of 
the region very close to To), a high value of the constant  A in the expression 
of F 1 (eqn. (1.3)) will imply a steeper F 1 as well as a steeper F~ curve. 

Concerning the behaviour in magnetic chains one can conclude from 
the absence of long-range ordering at  any  finite temperature  and  from 

Fig. 4 
- -  [ - - [  - - - - -  [ . . . .  ~ ' ~  . . . .  L J 

I _ _ h .  - 
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0 . . . . . . . . . . . . . . . .  I . . . . . . . . . . .  I . . . .  

0 0 . 5  1 . 0  1 5  
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Theoretical parallel susceptibilities of S=½ Ising antiferromagnets. Full 
curve : honeycomb lattice ; dotted curve ; simple cubic lattice ; 
dashed curve: molecular field result XO/C=(I+T/O) -1. The open 
circles denote the positions of T o . (After Sykes and Fisher 1962.) 
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the specific heat curve shown in fig. 1 tha t  the energy must appear as a 
smooth curve, possessing no singularities of the form given by eqn. (1.3). 
Likewise for the antiferromagnetic susceptibility, although it will show a 
broad maximum, it will not have a diverging temperature derivative as in 
the case of a transition. 

1.0 

b4 

NogP'BS 
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Fig. 5 
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Theoretical spontaneous magnetizations of the S = ½ Ising model. 
triangular lattice ; dotted curve : 
curve : molecular field prediction. 

Full curve : 
face-centred cubic lattice; dashed 
(After Guttman et al. 1970.) 

By comparing the specific heat behaviour of the Heisenberg model for 
d = 1, 2, 3 as shown in fig. 6 with the corresponding Ising curves (fig. 1), 
it can be inferred that  changing the type of interaction from the aniso- 
tropic Ising to the isotropic Heisenberg form has the effect of enhancing 
the short-range-order contributions. For the 3-d tteisenberg models, 
which do possess a phase transition, this can be seen by comparing the 
critical parameters (e.g. To~O) with the corresponding values for the Ising 
model (Domb and Miedema 1964). A similar qualitative picture for the 
thermodynamic behaviour as given above will apply to the 3-d Heisenberg 
model, except for the already mentioned indications obtained from the 
analysis of series expansions (Baker et al. 1967 b) tha t  the specific heat 
remains finite at To, although its derivative is still infinite on both sides 
of T o so that  the curve displays a sharp cusp. Accordingly the tempera- 
ture derivative of the correlation functions will not diverge at T c, so 
that  the F, must be of a different form than that  given by eqn. (1.3). 
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Fig. 6 
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Specific heats of the S= ½ Heisenberg model in 1, 2 and 3 dimensions. The 
1-d curve is the result for the antiferromagnetic chain obtained by Bonner 
and Fisher (1964), from approximate solutions. The 2-d curve applies 
to the ferromagnetic quadratic lattice and has been constructed by 
Bloembergen (1971 ) from the predictions of spin-wave theory ( T~ 0 < O" 1 ), 
from the high-temperature series expansion (T/O>I),  and from the 
experimental data on approximants of this model (0"1 < T/O < 1), to be 
discussed below. The 3-d curve follows from series expansions for the 
b.c.c, ferromagnet given by Baker et al. (1967 b). Also included is the 
molecular field prediction. 

The enhancement of the importance of the short-range-order effects 
also follows from the fact that  in the case of the Heisenberg model a 
lowering of the dimensionality to 2 is already sufficient to prevent the 
onset of long-range order at a non-zero temperature (Mermin and Wagner 
1966). The thermodynamics of the 2-d Heisenberg model will therefore 
to a certain extent resemble the behaviour found in the chain models ; 
to a certain extent because there is a possible difference following from 
the analysis of series expansions of the susceptibility (Stanley and Kaplan 
1966), in which indications were found for the existence of non-zero 
transition points at which the ferromagnetic susceptibility diverges. 
Thus, although the chain models as well as the 2-d Heisenberg model 
cannot sustain a spontaneous magnetization at any finite temperature, 
the latter would distinguish itself by possessing a transition to a phase 
with an infinite susceptibility. We will return to this intriguing problem 
later. At this point we merely remark that  since the 2-d XY models 
have been found to possess similar properties as the 2-d Heisenberg model, 
the anisotropy evidently must be of the Ising form to enable a transition 
to long-range order to occur in a 2-d lattice. 
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Finally we mention the influence of the spin value and the interaction 
range on the properties of a magnetic system. By studying the critical 
parameters as a function of S one finds tha t  the short-range-order effects 
are enhanced by lowering S (e.g. Domb and Miedema 1964, Fisher 1967). 
Evidently the fact that  a system is quantum-mechanical, in the sense that  
it has a finite spin value, also increases the deviations from the MF theory. 
As concerns the range of the interaction, it has been proven by various 
workers (see, e.g., Fisher 1967) tha t  the MF theory becomes exact in the 
limit of an infinite interaction range. Intuit ively this may be understood 
by considering the failure of the effective field concept in the case of 
short-range interactions, as outlined above. Indeed, the validity of the 
MF theory in the infinite-range limit can easily be inferred from the 
qualitative picture obtained with the aid of the correlation functions. 
From the fact tha t  the MF approximation amounts to replacing the inter- 
action of a given spin with its neighbours by an average taken over the 
whole magnetic system, one may understand why the MF theory becomes 
exact in the limit z-->m (Brout 1965), that  is if one has an infinite number 
of equivalently interacting magnetic neighbours. 

§ 2. APPROXIMATION OF MAGNETIC LATTICE MODELS IN I~EAL CRYSTALS 

2.1. General remarlcs 

In the following sections we shall classify the various model systems 
considered according to the dimension of the magnetic lattice and the 
type and sign of the exchange interaction. Concerning the magnetic 
lattice dimensionality, d, it is clear that  experimentally only d ~< 3 can 
possibly be achieved. In real crystals a low magnetic dimensionality 
is approximated when the magnetic atoms interact predominantly with 
neighbours that  are arranged in clusters (d= 0), in chains (d= 1), or in 
planes (d=2). In this paper we shall restrict ourselves mainly to 
d = 1, 2, 3, because in our opinion the paper by Smart (1965) is still quite 
representative as concerns the properties of isolated clusters of magnetic 
atoms. As regards the type of interaction, we shall mainly be concerned 
with the Ising and Heisenberg models, although a few examples of the 
planar Heisenberg model have already been found (for a recent review 
of the X ¥  and planar models see Betts in " Phase Transitions and Critical 
Phenomena ", edited by Domb and Green, vol. 3, 1973). 

The range of the interaction is in most experimental cases not confined 
to nearest neighbours only, even when the presence of the long-range 
dipolar forces is neglected. I t  is in this respect reassuring to recall a 
well-established result of theoretical studies that,  within a given dimension, 
finer details as, e.g. critical indices, will probably not depend on the 
number of nearest or further neighbours (Domb and Miedema 1964, Domb 
and Dalton 1966, Dalton and Wood 1969, Griffiths 1970 b, Paul and 
Stanley 1971 a, b), in any case much less than on the dimension itself. In 
particular, when the number of further neighbours is not large and the 



14 L. J. de Jongh and A. 1~. Miedema on 

interactions with these are much weaker than with the nearest, one may 
expect the properties to be not essentially different from the nearest- 
neighbour model. Both conditions seem to be fulfilled in most of the 
experimental systems that  will be discussed. Consequently, we will 
adhere to a classification scheme of 3 × 3 × 2 = 18 types of model systems, 
where the first factor 3 stands for the lattice dimensionality, the second 
for the type (Ising, XY or Heisenberg) of the interaction, whereas the 
factor 2 enters because the interaction can be ferro or antiferromagnetic. 
The compounds considered have, furthermore, various spin values. 

We finally remark that  the data presented in this paper have all been 
taken on insulating magnetic compounds. The application of the 
tIeisenberg model, with its fully localized moments, to a magnetic metal 
like Fe or Ni is unjustifiable for fundamental reasons. The agreement 
tha t  has nevertheless been found in some cases in our opinion does not 
say anything about the applicability of the model, but rather it points 
to the fact that  certain features of the phase transition are common to all 
the various order-disorder phenomena (magnetic and liquid-gas transi- 
tion, binary mixtures ; see, e.g., Kadanoff 1970). 

2.2. Type o/interaction 

In theoretical work one arrives at the Ising Hamiltonian simply by 
putting b = 0 in eqn. (1.1), thus assuming an anisotropy in the exchange 
interaction. In practice, however, anisotropic properties often arise not 
so much from an anisotropy in the interaction mechanism (which may 
even be wholly isotropic) but from other sources, such as the presence of 
a crystal field or a magnetic dipolar field that  couples the moments to a 
certain direction in the crystal. I t  is well known tha t  the former acts 
via the orbital momentum. Quite generally the effect of the crystal 
field is to produce a set of orbital levels for the single magnetic ion. At a 
given temperature only the ground state and the excited states lower 
than kT will be occupied. For the magnetic properties one need there- 
fore only consider the levels with energies not much larger than kTo. 
For instance a rare-earth ion in an axial crystalline field may possess 
strongly anisotropic properties. I t  is in this case essential tha t  the 
crystal field potential is not too large as compared with the spin orbit 
interaction, which couples L and S to the total moment J ,  while, on the 
other hand, the crystal field splittings must be relatively large as compared 
to kTo. As an example fig. 7 (a) shows the situation for Dy 3+ for which 
L = 5, S = ~- and J = ~ .  A purely axially symmetric crystal field would 
split the 16-fold degenerate 6H15/2 ground state into eight doublets, in 
such a way as to produce a doublet with strongly anisotropic properties 
lying lowest. At temperatures low compared to the separation of the two 
lowest doublets, the magnetic moment can, in small fields, be directed only 
parallel to the symmetry axis of the crystal field (z axis). Writing the 
exchange constant between two Dy 3+ ions, which is assumed to be isotropie 
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Fig. 7 
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Crystal field splitting of the 6H15/2 lowest multiplet of Dy 3+. (a) The situa- 
tion that would arise from a purely axially symmetric crystal field. 
(b) Level scheme as calculated by Griinberg et al. (1969)for Dy 3+ in 
dysprosium aluminium garnet. The arrows indicate levels that have 
been observed experimentally. 

in the true spin Hamiltonian, in terms of an effective spin 1 formalism, 
one has to introduce an anisotropic interaction which is proportional to 
the length of the real spin vector S. Meaningful approximate values for 
the exchange constant, in comparing interactions of different ions or 
different compounds, may be obtained by writing 

g,=g S+g L j ,=j(½g s)21 (2.1) 

g±=g±S +g±n j±=j(½g±S)2j 

where the indices S and L denote the relation of the g components to the 
contributions of the spin and the orbital angular momentum to the 
magnetic moment, respectively, and J is the isotropic exchange. In our 
example g~Z ~ 20, gff ~_ O, from which it follows tha t  J ,  __ 100J while 
J±_~0. 

Of course, in theoretical treatments one may introduce the anisotropy 
in a similar way ; namely, starting from the Hamiltonian of eqn. (1.1) 
with a = b = 1 one may introduce additional terms to account for the effects 
of the crystal field or the magnetic dipolar interactions, for instance a 
term of the form DS~ ~, with D < 0 in the case of an uniaxial anisotropy of 
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the  Ising type,  as discussed above. In  this way  one obtains wha t  may  
be called an anisotropic Heisenberg model and  one m a y  hope t h a t  for  
large values of the anisot ropy its behaviour  will resemble t h a t  of the  
Ising model. In  fact,  in comparing exper iments  on Ising-like substances 
with theory  i t  has proven in most  cases to be un impor t an t  whether  the  
anisotropic propert ies  have been realized by  an anisotropy in the exchange 
or by single-ion anisotropy (note that in the latter case one can approximate 
closely only the Ising models with S = ½). Nevertheless, one should bear 
in mind that there is a fundamental difference between the two methods of 
approach, leading in some problems to contrasting results, and we shall 
have occasion to point this out below in connection with an example. 
From the present discussion of the anisotropy, it may be gathered that 
most of the anisotropie compounds that will be presented in the next 
section are essentially of the anisotropie I-Ieisenberg rather than of the 
Ising type. 

Evidently, practical cases are more complicated than the idealized 
picture in fig. 7 (a). A more realistic situation is shown in fig. 7 (b), 
which gives the energy levels for the lowest multiplct of Dy 3+ in dys- 
prosium aluminium garnet as calculated by Grfinberg et al. (1969). 
What remains, however, are the strongly anisotropic properties of the 
lowest doublet (gll--18, g±_0.5, Faulhaber and Ilufner (1969) and Ball 
et al. (1962)), so that at temperatures well below the separation of the 
two lowest levels which is about 80 K (T e- 2.5 K, Keen et al. 1967), the 
Ising requirement for the effective spin ½ is quite accurately fulfilled. 

As regards the transition metal ions, many Co 2+ compounds have also 
been found to be strongly anisotropie. The situation differs from that 
in the rare earths in that the crystal field is now stronger than the spin- 
orbit coupling and the orbital contribution to the magnetic moment 
may be quenched. Figure 8 (a) shows the energy levels of the cobalt 
ion in CoCssCl 5 in which compound the crystal field has a small axial 
distortion from tetrahedral cubic symmetry. The cubic crystal field 
splits the sevenfold degenerate L = 3 multiplet into two triplets and an 
orbital singlet, the latter lying lowest. Since the spin degeneracy is 
fourfold, this results in a quartet with g values slightly different from 2.0 
(gS=2.0, gL=0"4). In addition, the axial component of the crystal 
field produces a splitting of about I0 K, the doublet S= ± ~ being lowest 
(fig. 8 (b)). Since the magnetic  ordering occurs below 1 K (T e = 0.52 K,  
Wielinga et al. 1967), it  can be described within the  Ising model with 
effective spin ½ and g ii = 7.2, g± _ 0, g ii s = 6, J ii = 9J. 

For  m a n y  other  cobalt  salts, e.g. for Co 2+ in octahedral  cubic symmet ry ,  
the  anisot ropy of the  lowest doublet  is not  as complete as in the two 
examples  t reated.  The reason is t ha t  in an oetahedral  cubic field the  
orbi ta l  levels are reversed so t h a t  the lowest-lying level is an orbi tal  
tr iplet .  However ,  what  is reassuring in this respect  is t h a t  theoret ical  
invest igat ions (see, for instance, Dal ton  and Wood 1967, Griffiths 1970 b) 
have  shown tha t  the in termedia te  cases, even for say J±/Jn  ~ 0.5, will 
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still show a critical behaviour t ha t  is nearly identical to  the fully aniso- 
tropic case. This means tha t  compounds like K2CoFa, where the lowest 
doublet according to Folen et al. (1968) is described by g, = 6.3, g S=  4.9, 
g±= 3.1, gaS= 2.4, and in agreement with (2.1) J±/J ,  = 0-24, may  still be 
considered as good approximations of the Ising model (Breed et al. 1969), 
at  least for temperatures  not  too far above T c. 
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CrystM-field splitting of the lowest multiplet (L = 3, S =  ~) of Co 2+ in CoCs~C15. 
(a) Energy level scheme in a cubic and in u tetragonM crystal field. 
The numbers indicate the orbital multiplicity for the cubic and the spin 
degeneracy for the tetragonal case. (b) Splitting of the lowest level 
(quartet) by the axial component of the crystM-field and field-dependent 
splitting of the resulting doublets. The arrows are actually observed 
transitions, as reported by Beljers et al. (1964). 

In  the l i terature one also finds a large number  of Fe 2+ compounds 
(FeC12, FeC12 . 2H20 ) and Ni ~+ compounds (Ni(CN)2NH3CsHs) mentioned 
as Ising-like materials. However, a word of caution is needed here 
because in these materials the crystalline field anisotropy and the magnetic 
interaction are often of the same order of magnitude.  As a consequence, 
at  high temperatures  these Fe  z+ and Ni 2+ compounds will behave like 
Heisenberg compounds with S =  2 and S =  1, respectively, whereas a t  
low temperatures  t hey  become strongly anisotropic. Hence a comparison 
with theoretical  models is made difficult, since, for instance, part  of the 
heat  capaci ty anomaly  is due simply to the crystalline field splittings 

A.P. B 
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(Schottky anomaly is the absence of interaction). Clearly one meets the 
complication that  the effective spin quantum number must be considered 
as being temperature dependent. Therefore, many of these compounds 
may be described by the Ising model as far as their low temperature 
properties (T < Tc) are concerned and to a considerable extent, the critical 
behaviour may also be well described within the Ising model. However,  
as regards their magnetic and thermal properties over the full temperature 
range, they will differ strongly from the predictions of the Ising model 
with the appropriate spin value. A beautiful example of such a situation 
is given in fig. 9 which shows the specific heat of FeC12 . 4H20, drawn from 
data of Friedberg et al .  (1961) and Raquet  and Friedberg (1973). Here 
the Schottky anomaly, having its maximum at 3 K, could be clearly 
resolved from the lattice specific heat as well as from the sharp peak at 
about  1 K, which is due to a transition to antiferromagnetic order. 

Fig. 9 
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Specific heat of FeOl 2 . 4H20 drawn from data obtained by Friedberg et al .  
(1961) and l~aquet and Friedberg (1973). The peak near 1 K is only 
partly shown, the highest value of the specific heat measured being above 
6 cal/mol K. 

The above discussion of the anisotropy has of necessity been very brief. 
The dissatisfied reader will find more thorough treatments in the review 
papers of Kanamori (1963), Wolf (1970) and Baker (1971 a), or in the 
extensive literature on paramagnetie resonance. 

Next we will t ry to indicate how materials possessing highly isotropic 
interactions as required by the Heisenberg model can be found in Nature. 
Obviously, this condition is more difficult to be met, in view of the many 
posSible sources of anisotropy existing in real crystals. I t  is evident tha t  
one must start with ions possessing a very small single-ion anisotropy. 
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In principle it would then be sufficient to find compounds in which the 
magnetic ions occupy sites of cubic symmetry.  Unfortunately, however, 
this does not work out in practice whenever the crystal field energy can 
be sufficiently lowered by a distortion from cubic symmetry, which is 
quite often the case (Jahn-Teller effect). I t  is for this reason in particular 
that  S-state ions are preferable, for which crystal field splittings play 
only a minor role (Mn 2+, Fe 3e, Gd 3+, Eu2+). Of course it always remains 
advantageous to have a cubic crystal structure. 

We would like to point out that  in the literature it is mostly forgotten 
to incorporate in the above group of ' spin only ' ions the large assembly 
of free radicals. In these materials one (or more) of the electrons does 
not partake in the bonding, so that  they have ' spin  on ly '  magnetic 
moments with S =  1 and a fully isotropic g value. Since S-state ions 
with S >  ½ generally will have some crystal field splittings through 
mixing with other states, free radical compounds are clearly rather 
attractive. A disadvantage, however, is the difficulty of preparing 
samples, in particular single crystals, while also the structure and con- 
centration of the magnetic moments in radical compounds is not always 
known sufficiently well. 

Another widely exploited possibility of realizing an isotropic interac- 
tion is offered by Cu 2+ compounds. A free Cu 2+ ion has L = 2 and S = ½, 
but, as in the case of Co 2+ in Cs3CoC15, the orbital moment may be nearly 
quenched by  the crystal field. At the temperatures of interest, generally 
only two levels are populated (Kramers' doublet) with g values not much 
different from 2. 

Taking CuK2C1 a . 2H20 as an example we have g,, =2.38, g±=2.06 
(Ono and Ohtsuka 1958), where the anisotropy in g is predominantly an 
orbital contribution. Consequently, the anisotropy in the exchange 
arising from single-ion Cu 2+ properties and corresponding to (gs)2 is 
very small. 

Highly isotropic single-ion properties also exist in a number of Ni ~+ 
and Cr 3+ compounds. Again the orbital moment is nearly completely 
quenched, resulting in a triplet (S= 1) and a quartet  (S=  ~), respectively, 
as the only levels populated at the relevant temperatures and g values 
which are approximately equal to the spin-only value 2. Axial crystal- 
field splittings that  may nevertheless occur are generally small, so that  
if the transition temperature happens to be well above 1 K, also Ni 2+ 
and Cr 3+ compounds may be considered to be quasi-Iteisenberg magnets" 
Note that  the same arguments would have made the interaction in 
CoCs3C15 of the Heisenberg type, if the transition temperature would 
have been much larger than 10 K instead of being well below 1 K. 

In conclusion we would like to sum up the possible sources of anisotropy 
that  m a y '  spoil ' the Heisenberg interaction. We have already mentioned 
the single-ion, or crystal-field anisotropy, and also the anisotropy arising 
from dipolar interactions. Apart from contributing to the anisotropy 
the latter also influences the range of the interaction (see below). Other 

B2 



20 L. J. de Jongh and A. l~. Miedema on 

sources are:  biquadratic exchange interactions, electric multipole 
interactions, virtual phonon exchange and the superexchange mechanism 
itself. Of these the dipolar contribution can be simply calculated; 
its relative magnitude depends on the crystal structure and on the con- 
centration and magnitude of the magnetic moments. Electric multipole 
interactions, as produced by aspherical charge distributions, and virtual 
phonon exchange thus far have only been shown to be large for some of the 
rare earths and for actinide compounds (see Wolf 1970, Baker 1971 b). 
The anisotropy occurring from the superexchange mechanism, which 
sensitively depends on the type of intervening nonmagnetic anion and 
on the relative positions of the atoms in the crystal (the overlap of wave- 
functions), can be very large and difficult to predict, as for example in 
magnetic complexes such as [Fe(CN)6] a- in KaFe(CN)6. For this complex 
the exchange does not at all correlate with the g values ; Ohtsuka (1961 
a, b) found J ,  ~J j_ ~ 1.25, whereas g,/g± ~ 0.4. However, in the case of 
fairly ionic compounds, to which class most of the materials discussed 
below belong, an anisotropy in the exchange other than simply derived 
from single-ion anisotropy has been observed in a few cases only. 

Finally, as concerns the planar Heisenberg model, one expects this to 
be realized whenever the anisotropy is such as to produce a strong 
preference for an alignment within an easy plane. An example is CsNiFs, 
in which, in the absence of an exchange interaction, the crystal-field 
splittings result in a singlet and a doublet, the former lying lowest. 
Since the exchange energy is comparable in magnitude with the level 
separation, a magnetic ordering with effective S = 1 is found, in combina- 
tion with a large uniaxial anisotropy of the form DS~ 2 (with D > 0), 
restricting the spins in a planar configuration (Steiner 1971). More 
generally, the planar model will be approximated whenever the anisotropy 
is of orthorhombic symmetry, with the distinction between the hardest 
and the easy axis much greater than between the next preferred and the 
easy axis~. 

As we have mentioned in the introduction the difference between the 
XY and the planar model is tha t  in the former only an anisotropic 
exchange (a= 0 in eqn. (1.1)) is required, whereas in the latter one puts 
the additional restriction that  the spins lie within a plane by adding the 
term DS~ ~ (D > 0) to the XY Hamiltonian. In view of the above dis- 
cussion, it is clear, that  the experimental examples will approximate the 
planar, rather than the XY model. Note however that,  in theoretical 
treatments, for S =  1 a term of the form DS~ 2 is simply an additive 
constant, since S~ is then a multiple of the unit operator. 

In what follows we will often use the term anisotropy field, which is the 
effective field H A associated with the anisotropy (gI~BHA = 2DS) .  In the case 
of an anisotropy of orthorhombic symmetry we will differentiate between the 
anisotropy HA I within the easy plane formed by the preferred and next pre- 
ferred axes (in-plane anisotropy), and the anisotropy HAII between the easy 
axis and the hardest direction (out-of-plane anisotropy). 
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2.3. Interaction range 

Within a given dimension one prefers to have a well-defined number of 
interacting magnetic neighbours. We have already mentioned this 
problem in § 2.1. As far as exchange interactions are concerned, the 
ratio of the interaction between next nearest (J2) and nearest neighbours 
(J1) may in principle be arbitrarily small, because the superexchange 
interaction depends critically on the mutual separation r of the magnetic 
atoms, viz. like r -1° or even more rapidly (see, for example, Bloeh 1966, 
and Hutehings et al. 1968). As the interaction is of such a short range, 
this leads to the rule of thumb tha t  each additional intervening anion 
reduces the exchange interaction with at least a factor 102. However, 
in practice the presence of additional long-range dipole-dipole interae- 
tions (varying only as r -3) will make the above argument of limited value. 
Considering the experimental data for the exchange constants (for a 
given ion and varying exchange path) and estimating the dipolar contribu- 
tion, one must conclude that  apart from accidental cancellations the ratio 
J2/J1 will in most cases be of the order of 10 -2, in particular if the number 
of anions along the two paths is different. Examples are KMnF 3, for 
which Pickart et al. (1966) report a ratio of 0.03, and KNiF 3 and K2NiF4, 
for which Yamaguchi and Sakamoto (1969) found 0.005 and 0-01, res- 
peetively. I t  is also obvious from the above that  if one prefers to have 
the short-ranged exchange forces to be the predominant interaction, 
only those crystals are of interest in which the exchange path between 
the nearest neighbours involves not more than one or two intervening 
atoms since otherwise the superexchange may become comparable in 
strength with the dipolar interaction. We also point out that  in the 
dipolar interaction the total magnetic moment enters. Hence, ions 
with a large orbital contribution to the moment, like most of the rare 
earths, will have relatively large dipolar contributions. On these grounds 
the pure S-state ions, the free radicals and those transition elements in 
which the orbital contribution is quenched are preferable if one wants to 
diminish the effects of long-range forces. That these may markedly 
influence the characteristics of the phase transition has already been 
mentioned at the end of § 1.2. Perhaps superfluously it is noted that  the 
dipolar interactions cancel in the case of a cubic structure. 

The reader will find, in what follows, tha t  with a few exceptions we 
have restricted ourselves in this paper to the nearest-neighbour-only 
models, treating the interactions of a longer range~i f  perceivable--as 
unwanted by-effects. 

2.4. Dimension o] the magnetic lattice 

The experiments on low-dimensionM magnets described in this paper 
have all been performed on 3-d crystals. Obviously, Nature can provide 
only approximations of the ideal low-dimensionM magnetic structure;  
it is even more striking how extremely good these approximations can be 
made in practice. 
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There are a number of reasons which may cause the lack of an appreciable 
magnetic interaction between neighbours along one or more spatial 
directions in a crystal, the most obvious being the extremely short range 
of the superexchange interaction. Since the magnetic and the crystal- 
lographic lattice need not be identical, this property may be utilized by  
choosing a lattice in which the distance between the magnetic ions along 
a given direction is much longer than along the other ones. The magnetic 
ions m a y ,  for instance, be largely separated along certain axes by putting 
non-magnetic atoms in between them. In addition a lower dimensionality 
may be a consequence of the fact that  both signs of the superexchange 
interaction do occur, depending on path lengths and bond angles. This 
offers the possibility of an accidental cancellation of the interaction in a 
given direction, if there exist different bonds in that  direction. 

Fig. 10 
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Structure of the cupric acetate monohydrate molecule, Cu(CHaCO0)2. H20. 
(From Van Niekerk and Schoening 1953.) 

The structural low dimensionality is best illustrated with a few examples. 
A zero-dimensional magnetic system, or in practice an assembly of nearly 
isolated clusters of magnetic atoms, is for instance approximated in copper 
acetate. Figure 10 gives the structure, as reported by  Van Niekerk and 
Schoening (1953). The two copper ions are very close together, their 
separation (2.64 •) being only slightly larger than in the copper metal. 
Following Smart (1965), one may describe the structure by  saying that  
each pair of Cu 2+ ions is enclosed in a cylindrical cage, with four acetate 
molecules along the sides and a water molecule at each end. The ex- 
change will in this case be due mainly to direct overlap, in agreement with 
the observed antiferromagnetic sign of the interaction, The number of 
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magnetic atoms forming a cluster may of course vary. For example, a 
tri-nuelear cluster is found in the compound Cr3(CH3CO0)60C1.5H20 
(Figgis and Robertson 1965, Uryfi and Friedberg 1965). 

Similar geometrical arguments explain the 2-d character of the copper 
compounds with generM formula (C~H2n+INH3)2CuCI~ (n = 0, 1, 2, 3 . . .). 
These salts may be looked upon as being derived from (NH4)2CuC14 and 
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Crystal structure of (C~HTNH3)2CuC14 (from De Jongh et al., 1969). Part of 
the propyl ammonium groups and H atoms have been omitted for the 
sake of clarity. 
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consist of ferromagnetic Cn 2+ layers, separated by two layers of non- 
magnetic alkyl ammonium groups. This may be seen in fig. 11 where 
the structure of the compound with n = 3 is given, drawn after crystallo- 
graphic data of Barendregt and Sehenk (1970). By varying n, the distance 
between Cu e+ ions from neighbouring layers is increased from 9.97 A 
(n= 1) to 25.8 A (n= 10), while the configuration within the copper 
layers is not appreciably changed (the Cu-Cu distance within the layer 
being about 5.25 •). A nice feature of such a series of compounds is 
that  one may study the various properties of interest as a function of the 
inter-layer distance and thereby make extrapolations to the ideal 2-d 
system (Bloembergen et al. 1970, De Jongh and Van Amstel 1970). 
Concerning the magnetic interaction J '  between the layers we may 
distinguish between the dipolar coupling and the superexchange inter- 
action. The former has been calculated by Colpa (1972 b) to be smaller 
than 10 -5 of the exchange J within the layer, for all values of n larger 
than 3. The superexchange between the layers may only be estimated ; 
using the rule of thumb just mentioned (§ 2.3) one obtains J '  z 10-~-10-e°J 
for n =  1-10. For comparison, the measured interlayer coupling J '  for 
the eases n = O  and 2, was found to be IJ'/JI =3 .2x  10 -3 and 8.5z 10 -4, 
respectively (De Jongh et al. 1972, Bloembergen and Franse 1972, 
Ldcuyer et al. 1972). 

Unequal magnetic lattice parameters assisted by a symmetry argument 
lead to 2-d antiferromagnetism in the K2NiF 4 structure. Since the Ni 
ion can be replaced by Mn, Fe, Co and likewise K by Rb or Cs and F by 
C1, quite a lot of examples have become known in recent years. As 
shown in fig. 12, the tetragonal K2NiF 4 structure can be looked upon as 
being derived from the cubic (perovskite) KNiF 3 structure by adding an 
extra layer of KF  between the NiF 2 sheets. By this simple fact a 3-d 
antiferromagnetie lattice is transformed into a magnetic layer structure. 
I t  is of importance that  the interaction within the layer is antiferro- 
magnetic, since this causes a cancellation of the interaction between 
neighbouring layers in the ordered state, as was first pointed out by 
Legrand and Plumier (1962 a, b). This may be understood by observing 
that  the neighbouring planes are shifted over %/2, bo/2 (ao=bo) with 
respect to each other. In the case of antiferromagnetic order within the 
layers the spin in the centre has in the adjacent planes an equal number 
of neighbours with spin up as with spin down ; there will be no net inter- 
action, at least as far as the static properties (at T =  0) are concerned. 
In that  case the interaction in the third dimension is with the next- 
nearest layer and the interplanar superexchange interaction has to take 
place via four intervening anions, so that  it may be expected to be 10 -6 
of the intralayer exchange. The dipolar coupling between next-nearest 
layers has been calculated by Colpa (see Colpa 1972 a) to be of the order 
of 10-7-10 -s of J for the various compounds. As is shown by the Ba~ZnP 6 
structure (Von Schnering 1967) the interlayer distance can be increased 
further by the addition of still more non-magnetic layers. In this 
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compound the Zn atom may also be replaced by Fe, Co, Ni or Cu (with 
the exception of the copper compound, they are also tetragonal). 

Fig. 12 

Comparison of three related crystal structures, two of which are 2-d in magnetic 
respect. In the middle the cubic perovskite structure of KNiF,, on 
the left the tetragonal K,NiF, unit cell. On the right the structure of 
Ba,ZnF, (Von Schnering 1967). These crystatl structures offer the 
possibility of comparing the 2-d and 3-d properties of compounds which 
are quite similar in other respects. 

We remark a t  this point that the above-mentioned symmetry argument, 
that has been repeated by many authors including ourselves, is of itself 
insufficient to explain the fact that experimentally 2-d behaviour has 
been observed over nearly the whole temperature range, in particular 
also in the paramagnetic regime where there is no long-range antiferro- 
magnetic orderr. It would indeed fail completely if the superexchange 
interaction J' between central spins and corner spins itself was not much 
smaller than J, regardless of any symmetry considerations. For instance, 
if J ' E  J, the behaviour would certainly be 3-d. As we see it now the 
correct argument would go as follows. Since the interaction J' involves 
three ligands i t  will likewise be much smaller than J (at least a factor lo4 
by the reasoning given above). Accordingly a t  high temperature the 
only corrolations that come into play are those within the layer. As a 

t The authors acknowledge stimulating correspondence and discussion with 
D. D. Betts and R. P. van Stapele on this subject. 
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consequence of the pronounced 2-d character the amount of short-range 
order established at a given temperature leT~ ]JI will be relatively much 
larger than in a 3-d system. As the temperature is lowered the correla- 
tion length becomes sufficiently large that  substantial clusters of anti- 
ferromagnetically correlated spins exist within the layer. The symmetry 
argument wilt then tend to reduce the effect of the coupling J' .  This in 
turn enhances the two-dimensionality, etc., leaving ultimately in the 
case of complete order the interaction between next-nearest neighbouring 
layers (along the c axis) as the only interlayer coupling. By this argu- 
ment one may understand why these systems show a very nearly pure 
2-d behaviour over the whole range of temperatures (see below), except for 
an extremely small region around the transition temperature (I T - T e  [/ 
To< 10 -4 !). I t  is pointed out in conclusion that  similar (partial) 
cancellations because of symmetry can also be found in other structures, 
for instance in compounds that  consist of nearly isolated antiferromagnetic 
chains. 

A lowering of the dimensionality which is not just simply related to 
the mutual  separation of the magnetic ions is illustrated by  the following 
examples. In fig. 13 a projection of the unit cell of Cu(NH3)4SO 4 . H20 
is shown, as determined by  Mazzi (1955). The 1-d properties of this 
structure originate from the difference in exchange paths connecting the 
Cu e+ ions. Since the superexchange interaction via the oxygen ion is 
more favourable than that  via the two I~H a groups it is not surprising 
that  the crystal behaves as an assembly of nearly isolated magnetic 
chains (running along the e axis), with [J'/J[ being about 5 x 10 -3. 

C 

I_ 

Fig. 13 ~ H 2 0  

u H3 

-~b 

Projection of the unit cell of Cu(IqH3)4SO 4 . H20 on the bc plane. 
Mazzi 1955.) 

(After 
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R a t h e r  difficult  to conceive at  first  sight is the 1-d magnet ic  character  
of KCuFs,  since, according to Okazaki and Suemune (1961 a), the crystal  
s t ruc ture  is ve ry  near ly  cubic (perovskite : KNiFa  in fig. 12). However ,  
the dis tor t ion of the  fluorine oc tahedron  surrounding the Cu 2+ ion has 
ex t reme consequences for the magnet ic  interact ion.  As shown in fig. 14, 
t aken  f rom Hi rakawa  et al. (1970), a special a l ignment  of the wave- 
functions of the dv  orbitals of the Cu ~+ ion is produced,  in such a way  t h a t  
there  is a strong overlap th rough  the in tervening fluorine ions along the 
c axis and  pract ical ly no overlap along the  a axes. Accordingly, the 
in terac t ion  in the  c plane is a factor  102 weaker  t h an  the  ant i ferromagnet ic  
exchange along the  c axis. 

We remark  t h a t  quite generally, it  is considerably more difficult to 
realize a quasi 1-d system with a ve ry  small in terehain interact ion,  
than  a quasi 2-d system with a ve ry  small in ter layer  coupling. This 

Fig. 14 

The alignments of the d),-orbitals of the Cu e+ ion in KCuF a according to 
Hirakawa et al. (1970). The positions of the fluorine anions F a c, are 
also shown. The 1-d behaviour arises because there is hardly any 
overlap of the wave functions along the a-axes (actually there exist 
two different types of alignments, of which the one shown has been 
found to possess the most pronounced 1-d properties). 
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arises because in the former case the interaction within a crystallographic 
plane has to be minimized, in the latter only along one crystallographic 
axis. 

As examples of to a certain extent accidental low dimensionality one may 
consider all those cases in which a lower dimensionality cannot be inferred 
a pr ior i  from the crystal structure, but  is instead deduced from the observed 
magnetic and thermal behaviour. The compound CuNO a .2½H~O, 
for instance, has properties that  clearly indicate the presence of nearly 
isolated pairs of Cu 2+ ions, although such a clustering is not obvious from 
the crystal structure (Friedberg and g a q u e t  1968, Bonnet et al. 1970). 
As a second example we may mention the pronounced difference in 
magnetic behaviour of the two isomorphous cobalt compounds CoCsaC15 
and CoCssBr 5. According to Wielinga et al. (1967) and Mess e[ al. (1967), 
the properties of the chloride can be described by a 3-d Ising antiferro- 
magnetic model, whereas those of the bromide are in good agreement 
with predictions for the quadratic Ising lattice. Apparently, the inter- 
action for the nearest neighbours along the tetragonal axis in the quasi 
simple cubic lattice of magnetic atoms is cancelled in the case of the 
bromine compound. 

§ 3. EXAMPLES OF SIMPLE MAGNETIC MODEL SYSTEMS I~ I~EAL CItYSTALS 

3.1. C h a i n  s tructures  
3.1.1. In t roduc t ion  

As has already been mentioned above, the study of low-dimensional 
magnetic systems has been quite rewarding for theoretical physicists, 
since they provided the means of obtaining exact solutions of cooperative 
phenomena. Most of the existing exact results have in fact been acquired 
on chain models and we have thought it worth while to give a short 
review, prior to a discussion of the experimental results. 

For the Ising chain, calculations of the energy, the specific heat and the 
susceptibility are available for S = 1, 1, a (Ising 1925, Obokata and Oguchi 
1968, Suzuki et al. 1967). Katsura (1962) has solved the energy, specific 
heat and perpendicular susceptibility of the XY chain (transverse coupled 
chain). The thermodynamic behaviour of the classical (S = co ) Heisenberg 
model in one dimension has been calculated by  Fisher (1964) (see also 
Stanley 1969b). In the case of the S =  1 Heisenberg chain an exact 
result for the magnetization curve at zero temperature was obtained by  
Griffiths (1964 a). For temperatures T > 0  approximate solutions for 
the thermodynamic behaviour have been derived by  Bonnet and Fisher 
(1964) and Griffiths (1962), by eMeulating the properties of closed rings 
containing an increasing number of spins and subsequently extrapolating 
to the infinite chain. In the temperature region above k T / J  ~ 0.5 the 
results found in this way are in close agreement with those obtained by  
Baker et al. (1964), from Pad6 approximant analyses of high-temperature 
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series expansions. Results for the Heisenberg chain with S >  ½ have 
been reported by  Weng in his thesis (1969). 

C._~m 

Fig. 15 
I I I I I 

i 0.~ 

02 

0 ~ ~ i r l 

o I 2 3 
~ k _ !  

Theoretical heat capacities of a number of magnetic chains with S=½. (a) 
and (b) correspond to the Ising and the XY model, respectively (ferro 
and antiferromagnetic). Curves (c) and (d) are for the antiferromagnetic 
and ferromagnetic Heisenberg chain, respectively. For the references, 
see the text. 

The thermodynamic behaviour of l-d systems is governed by  the 
intrinsic property common to all of them, namely the absence of long-range 
order at any non-zero temperature. That the Heisenberg and X ¥  chains 
cannot sustain a spontaneous magnetization for T > 0 has been rigorously 
proven by  Mermin and Wagner (1966). For the ferromagnetic Ising 
chain there is a simple argument due to Landau (Landau and Lifschitz 
1958), which we reproduce here because of its elucidating nature (see also 
Fisher 1973). The argument may be put in the following way. Suppose 
we have a line of N spins that  are ordered in parallel. Consider the change 
in the free energy F = U - TS ,  where U is the internal energy and S is the 
entropy, when this alignment is broken by  reversing the direction of the 
first L spins. If we are dealing with short-range forces, the change in 
energy will be simply the amount A U lost across the interface between 
the up domain and the down domain and A U will be independent of N. 
On the other hand, there will be an entropy change since there are N 
possible choices of L, so that  A S = k T  In N. We have therefore 

A F : :  A U - ] c T  In N, (3.]) 
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from which it follows that  for any T > 0 and sufficiently large N the 
change in free energy will be negative, so that  the system will break up 
spontaneously into oppositely aligned segments. Moreover it is seen 
that  a finite system may become completely aligned if only T is made 
small enough, and also that  the argument will no longer work when long- 
range interactions are considered (Thouless 1969), because in that  case 
A U becomes dependent of N. 

Fig. 16 

XI131 
Nog21.z 2 

0.25 

0.20 

0.15 

0.10 

0.05 
0 

1 I i 

(1 

1.0 2.0 3.0 4.0 
------a,-- kT/131 

Theoretical curves for the perpendicular susceptibility of the S=  ½ Ising (a) 
and XY (b) chain model. The values for X±(0) at T = 0  are Nog2~B2/ 
2zJJ[ and Nog~tLB2firz[g[, respectively. For the references, see the text. 

As a consequence of the absence of long-range ordering in the ideal 
infinite 1-d system, the entropy has to be removed in short-range order 
processes. This is reflected in the specific heat and the susceptibility, 
both of which display broad maxima, occurring at temperatures of the 
order of the exchange interaction along the chain. In figs. 15-18 we 
have reproduced the specific heat and susceptibility curves of the 
Heisenberg, X ¥  and Ising models, which all show this characteristic 
feature. These curves have been taken from the references cited above. 
Only antiferromagnetic susceptibilities have been shown. For the 
ferromagnetic models the susceptibility diverges as T approaches zero. 
The divergence is exponentially fast for the Ising models (Suzuki et al. 
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Dependence on the spin value of the parallel susceptibility (a) and the specific 
heat (b) of the Ising chain. (After Suzuki et al. 1967 and Obokata and 
Oguehi 1968.) 
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Dependence on the spin value of the susceptibility (a) and the specific heat (b) 
of the Heisenberg chain. (After Weng 1969.) 
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1967) and of the power-law form T -n for the Heisenberg models, with n 
equal or nearly equal to 2 (Fisher 1964). 

The comparison of the curves obtained for the various chain models 
can also illustrate the difficulties tha t  may arise when the experimenter, 
on the basis of a limited amount of data, must make a choice between 
them to fit his experiment (with J/k as the adjustable parameter). In 
some cases the choice may be an obvious one, for instance on the basis 
of the considerations as sketched in § 2. But more often than not a 
choice will be not wholly justifiable unless measurements of more than 
one thermodynamic quantity are available. As a warning we mention 
here tha t  the specific heat and the susceptibility of isolated pairs of 
magnetic atoms exhibit similar broad maxima (Smart 1965) as those of 
figs. 15-18, and also that  the result of a weak antiferromagnetic inter- 
chain coupling on the (diverging) susceptibility of an assembly of ferro- 
magnetic chains may well yield a curve similar to those of figs. 16 and 
18 (a), the maximum in X now occurring at the transition temperature 
To at which the inter-chain coupling drives the system into (long-range) 
3-d ordering. 

Obviously a determination of the magnetic structure with neutron 
diffraction is a most valuable tool. On the other hand, one can go a long 
way by simply combining specific heat and susceptibility measurements. 
This may be inferred from table 1, in which numerical results for a number 
of models have been collected. The height of the specific heat maximum 
Cm~x, the ratio of the temperatures at which the maxima in C m and X 
occur and the quanti ty (1/g)2Xm~xT(Xm~x) together provide a handy set 
of criteria for the determination of the model appropriate to the investi- 
gated compound (the values for the Ising model with S > ~ have been 
provided by H. T. Witteveen, private communication). We shall have 
the opportunity to use these below. 

Let us now focus attention on the question of what the thermodynamic 
behaviour of the approximations of the chain models studied in the 
laboratory will look like. In the 1-d systems the only possible deviation 
from ideality that  can have the effect of establishing a long-range (3-d) 
ordering is the presence of a weak but finite interchain coupling J ' .  
Although rigorous calculations for a 3-d array of loosely coupled chains 
are not available, we may turn to the work of Onsager (1944) which pro- 
vides us with a 2-d analogue. In fig. 19 (a) the specific heat of the 
quadratic Ising lattice, with different interactions J and J '  along the 
two axes, is plotted for three values of J'/J. For J' =J (dot-dash curve), 
we retrieve the heat capacity of the quadratic lattice, already shown in 
the introduction. In the ease J '  = 0, J # 0 (solid curve), we have a system 
of completely isolated Ising chains and the result is the same as curve a 
in fig. 15. Of most interest in the present context, however, is the dashed 
curve tha t  is obtained for J'/J = 0-01, since this corresponds to the specific 
heat of a 2-d assembly of loosely coupled chains. I t  is seen that  at high 
temperatures there is no appreciable difference with the isolated chain, 

A.P.  C 
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but as the temperature is lowered the weak interchain coupling begins 
to take effect and finally causes a transition to long-range order tha t  is 
reflected in C m as a sharp spike, sitting as it were upon the broad maximum 
due to the short-range-order effects along the chain. As J'/J is made 
smaller and smaller the peak moves to the left, finally vanishing at zero 
temperature as J '->0. As may be inferred from fig. 19 (a), the position 
of the spike depends logarithmically on J'/J ; for J'/J= 10 -2 the transi- 
tion temperature is lowered by a factor 2 only with respect to that  of the 
quadratic lattice. 

Another interesting point that  may be learned from these exact calcula- 
tions on the 2-d Ising model is that  the critical properties of the 2-d array 
of chains are essentially the same as those of the quadratic lattice with 
J'=J. In fig. 19 (b), taken from Chang (1952), the magnetization is 
plotted as a function of J'/J. The important feature here is that, if one 
comes close enough to To, for all values of J'/J the critical index fl in 
the power law describing the vanishing of the magnetization at T e is 
exactly the same 2-d value fi= ~. Likewise, for every value of J'/J, 
however small, the specific heat spike of fig. 19 (a) displays, close enough 
to To, the same critical behaviour as found for the quadratic lattice 
(logarithmic divergence at both sides of To). With this in mind it will 
no longer come as a surprise when we shall find below that  the critical 
behaviour of 3-d arrays of loosely coupled chains is the same as that  of 
the ' usual ' 3-d systems (for instance the observed fi values are all near ½). 

At this point we would like to stress the fact that  in the experimental 
examples of magnetic chains it is only the interchain coupling J '  that  
can be held responsible for the occurrence of long-range order. This 
contrasts with the situation in the 2-d Heisenberg model, where the 
anisotropy constitutes another mechanism tha t  may yield a finite Te, as 
will be discussed below. In the magnetic chains, since both the isotropic 
and anisotropic models ideally do not possess a transition point, the 
influence of the anisotropy will only consist of a shift in the position of 
the T c brought about by the interchain coupling. This arises from the 
fact that  the 3-d Ising and Heisenberg models have a different To, with 
respect to the MF value 0. Also, the way in which the T c of a 3-d assembly 
of loosely coupled chains depends on the interchain coupling may be 
expected to be different for the anisotropic as for the isotropic case. 

Finally, we point out that  in the case of an example of the Ising chain, 
it will be much more difficult to resolve the broad chain maximum in the 
specific heat from the superimposed anomaly due to the 3-d ordering 
caused by J'. In fig. 1 it can be seen that  in the Ising model the chain 
maximum occurs below the Tc of the 3-d lattice. Assuming the same 
logarithmic dependence of T O on J'/J just found for the quadratic lattice 
to hold also for the 3-d analogue, it follows tha t  a value of J'/J as low as 
10 -8 brings down the position of T~ to the temperature of the chain 
maximum only. In the Heisenberg model the situation is quite different, 
as can be inferred from fig. 6. In this case the To of the 3-d model occurs 

c2 
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well below the temperature of the chain maximum, so tha t  even for rela- 
tively high values of J'/J,  the To of the experimental chain system will 
be found at  a much lower temperature than that  of the chain maximum. 

Armed with this extensive amount of theoretical information, we now 
turn to what the experimenters have to offer us. 

3.1.2. Survey o/experimental results 
Most of the experimental work on magnetic chain structures has been 

performed on Heisenberg systems. This may have to do with the above- 
mentioned difficulty of observing the 1-d properties of Ising chains. In 
any case, the oldest examples of pronounced chain-like behaviour that  
have been found belong to the Heisenberg class and we will therefore 
start this review with a discussion of the 1-d Heisenberg antiferromagnets. 

In table 2 we have collected most of the examples available in the 
literature, grouped according to spin value, together with those properties 
that  are of interest in the present context. Listed are some of the 
quantities of table 1, with, in addition, the exchange constant as deter- 
mined from the data, the transition temperature To at which 3-d ordering 
sets in and the ratio of To and the Curie-Weiss 0, the latter being calcu- 
lated from the exchange constant (0 = ~zS(S + 1)IJI/lc). The last column 
gives estimates of the ratio IJ'/J] of inter and intraehain exchange, 
obtained from a relation between ]J'/JI and kTo/]JI derived by Oguchi 
(1964) on the basis of a Green function method. The only check as to 
the correctness of these estimates is provided by the result 
[J'/J[ =3.5×  10 -3 obtained by Skalyo et al. (1970) from the spin-wave 
dispersion curve of CsMnCla. 2H~O, as measured with neutron diffrac- 
tion. Comparing this with the value listed in table 2, it  is found that  the 
prediction from the Oguchi relation is in close agreement. Moreover 
these estimates are useful in comparing the various compounds, which 
we shall now discuss successively. 

CuSO 4 . 5H20 and CuSeO4.5H20 

These copper salts belong to the earliest examples of chain-like be- 
haviour. As was pointed out by Geballe and Giauque (1953) they have 
the peculiar property of consisting of two different magnetic systems, 
which is a consequence of the two inequivalent positions of the copper ions 
in the unit cell. This was verified by Miedema et al. (1962) by magnetic 
and caloric experiments, from which it also became clear that  the coppers 
in one of the subsystems have a much larger exchange interaction and 
form nearly isolated linear chains, whereas the other subsystem remains 
paramagnetic down to at least 0.1 K. Additional evidence has subse- 
quently been obtained from N.M.I~. experiments ; see Wittekoek et al. 
(1968), in which paper references to the earlier work may be found. To 
complete the list of references, we mention the work of Giauque et al. 
(1970), a paper that  is number V of a series in which extensive magneto- 
thermodynamical studies on CuSO 4 . 5H20 are reported. 
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Fig. 20 

I I I I i o CuSO4.5H20 (J/k=-1.45K 
z~ ~ A CU (NH3)4SO 4. H20 
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Specific heats of two examples of the antiferromagnetic, S =  1, Heisenberg 
chain (for the references, see the text). (a) Fit  of the data to the theo- 
retical curve of Bonner and Fisher (1964) (J/k is the only adjustable 
parameter).  (b) The low-temperature region, in which in the case of 
Cu(NH3)4SO a . H20 the transition to long-range 3-d ordering has been 
observed. The dashed curve is the theoretical specific heat, which is 
linearly dependent on temperature at the lowest temperatures. The 
increase in C m observed below kT/IJ ]___0"03 is due to the hyperfine 
contribution. 
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The excellent fit of the specific heat to the theoretical curve of Bonner 
and Fisher (1964) is shown in fig. 20 (a), in which we have combined the 
heat capacity data of Miedema et al. (1962), Giauque et al. (1970) and 
Duijckaerts (1951). In the case of the susceptibility the fit to theory is 
slightly less, as may be seen in fig. 21. Wittekoek et al. (1968) have 
attributed the discrepancy for k T / I J [  < 1.0 to the presence of anisotropy. 
The fact that  the agreement for KCuF a is better, although it has a far 
larger value of [J'/J[, seems indeed to exclude the inter-chain coupling 
as a possible source. On the other hand, the influence of anisotropy is 
not appreciable in the heat capacity, so tha t  one may not wholly discard 
the effect of the paramagnetic subsystem, the susceptibility contribution 
of which had to be subtracted in order to obtain the data of fig. 21. 
Unfortunately no estimate of the amount of anisotropy has as yet been 
obtained. 

Fig. 21 

0.08 [- ~ ~ I I 
• / o Cu SO,.SH~O (D/k=-I.LSK) 

XIDI ] q , ~  • Cu Se4OL. 5~20 (D/k=_ 0.8 K) 
NogLIJ'B / ~ Y  ~ s K Cu F 3 (9/k=-lgOK) 

0.0~ 

/ ............. i I I I 
0 1.0 2.0 3.0 L.O 5.0 

kT/131 
Reduced susceptibilities of three examples of the antiferromagnetic, S=½, 

Heisenberg chain. The fit to theory (full curve, obtained by Bonner 
and Fisher 1964) is again brought about by choosing the right J/lc. 
It is reassuring to observe how compounds with exchange constants 
differing by a factor 200 may be similarly well fitted (for the references, 
see the text). 

Cu(NHshSO 4 . H20 and Cu(NH3hSeO 4 . H20 

Copper tetrammine sulphate monohydrate seems to be the first magnetic 
linear chain compound recognised as such in Nature. The earlier X and 
C m measurements of Watanabe and Haseda (1958) and Fritz and Pinch 
(1959) were extended and reviewed by Haseda and Miedema (1961), 
who arrived at  a linear chain arrangement. The crystallographic argu- 
ment supporting this view has already been exposed in §2.4 (see fig. 13). 

The heat capacity data of Haseda and Miedema (1961) and Fritz and 
Pinch (1959) have also been included in fig. 20 (a). As a consequence of 
the larger value of J '  the transition to 3-d ordering could also be observed. 
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This is depicted in fig. 20 (b), which shows the specific heat at the lowest 
temperatures (kT/IJ [ < 0.3). I t  may be concluded from figs. 20 (a), (b) 
that  the observed thermodynamic behaviour of the non-ideal chain is 
indeed in accord with that  predicted in the preceding section. This is 
also corroborated by the X measurements of Haseda and Miedema (1961) 
in which the onset of long-range 3-d antiferromagnetic ordering below 
T O = 0.37 K could be deduced from the anisotropy in X below that  tempera- 
ture. These authors compared their experiments with the Ising chain, 
since at tha t  time it was the only available theoretical prediction for a 
1-d system. Afterwards it was shown by Griffiths (1964b) that  the 
calculations for the Heisenberg chain gave a much better fit to the 
experimental susceptibility and specific heat data. 

A nice example of the magnetization curve of the antiferromagnetic 
Heisenberg chain is provided by the measurements of Haseda and 
Kobayashi (1964) on this compound. Their result is in excellent agree- 
ment with the curve obtained by Griffiths (1964 a) and Bonner and Fisher 
(1964), as shown in fig. 22. The departure from the theoretical curve at 
the highest fields may be understood by considering the influence of an 
antiferromagnetie interchain coupling (the effect of the finite kT/IJ] = 0.35 
on the theoretical curve shown, which applies to T = 0, is much less than 
the observed discrepancy between theory and experiment). We remark 
that  Kaseda and Kobayashi compared their measurements with the 

Fig. 22 
I I I I 

M 1.0 . . . . . . . .  
Nogl..LBS 

I 0.8 v - 

0.6 o v 

0.4 o o ° °  

2 0 
0.2 _.0'¢" " t ~ ( kT / I - ] l : 0 .35 )  

o Cu C [2 .2NC5H 5 
(kT/131=0.15) 

I I I I 
0.5 1,0 1.5 2,0 25 

_ _ ~ . .  gPB HS 
131 

Low-temperature magnetization curves of two examples of the antiferro- 
magnetic, S= ½, Heisenberg chain, compared with the theoretical result 
obtained by Griffiths (1964 a), applying to T = 0  K. The dashed curve 
shows the behaviour to be expected for the Ising chain. 
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theoretical curve obtained by Inawashiro and Katsura (1965), which lies 
somewhat above the Griffiths curve in most of the field region of interest. 

Considering the isomorphous selenate compound, only specific heat 
measurements are available until now, which lie in the region 
0.85 < kT/IJI < 8.5 (Lowndes et al. 1969). The data could likewise be 
fitted excellently to the Bonner-Fisher curve, taking J/]c=-2.36 K. 
A disadvantage of the experiment is, however, that  the heat capacity 
was not measured absolutely, so that  not only T(Cm~) but also the height 
of the maximum Cma x had to be scaled onto the theoretical curve. 

Cu(lqH3h(NO3h 
Although from a crystallographic viewpoint there is no direct structural 

evidence for the occurrence of chains in this compound, E.P.R. studies 
and specific heat results seem to indicate a 1-d behaviour (Rogers and 
Dempesey 1967). The heat capacity could be fitted to the Bonner- 
Fisher curve in the region 0.27 < kT/IJ] < 4-3, yielding J/lc-- - 3.70 K. 

CuC12 . 2NCsII 5 

This compound may in some sense be thought of as being derived from 
CuC12 . 2H~O by replacing the water molecules by the pyridine molecules 
(Takeda et al. 1970). However, in CuC12 . 2H20 the unit cell is ortho- 
rhombie, with magnetic ions on the corners and on the eentres of the 
upper and lower faces, whereas CuCI~. 2NCsH 5 has a body-centred 
monoclinic structure (7 = 91° 52'). Nevertheless, in comparing the chain- 
like properties of these compounds the above concept is certainly of value 
and one may anticipate that  the 1-d character is greatly enhanced by the 
substitution of the pyridines, which results in highly inequivalent exchange 
paths along and between the chains. 

The experiments bear out this expectation. The susceptibility, the 
heat capacity and the magnetization data can all be fitted to the Heisenberg 
chain predictions with J/k_~ - 13 K (Takeda et al. 1970, 1971 b, Matsuura 
1971). In the region 2< T <  4 K the specific heat varies linearly with 
temperature, as expected from theory. Takeda's data did not extend 
below 2 K. Recently, Dully (private communication, to be published) 
has found the sharp anomaly due to the 3-d ordering to be at To = 1.13 K. 
With the aid of the Oguchi relation the estimate IJ'/JI _ 4 x  10 -3 is 
obtained on the basis of the lcTo/]JI value. This is an order of magnitude 
smaller than the value ]J'/J] _~4x l0 -2 needed by Matsuura (1971)to 
explain the deviation of the experimental magnetization curve at high 
field values from the Griffiths prediction (fig. 22). The explanation may 
well be the existence of a symmetry argument which reduces the inter- 
chain coupling, similar to tha t  present in the KeNiF 4 structure. A 
necessary prerequisite for such a cancellation is, as we have seen, an 
antiferromagnetic alignment within the layer or along the chain. Since, 
in fields neat" to the (ferromagnetic) saturation value, the antiferro- 
magnetic orientation will have been very nearly broken up, one will in 
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that  case measure the true interaction between the chains. In zero 
field, on the other hand, the symmetry argument can take effect, reducing 
the true interchain coupling to a lower effective J ' .  

KCuF3 

The rather exceptional origin of the occurrence of 1-d magnetism in 
KCuF a has already been discussed in § 2.4. There exist two poly- 
morphisms (Okazaki 1969 a), according to the particular alignment of the 
wave-functions of the Cu 2+ ions. The two forms have different values for 
the interchain coupling. In table 1 it may be seen from comparison of 
the Tc/O values tha t  in one of them J '  is about 60% smaller than in the 
other. The transition temperatures have been obtained from neutron 
diffraction and E.S.R. experiments (Hutchings et al. 1969, Ikebe and 
Date 1971). 

Although one would expect 1-d correlations over long distances to 
persist to temperatures well above To, they could not be detected in the 
neutron diffraction experiment. However, their presence could also 
not be ruled out t.  Furthermore, a large reduction (55%) of the expected 
moment g~B S ~_ 1-1 ~B was observed. Although 10% of this reduction 
was attributed by the authors to covalency effects, there remains a large 
value of about 450 ,  close to the value of about 50% found in the N.M.R. 
experiments of Hirakawa et al. (1970) to be explained. More will be 
said about the spin reduction in antiferromagnets in § 4.2. This effect 
arises from the existence of deviations from the fully aligned Ngel state 
even at zero temperature, and it is another example of a property of 
which the relative importance is greatly enhanced by lowering the lattice 
dimensionality (see § 4.2). 

Additional evidence for the 1-d behaviour is found from the suscepti- 
bility curve (Kadota et al. 1967, Hirakawa et al. 1971), the absence of a 
specific heat singularity (Kadota et al. 1967) and the N.M.R. experiments 
(Hirakawa and Kadota  1967, Hirakawa et al. 1970). From the fit of the 
susceptibility to theory, shown in fig. 21, the large value J//c= - 1 9 0  K 
is obtained. As a consequence, the maximum of the magnetic chain 
specific heat is expected to occur at a temperature at which the lattice 
contribution is about 30 times larger, so tha t  one can scarcely hope to 
be able to separate the magnetic part. The transition to long-range 
order at T~ is likewise not appreciable in the specific heat. The anisotropy 
in the susceptibility can, within the uncertainties, be accounted for by 
the anisotropy in the g tensor. Since only a fraction of this g anisotropy 

t Recently an additional neutron diffraction study has been reported by 
Ikeda and Hirakawa (1973), which may be summarized as follows. Evidence 
for the 1-d correlations above T c (=39.51 K) was obtained. The inter-chain 
coupling was estimated as [J'/J[~_2.7×lO -2 (compare the Oguchi result 
1.6 × 10 2). Below To the sublattice magnetization was found to be 3-d in 
character, with fl = 0"355 _+ 0"010, B = 1.53 __ 0-05 in the region 1 × 10 -~ < 1 - T/ 
T o < 0.1, and with a T ~ decrease in the low-temperature (spin-wave) region. 
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will be due to the spin contribution to the magnetic moment, the applica- 
bility of the Heisenberg model seems to be justified. One may object 
that  from the resonance experiments (Hirakawa et al. 1971, Ikebe and 
Date 1971) it follows that  the anisotropy in the direction of the c axis 
(HA II) is much larger than tha t  in the easy plane perpendicular to it 
(HAI), which would make the planar model seem more appropriate. 
However, considering the fact tha t  the exchange field following from J/k 
is 2.6 x 106 Oe, while HA1 is only of the order of 5 Oe, it follows tha t  a 
HA H which is 500 times as large as HA I would still be only 0.1% of the 
exchange field, small enough to choose for the Heisenberg model. Not 
surprisingly, the susceptibility results (e.g. (1/g~)Xm~xT(Xm~x)) exclude 
the applicability of the planar model. 

CuC12 

This compound is important for historical reasons, since the specific 
heat measurements on this salt belong to the first that  were analysed in 
terms of a linear chain arrangement (Stout and Chisholm 1962). I t  is, 
however, a rather poor example of a chain structure. This may be in- 
ferred from the relatively high value of To which is 60% of T(Cm~x) and 
the amount of entropy that  is already gained below T c (17% of R In 2). 
For Cu(NH3)4SO 4 . H~O the corresponding numbers are 12% and 4%, 
respectively. 

Also it is not clear whether the interaction is indeed of the Heisenberg 
type, although it is listed as such in table 2. Stout and Chisholm (1962) 
used the Ising model to analyse their data, which was the only available 
chain model at the time. However, for a Cu compound the Heisenberg 
model is in general more appropriate and the ratio of T(Xmax)/T(Cm~x) 
is indeed nearer to the Heisenberg than to the Ising value (for)/ll). The 
fact tha t  the value Cmax/R = 0"61 is much too high for both the Ising and 
Heisenberg model can be explained by considering that  a large lattice 
contribution had to be corrected for in order to obtain C m. Consequently, 
the absolute values of C m are uncertain. 

Susceptibility measurements have been performed only on powdered 
specimens (De Haas and Gorter 1931, Starr et al. 1940). I t  is difficult 
therefore to derive a value of J/lc. Starting from the Ising model, as 
Stout and Chisholm did, one arrives at  J / l c _ 7 0 K .  Applying the 
Heisenberg model a much lower value of about 50 K would be obtained. 
The corresponding values of To/O are 0.34 and 0.48, dearly much higher 
than for the other Cu chains. 

On the isomorphous bromine compound CuBr 2 only a susceptibility 
experiment has been performed (Barraelough and Ng 1964). The 
maximum in X was located at 226 K. 

Free radicals 

A considerable number of free radicals have been found to possess 
chain-like properties (Hamilton and Pake 1963, Edelstein 1964, Duffy 
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and Strandburg 1967, Karimov 1969, Dully et al. 1972). As one of the 
best examples, we have listed in table 2 the properties of the iminoxyl 
radical 2,2,6,6-tetramethyl 4-piperidinol 1-oxyl. Both the heat capacity 
(Lemaire et al. 1968) and the magnetic data (Karimov 1969) are in good 
numerical agreement with the Heisenberg chain predictions. Other 
iminoxyl radicals with a similar chemical structure, bu t  with sometimes 
quite different values of the exchange, show a similar agreement (Karimov 
1969). For more references to recent experimental work see ¥amaguchi  
et al. (1970), Saito et al. (1970) and Hone (1971). 

CsNiC13 and RbNiCl 8 

These members of the hexagonal ABC13-type group of compounds 
(A -- monovalent cation, B = d i v a l e n t  transition metal ion) have been 
reported to be representatives of the S = 1 antiferromagnetie Heisenberg 
chain. In this structure magnetic chains are formed along the c axis, 
since the exchange interaction between metal ions of neighbouring chains 
has to take place via two chlorine ions which are far apart (3.6-4-0 A), 
whereas there are short B - C L B  paths along the c axis (e.g. the B - B  
distance is only about 3 A). The interaction can be thought to be 
reasonably isotropic since the single-ion anisotropy of the Ni 2+ ion in 
an octahedral field is usually small. The susceptibility measurements 
(Achiwa 1969) do show a fairly isotropic behaviour, in contrast to those of 
the isomorphous cobalt compound. 

Instead of the estimates of the exchange of Achiwa (1969) and of 
Smith et al. (1970), we have listed in table 2 J/k values obtained from the 
theoretical kT(Xm~x)/IJ I listed in table 1. In this way we find J / k =  - 13 
and - 17 K for CsNiCl~ and RbNiCla, respectively. Note that  the value 
of (1/g2)Xm~xT(xm~,:) is in excellent agreement with the theoretical 
estimate. 

A specific heat measurement has up to the present only been performed 
on CsNiC13 (Mekata et al. 1970). An advantage is the existence of the 
isomorphous diamagnetic compound CsMgCla, which can be of help in 
the evaluation of the lattice contribution to the heat capacity. Although 
these authors at tr ibuted an apparent linear temperature dependence of 
C m in the region 6< T <  12 K to the 1-d character, the argument is 
fallacious since the linear dependence is not expected to extend beyond 
T ~_ 0.21J/]c ] (Weng 1969), which corresponds to a temperature of about 
2.5 K. Accordingly, the linear part  between 6 and 12 K does not extra- 
polate to zero for T-+0. The amount of entropy gained below T° was 
found to be only 5% of R In 3, confirming the ]-d character. 

As concerns the precise spin structure below To, where the inter-chain 
coupling has established a 3-d ordering, the various investigators are in 
disagreement with one another. From their neutron diffraction measure- 
ments Minkiewicz et al. (1970), Mekata et al. (1970) and Cox and 
Minkiewicz (1971) conclude that  the antiferromagnetic chains along the 
c axis are coupled together in a triangular array, the moments lying in a 
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plane perpendicular to the basal plane. Notwithstanding this, another 
neutron diffraction experiment of Epstein et al. (1971) and the N.M.R. 
measurements of Clark and Moulton (1972) seem to indicate a collinear 
structure with the spins along the c axis. 

1.5x102 
[ cm3 ] 
mole J 
X N 

1.0 

05 

Fig. 23 

o 

X± o 

~~X// CsNiCI 3 
linear chain 
(9Ik=-13K,g=22C 

0 10 20 30 LO 50 60 [K] 
= T  

Susceptibility of Cs~iC13 (after Achiwa 1969), which is an example of the anti- 
ferromagnetic S =  1 Heisenberg chain. The full curve is Weng's theo- 
retical result (1969), calculated with J / k = - 1 3  K and g=2-20. Note 
that below T O the otherwise fairly isotropic susceptibility is split up by 
the small anisotropy into a parallel (llc axis) and perpendicular part, as 
a consequence of the appearance of long-range 3-d ordering below this 
temperature, which may itself be attributed to the inter-chain coupling. 

As a contribution to the solution of this controversy, we have compared 
in fig. 23 the susceptibility of CsNiC13 with Weng's prediction (1969) for 
the S = 1 Heisenberg chain, taking J / k  = - 13 K. At high temperatures 
the fit is quite good ; below i v _ 3T~ deviations occur which we attribute 
to the influence of the inter-chain coupling. Interestingly, in this region 
the experimental points lie below the theoretical curve, in contrast with 
what one would expect. Also the X, curve, measured parallel to the c 
axis does not extrapolate to zero. These features are difficult to explain 
within the collinear structure, but may be understood quite well from 
the model proposed by Minkiewicz et al. If  the spins are arranged in a 
triangular array the X~ obviously is non-zero at T =  0 (the expected 
Van Vleck contribution is only 2% of the value attained at the suscepti- 
bility maximum, Achiwa 1969). We mention that  the Xz as measured by 
Achiwa (perpendicular to the c axis) is actually the susceptibility in the 
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[110] direction, which is at an angle of 60 ° with the planc in which the 
moments lie. 

The neutron experiments do agree to a low value for the magnetic 
moment extrapolated to 0 K, as compared to the high-temperature result 
of about 2/~B found from the X measurements. Mekata et al. (1970) 
derived 1-5+0.1/~B from a powder measurement, while Cox and 
Minkiewicz (1971) reported 1.0 + 0.1 /~B for a single crystal. This con- 
siderable reduction is attributed mainly to the effect of zero-point spin 
deviations. The sublattice magnetization was found to vary like a 
power law with an exponent fi= 0.27 _+ 0.03 (Cox and Minkiewicz 1971), 
fi = 0.32 + 0.03 (Clark and Moulton 1972) and fi = 0.35 + 0.05 (Mekata et al. 
1970). The ' 3-dimensional ' value of fl is in accord with the argument 
outlined in the preceding section. 

As for the nature of the scattering above To it was reported by 
Minkiewicz et al. (1970) for RbNiC13 that  the 3-d correlations disappear 
at T~_4To, in accordance with the susceptibility behaviour discussed 
above. Above this temperature only the strong correlations along the 
c axis are observed. This 1-d scattering will be treated in more detail 
in §4.1. 

VF2 

The same phenomenon of 1-d correlations persisting up to temperatures 
T >> To, as detected by neutron diffraction techniques, has been reported 
by Child et al. (1970) and Lau et al. (1969) for the compound VF 2. This 
salt seems to order below To in a spiral structure around the c axis, with 
the spins perpendicular to the c axis. At first sight VF 2 does not seem a 
likely candidate for 1-d magnetism, since it has the tetragonal futile 
structure and is therefore isomorphous to MnF2, FeF2, CoF 2 and NiF 2. 
Stout and Boo (1966) proposed the following possible explanation for its 
chain-like character. In these sister compounds the exchange J1 between 
the metal atoms along the e axis, which are nearest neighbours, is smaller 
than the interaction Je between the next-nearest neighbours, which are at 
the distance ½(e2A-2a2) 1/2. If now, on the other hand, J1 would be much 
larger than J2 this would result in an assembly of chains running along 
the c axis. 

A justification for classifying VF 2 as a tIeisenberg compound is the 
very small anisotropy observed in the susceptibility by Stout and Lau 
(1967), which is of the order of 0.1~o only. The susceptibility and 
specific heat show the usual 1-d characteristics. The entropy gained 
below To was found to be a mere 9% of the expected entropy change 
R In 4. Considering the relatively high spin value, this would qualify 
VF 2 as a good approximation of the isolated chain. 

Calculations of the exchange constant from T(Xm~x) and T(Cm~x) with 
the aid of table 1 agree to J/lc= - 9.0 K. The resulting value T~/O = 0.16, 
which is about the same as those of the Ni chains in spite of the larger 
spin value, again points to a pronounced 1-d character. Interpolating 
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between the values of T(Cma~) for S = 1 and 2 of table 1, we obtain the 
prediction T(Xmax)/T(Cm~x)~_ 1.6, in good agreement with the experi- 
mental result. The value for (1/g)2)lmaxT(Xmax) is a little lower than the 
theoretical one. Also the maximum value of the specific heat exceeds 
the prediction obtained by interpolating once more between S = 1 and 2 
(table 1). However, this may be attributed to the difficulties associated 
with the subtraction of the lattice contribution. 

CrCI~ 

This compound was investigated by Stout and Chisholm (1962) together 
with the isomorphous CuC12. The amount of entropy gained below To 
was found to be 180,  which is fairly low for a chain-like compound with a 
high spin value. But the discrepancies between the experimental values 
of T(Xm~x)/T(Cm~x) and (1/g)2xm~,:T(x~.~) and theory point to the fact 
that  it is not too good an example. From the temperatures T(Xma~) and 
T(Cm~.~ ) one obtains for the exchange J/k= -5 .6  and - 8 . 2  K, respec- 
tively. We have adhered to the former, since the heat capacity maximum 
is more difficult to obtain experimentally. The resulting value for 
Tc/O = 0-36 points to a rather large interchain coupling. 

CsMnC18 . 2H20 

Of the two manganese salts listed in table 2, CsMnC1 a . 2HeO has the 
largest inter-chain coupling. In this compound C1-Mn-C1-Mn chains 
exist along the a axis of the orthorhombic unit cell. The neighbouring 
chains are linked by exchange paths involving several non-magnetic 
atoms or H~O groups. 

Susceptibility measurements have been performed by Smith and 
Friedberg (1968) and by Kobayashi et al. (1972), who analysed the data 
above T c in terms of the calculations of Weng and Griffiths for S >~ 1 
(Weng 1969), obtaining J/k= -3 .0  K, which is fairly close to the value 
-3 .57 K derived subsequently from the spin-wave dispersion curve as 
measured by neutron diffraction by Skalyo et al. (1970). A more extensive 
discussion of this neutron work will be given in § 4.1. From the analysis 
of the dispersion curve (fig. 24) the interchain coupling could also be 
obtained. As mentioned before, their value IJ'/Jl=3.5×lO-a is in 
reasonable agreement with the Oguchi prediction (6 × 10 -3) on the basis 
of the kTc/]J l value. The reason why we listed the Oguchi result in 
table 2 was to enable a comparison of the chain properties with the other 
compounds, for which a value of J '  has not been derived experimentally. 
The anisotropy was also determined in the neutron work, but using 
J/k = - 3.57 K the more accurate value HA/H E = 5 x 10 -3 can be derived 
from the measured spin-flop field (Butterworth and Woollam 1969, 
Botterman et al. 1969). This is the anisotropy in the easy plane (HAI). 
The out-of-plane anisotropy (HA II) has been reported to be about three 
times larger (Nagata and Tazuke 1970, ci. note on page 20). 
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Fig. 24 
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CsMnCI3"2DzO I 
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Magnon dispersion curve of CsMnC1 a . 2D20, which is the deuterated isomorph 
of the antiferromagnetic, S =  ~, Ileisenberg chain CsMnC13 . 2H20. The 
sohd lines are spin-wave theoretical results for a 3-d assembly of weakly 
coupled chains. From the fit to the data the exchange along the chain, 
as well as the interchain coupling and the anisotropy, can be derived. 
The wave-vector is denoted by ~ and the zone boundary is indicated by 
the vertical line. The 1-d character follows from the lack of an appreci- 
able dispersion perpendicular to the chain direction [~, 0, 0] in reciprocal 
space. (After Skalyo et al. 1970.) 

N o t  surpr is ingly  the  critical index fi of the  sublat t ice  magne t i za t ion  
was found  to be f l = 0 .30  (Skalyo et al. 1970). I n  this neu t ron  work  
evidence for the  existence of 1-d sca t ter ing  was g iven for  the first  t ime.  
The  correlat ions along the  chain were found to  persis t  a t  t empe ra tu r e s  
T>>T e. F o r  instance,  a t  T = 3 T  o the  ave rage  n u m b e r  of correlated 
spins wi th in  a chain is abou t  five. The  effect  of the  in te rcha in  inter-  
act ions begins to be felt  a t  T_~ 2To. 

[(CHa)4N ] [MnOla ] 
I t  m a y  be observed  f rom table  2 t h a t  this c o m p o u n d  is the  best  approxi-  

ma t ion  of a 1-d m a g n e t  found so far, since the  i n t e r ch , i n  in te rac t ion  J '  

A.P. D 
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is 1.0-4-10 -5 of J,  which is one or two orders of magnitude smaller than 
for the other examples. 

In [(CH3)4N][MnCla] the chain character is once again a consequence 
of the crystal structure, which consists of chains of chlorine octahedra, 
surrounding the manganese ions, the adjacent oetahedra sharing {111} 
faces. Thus three Mn-C1-Mn paths link the magnetic ions along the 
chain axis, whereas there are no direct bonds between the chains, which 
arc separated from one another by the tetramethyl ammonium groups. 

By fitting the susceptibility data to Fisher's classical chain model, 
scaled to S = ~, the exchange was found to be J/Ic = - 6-3 K (Dingle et al. 
1969). At temperatures below the maximum the susceptibility rises 
again, a phenomenon also observed in CsMnC13 . 2tt20 and KCuF 3. The 
most likely explanation for this rather steep increase is the presence of an 
impurity. An indication for this is also the fact that  the values for J /k  
derived from the experimental Xm~x and T(Xm~x) with the aid of table 1 
are considerably lower ( J / k = -  5.8 and - 5 . 2  K, respectively) than the 
result obtained by the neutron diffraction work (see below). The impurity 
contribution would result in too high a Xm~x, and also shift the maximum 
to a lower temperature. In this respect the better agreement of the J /k  
value derived by the fit to Fisher's S = co model scaled to S = ~ (Dingle 
et al. 1969) will be fortuitous and may be understood by considering that  
the susceptibility curve of this model lies above the result of Weng (1969) 
for S=-~, which seems to be a better approximation (see Smith and 
Friedberg 1968). The value of T o = 0.84 K, which was derived from the 
susceptibility behaviour (Hutehings et al. 1972 b) was later confirmed by 
additional X measurements (Walker et al. 1972) and low-temperature 
neutron diffraction data (Birgeneau et al. 1972 a). Earlier neutron experi- 
ments, also performed on the deuterated material have been reported 
by Birgeneau et al. (1971 a) and Itutchings et al. (1972 b). Apart from 
establishing the 1-d character of the magnetic structure, it was found tha t  
the nature of the scattering could be fully accounted for by Fisher's 
calculations for the correlations in a classical Heisenberg chain (1964). 
These measurements extended down to T _ 1.1 K. The dispersion curve 
could be described within the experimental error by a sine curve, as pre- 
dicted by simple spin-wave theory (el. fig. 24). More will be said about 
these important results in § 4.1. From the additional neutron studies 
below T = 1 K reported by Birgeneau et al. (1972 a), the critical index ]? 
for the magnetization was found to be/~ = 0-26 for 10-~< 1 - T I T  c < 10 -1. 

From the susceptibility measurements a small anisotropy of about 1 °/o of 
the planar type has been deduced (Hutchings et al. 1972 b). As discussed 
by Walker et al. (1972) this may be attr ibuted to the dipolar interactions. 
The same authors compared the X between 60 and 170 K with the series 
result of l~ushbrooke and Wood (1958), obtaining J/Is = - 6.5 K, in good 
agreement with the value J / l c = - 6 . 6  K derived from the spin-wave 
dispersion curve. In contrast with this a larger value, J i l t = - 7 . 7  K 
was found in the quasi-elastic scattering experiments (Birgeneau et al. 
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1971 a), a discrepancy which is not yet  understood. For the present we 
shall adhere to the value J/k = - 6-5 K. Lastly, we mention the interest- 
ing E.P.R. study of Dietz et al. (1971). 

This concludes the discussion of the examples of the antiferromagnetic 
Heisenberg chain, which is by far the largest group of l-d compounds. 
In fact there are only few chain structures left, which have been listed 
in table 3, the compounds being grouped according to the type of the 
interaction. Their properties will now be briefly reviewed. 

CsCuC13 

This salt, which is very nearly isomorphous with CsNiCI~, is listed here 
because it is the only example of the S= ½ ferromagnetic Heisenberg 
chain available at present. Susceptibility experiments have been per- 
formed by Achiwa (1969) and by l~ioux and Gerstein (1970). If the 
interaction along the chain is indeed ferromagnetic, as we assume here, 
it follows tha t  there must be a fairly large antiferromagnetic interchain 
interaction, since a negative deviation from the Curie law is observed up 
to T _~ 100 K (Rioux and Gerstein 1970). Our suggestion of a ferro- 
magnetic intrachain exchange is based upon the positive value for the 
Curie-Weiss 0 found by Achiwa from the susceptibility in the region 
100< T <  300 (the data of Rioux and Gerstein do not extend beyond 
150 K), and on the shape of the susceptibility curve, which shows a 
gradual increase up to the temperature To= 10.4 K at which a transition 
to 3-d ordering was observed in the heat capacity (l~ioux and Gerstein 
1969). The absence of a maximum in )/above To and the failure of the 
attempts to analyse the X curve in terms of an antiferromagnetic intra- 
chain interaction are explained by assuming a model of antiferro- 
magnetically coupled ferromagnetic chains. Neutron experiments to 
check this would be very welcome. In any case it is clear that  CsCuC1 a 
will be a rather poor example of a ferromagnetic chain, the interchain 
coupling being relatively large. 

[(CHa)4N][NiCl3] 

[(CH~)4N][NiCI3] seems to be a better candidate for l-d ferromagnetism 
in view of the high degree of l-dimensionality of the isomorphous manga- 
nese compound (although the ferromagnetic intrachain exchange will 
result in a larger dipolar coupling between the chains). It consists of 
chains quite analogous to those in CsNiCl 8 but with a larger interchain 
distance (9 A instead of 7 A) and more unfavourable interchain exchange 
paths. Unfortunately only susceptibility measurements have hitherto 
been performed (Gerstein et al. 1972 a). In the region 1-6 < T< 79 K 
these could be very well fitted to a ferromagnetic chain model, based upon 
Fisher's infinite spin model (1964), scaled to S=I. The value 
Jilt= 1.0 K was obtained from this fit. No evidence for a transition to 
3-d ordering was found in the investigated region, implying that 
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To~O< 0.5. More experiments on this compound in particular in the 
region below 1 K would be welcome. 

K3Fe(CN)6 

Potassium ferricyanide is also one of the earliest investigated chain- 
like compounds. Ohtsuka (1961 a, b) concluded to the existence of anti- 
ferromagnetic chains, with an anisotropy in the interaction of about 25~o. 
The effective spin is 1, the ground doublet lying several hundred cm -1 
below the nearest excited doublet. The interchain coupling was esti- 
mated by him to be about 0-1 IJI. 

The anisotropy value places the compound in between the Ising and 
Heisenberg model (see the results of Bonner and Fisher 1964). The 
specific heat, which was measured by Dully et al. (1962) and Rayl et al. 
(1968) is indeed intermediate between these two extremes. As explained 
in the preceding section, the rounded maximum is not clearly resolved 
from the large peak that  reflects the 3-d ordering. The amount of 
entropy already removed above T c was found to be 65~o. The maximum 
in the susceptibility seems to be masked by the appearance of a weak 
ferromagnetic moment in the ordered state. 

From the specific heat and susceptibility experiments a value for the 
exchange constant of about J / k = - 0 . 2 3  can be deduced. The spin 
reduction of 18~o found by 0no et al. (1970) in Mossbauer experiments is 
rather low for a l-d compound with S = 1, which may be attributed to the 
large anisotropy and to the relatively high value of IJ'/JI. 

CsCoCl~ 

Another member of the hexagonal ABC13-type group of compounds 
(see CsNiC18). The susceptibility measured by Achiwa (1969) shows 
extremely anisotropic character and was analysed in terms of the Ising 
model. Apparently Achiwa could not correct for the Van Vleck contribu- 
tion to the susceptibility, which makes the analysis dubious. The value 
of J / l c = -  85 K derived by him from T(X~ m~x) and X, m~x is therefore 
unreliable. If we tentatively take the Van Vleck contribution to be 
equal to the value of X ,~ extrapolated to T = 0, and subtract this from the 
value attained at the maximum, we obtain J/Ic ~ _ -115  K from the 
Xm~x so obtained. As concerns the value of Tc, only slight indications 
of a transition are found at about 8 K in X, and X±. 

Clearly more information is needed to put things on a sure footing. 
The values J/l~ ~_ 100 K and To _~ 8 K listed in table 3 may therefore only 
be considered as very rough estimates. 

The hydrated compound CsCoC13 . 2H~O, which is isomorphous to 
CsMnC13 . 2H~O has been investigated by Herweyer et al. (1972). The 
chain character turns out to be less pronounced than in CsCoCla, there 
being relatively large interchain interactions. 

D y ( C ~ H s S 0 4 ) ~  • 9H20 
The Ising character of this compound with effective spin 1 is quite 
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well established with g~ = 10.8 and g x ~ 0  for the lowest doublet, while 
the next doublet is found at  A E / k = 2 2 . 5  K. I t  has been extensively 
investigated by Cooke et al. (1959, 1968) and also by Wielinga (1968). 
The magnetic interactions are predominantly of the dipolar kind, effeeting 
a ferromagnetic alignment along the c axis. The dipolar interactions 
along the c axis are about one order of magnitude stronger than the others, 
which accounts for the chain-like character above To. Thus, although the 
compound is a rather poor example of a 1-d magnet, its magnetic and 
thermal properties at temperatures sufficiently above T o can be described 
by a model of loosely coupled Ising chains. Below To=0 .115K the 
system is brought into 3-d ferromagnetic ordering. 

CoC12 . 2NCsH 5 

A much better example of the ferromagnetic Ising chain is 
CoC12.2NCsHs, which is isomorphous to CuC12 . 2NC~H 5 already discussed 
earlier, and has beerl studied by Takeda et al. (1970, 1971 b). The specific 
heat is plotted in fig. 25 (a) and it represents the closest approximation 
to the theoretical Ising chain heat capacity found at present. I t  clearly 
illustrates the difficulty mentioned above of resolving the rounded chain 
maximum from the peak due to the 3-d ordering, in case of Ising-type 
compounds. In fact the specific heat of CoC12 . 2NCsH 5 shows a close 
resemblance to the dashed curve in fig. 19 (a), bearing in mind tha t  here 
we have to do with a 3-d assembly of Ising chains. The diHerence 
observed at 4 < T < 6 K may be attributed to the anisotropy not being 
complete. Below To the ferromagnetic chains are ordered antiparallel 
with respect to one another, as can be deduced from the susceptibility 
behaviour. 

Another illustration of the 1-d character of CoC12 . 2NCsH 5 can be 
found in fig. 25 (b), in which the entropy versus relative temperature T / T  c 
curves of this compound and of CoCl~. 2H20 are compared. As already 
mentioned in the discussion of CuC12.2NCsH 5, one may imagine 
CoC12.21~C5H 5 to be derived from CoCI 2 . 2H20 by replacing the water 
molecules by the larger pyridine molecules, thereby enhancing the 1-d 
character. This is indeed obvious from fig. 25 (b), since one may observe 
that  the amount of entropy gained below T o is decreased from 60~o in 
the ease of CoCl~. 2H20 to a mere 15~/o in CoCl~. 2NCsH 5. 

RbFeC18 

Although the susceptibility of this A BCla-type compound was analysed 
by Achiwa (1969) in terms of an uniaxial anisotropie antiferromagnetie 
chain, the neutron diffraction measurements of Davidson et al. (1971) 
showed the magnetic structure below To=2.55 K to consist of ferro- 
magnetic chains, with the moments in the plane perpendicular to the 
chain axis in a triangular array. From this it may be expected tha t  the 
anisotropy will be of the planar Heisenberg form. The 3-d correlations 
were found to persist up to 10 K, but at 20 K the observed scattering 
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(a) Magnetic specific heat versus temperature  of CoC12 . 2NCsH 5. The solid 
curve is the theoretical prediction for the S = ½ Ising chain, calculated 
with J/k=9.5 K. (After Takeda et al. 1971 b.) (b) Comparison of the 
entropy versus temperature curves of two Co salts. The large enhance- 
ment  of the ]-d character by substituting the NC~H 5 molecules for the 
H20 molecules can be clearly seen from the large reduction in the amount 
of entropy gained below To. (After Takeda et al. 1971 b.) 
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was wholly 1-d in character. From the M~ssbauer study the value of the 
magnetic moment at T = 0 was estimated to be about 2 tLB, which again 
indicates considerable reduction, since the g factor deduced from the 
X measurements was 4.49 (S= 1). 

This example clearly illustrates the difficulty of deducing the type of 
magnetic structure from )/measurements alone. As an additional compli- 
cation the effective spin value will be temperature dependent due to the 
contribution of higher excited levels. In view of all the uncertainties 
involved, we have refrained from listing a value for J/k. 

CsNiF a 
The other available example of the linear planar tteisenberg model is 

CsNiF~, which also has the hexagonal ABC13 structure. Neutron diffrac- 
tion and magnetization measurements have been performed by Steiner 
et al. (1971). The behaviour of the specific heat and the susceptibility 
is currently being investigated by Lebesque of our laboratory. Again 
the easy plane is perpendicular to the chain axis. The transition to 
long-range order, as found in the magnetization and heat capacity 
measurements, is To=2.61 K. In fig. 26 the magnetic specific heat as 
reported by Lebesque et al. (1972) is shown as an example of the behaviour 
found in a magnetic chain with large planar anisotropy. Also in this 
case the estimate of J/k is still uncertain due to the complications involved. 
The evaluation of the lattice specific heat is therefore not too certain, 
since the J/]c value was used in the analysis. But the overall appearance 
is as expected for a S = 1 chain with large planar anisotropy, in tha t  the 
curve is intermediate between the S =  1 Ising and Heisenberg chains. 
Once again there is a small spike observed at To. 

In concluding this section on l-d magnets we make some remarks 
concerning the need for future work. On the theoretical side we have 
seen that considerable information is available, although for the isotropic 
chains discrepancies between the approximate solutions and the spin-wave 
theory of these short-range ordered systems have been found that need 
further investigation (see § 4.2). As far as the experiments are concerned, 
one may state that the existence in some cases of extremely good examples 
of magnetic chains has been quite well established, at first from measure- 
ments of the heat capacity and susceptibility, and lately on quite rigorous 
grounds by neutron diffraction investigations. 

Since a large number of antiferromagnetic Heisenberg chains have 
already been discovered, there is at present more need for investigations 
of the other models. In particular examples of the Ising models with 
]J'/Jl < 19-8 would be welcome. Concerning the XY and the planar 
Heisenberg model there is also much work left to be done. 

Comparing ferro and antiferromagnetic chains, one finds that the first 
type has scarcely been found. This is not surprising since antiferro- 
magnetism is more commonly found in Nature. The antiferromagnetic 
chain has the advantage that it is easier to obtain reliable values for J/l¢ 
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Magnetic specific heat of CsNiF a (curve b), which is an example of a ferro- 
magnetic S= 1 chain with large planar anisotropy. As expected the 
curve is intermediate between the predictions for the S= 1 Ising (a) 
and ferromagnetic Heisenberg (c) chain. The small spike observed at 
low temperatures reflects the transition to long-range 3-d ordering. 
(After Lebesque et al. 1973.) 

from susceptibility or specific heat data. Also values for the anisotropy 
can be obtained readily in the antiferromagnetic ease from, for instance, 
spin-flop measurements. I t  is a pi ty tha t  hitherto, only in one case, 
such an experiment has been performed, since knowledge of the amount 
of anisotropy is of importance when analysing results in terms of the 
Heisenberg model. 

In conclusion we have seen that,  as far as quantitative theoretical 
results are available for the specific heat and the susceptibility of chain 
models tha t  could be tested experimentally, the best experimental 
examples yield excellent fits to theory. This is not trivial, since there is 
often only one adjustable parameter, the exchange constant J/k, needed 
to fit the various thermodynamical quantities. 

3.2. Layered structures 

3.2.1. Introduction 

As discussed in § 1.2, in going from the 1-d to the 2-d lattices there 
arises a profound difference between the Ising model on the one hand and 
the tteisenberg and XY models on the other. In the case of the ideal 
chain model there is no transition to long-range order except at  T = 0 for 
any type of interaction. But whereas changing the dimension to 2 is 
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sufficient for the Ising model to order at a finite temperature, this is not 
so for the other models. For the isotropic systems the dimension has to 
be raised to 3 before a phase transition occurs (cf. fig. 6). As a conse- 
quence, a review of 2-d magnetism naturally divides itself into two parts, 
viz. the Ising and the isotropic systems. We will start with the former. 

The work of Onsager (1944) on the quadratic Ising lattice has already 
been mentioned in the preceding pages. In this paper he calculated the 
partition function in zero field, from which the behaviour of thermo- 
dynamic quantities such as the energy and specific heat can be derived. 
In later work (Onsager 1949, Yang 1952) the spontaneous magnetization 
and the correlation functions were obtained. The properties of the other 
planar lattices (triangular, honeycomb) have also been investigated and 
were found to be qualitatively identical to those of the quadratic network. 

As concerns the field-dependent behaviour, however, no exact results 
have been acquired, the available information having been drawn from 
numerical studies, which none the less have reached a high degree of 
accuracy. The only exception is Fisher's solution (1960 b) of a special 
kind of Ising lattice, viz. the 'decora ted  superexchange'  Ising model, 
in which the magnetic spins decorate the bonds of the lattice and interact 
antiferromagnetically via non-magnetic spins on the lattice nodes. For 
this particular model the free energy could also be calculated for all 
values of the applied field. 

For an extensive review of the existing theoretical information on the 
2-d Ising lattices the reader may consult the review paper of Fisher (1967). 
From the discussions in the foregoing sections the extreme importance of 
the results obtained on this model, for the qualitative understanding of 
phase transitions will have become clear. In fact we have already shown 
much of the thermodynamic behaviour of the 2-d Ising model in figs. 1-5 
and 19 of the preceding sections. 

Before leaving the Ising model we would like to mention that  in analogy 
with Landau's proof of the absence of a phase transition in an Ising chain, 
there exists a similar argument, originally due to Peierls (1936) but  put  
on a rigorous footing by  Griffiths (1964 e) and by  Dobrushin (1965), which 
proves the existence of a phase transition in the 2-d case. 

Turning now to the isotropic models we will first discuss the theoretical 
arguments predicting the absence of ordering in the 2-d Heisenberg and 
XY models. This has been rigorously proven by Mermin and Wagner 
(1966), using an idea of Hohenberg (see, e.g., Hohenberg 1967). They 
showed that  for sufficiently small applied fields the magnetization in 
two dimensions is bounded in the following way : 

M(H, T)<~Q{T Ilnl H I I} -~/2. (3.2) 

In this inequality Q is a constant and H denotes an arbitrary field, for 
instance, the applied magnetic field or an anisotropy field. By  letting 
H-~0 it follows that  there will be no spontaneous magnetization at any 
finite temperature. Note however, that  the presence of even a very small 
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field will spoil the argument. Evidently under experimental conditions 
there will, for example, always be a minute amount of anisotropy or 
interlayer coupling, which may both be represented in the form of an 
effective field acting on the magnetic moments. 

Recently, Fisher and Jasnow (1971) have extended Mermin and 
Wagner's argument in the sense that  they proved the absence of a 
spontaneous magnetization without needing the introduction of a sym- 
metry breaking field H (eqn. (3.2)). Moreover they showed that  the 2-d 
system need not consist of a single monolayer but tha t  the arguments 
also apply to a system contained between two infinitely extending parallel 
planes of a finite separation. Thus the system may be 3-d in the sense 
that  it may contain a large number of monolayers. But  provided this 
number remains finite (however large) the system will not order spon- 
taneously. I t  should be noted tha t  the above results apply to short- 
range interactions and that  similar proof has been given for the 1-d 
isotropic systems (§ 3.1.1). 

Earlier arguments concerning the absence of long-range order in 1 
and 2-d systems were based upon spin-wave theoretical arguments. To 
illustrate this we consider the fractional decrease AMs(T)/Ms(O) of the 
spontaneous magnetization of an isotropic ferromagnet due to the excita- 
tion of spin waves. This quanti ty is equal to (NoS) -1 ~ n k, where 

k 

nk =I dw g(~o)<n(w)} (3.3) 
k 

is the total number of magnons created at a temperature T, <n(~)> is the 
average value of the number of magnons of frequency w, and g(~o) is the 
number of magnons of frequency ~o per unit  frequency range. Since we 
are dealing with the Bose distribution we can write 

g(~) (3.4) 2 nk= I d., exp (h o/kT)- 1" 

Substituting x = hw/kT, it can be shown tha t  

n k  ~ T d /2 
x(d/2)- I  

k 0 exp (x) - 1 
dx (3.5) 

for dimension d= 1, 2, 3. Since the integral in (3.5) diverges for d<  3, 
it was argued tha t  the magnetization for d =  1, 2 must be zero at any 
finite temperature. Furthermore, one also can see how in this case the 
argument fails if a finite field or a finite sample size is introduced, since 
both have the effect of changing the lower integration bound from zero 
to a finite value. In the case of a finite field this occurs via the field 
term in the spin-wave dispersion relation, while the finite sample size 
implies a minimum wave-vector and consequently a minimum ~o. I t  
should be stressed that  although these arguments may serve as a nice 
illustration, they constitute no rigorous proof of the absence of a transition, 
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if only because spin-wave theory is merely a low-temperature approxima- 
tion of the system of isotropically interacting spins (Stanley and Kaplan 
1966, Fisher 1973). 

To sum up, we have seen that  just as in the case of magnetic chains, 
theory predicts the absence of a spontaneous magnetization at a non-zero 
temperature for the isotropic 2-d systems and that  a transition to long- 
range order may likewise be brought about by the existing deviations 
from the ideal model. The dependence of the so-obtained To on the 
strength of these deviations has been studied by various authors (Lines 
1964, 1970, Dalton and Wood 1967, Obokata et al. 1967, Kats  1969, 
Ishikawa and Ognchi 1971). These results have in common that  T c 
decays to zero if the strength of the deviations is decreased to zero, or 
in other words, if extrapolation is made to the ideal system. This is 
to be expected since in these studies To is identified with the temperature 
of the onset of the spontaneous magnetization. 

Consequently, as concerns the occurrence of long-range order the ideal 
2-d Heisenberg and XY models behave similarly as the chain models. 
There is, however, one fundamental difference indicated by the analyses 
of the high-temperature series expansions for the initial susceptibility 
(X= (OM/OH)T in the limit H ~ 0 ) .  I t  has already been pointed out in 
1958 by Rushbrooke and Wood that  the series for the 2-d lattices suggested 
the existence of finite temperatures at which the susceptibility diverges, 
just as in the ease of 3-d lattices, where these temperatures are commonly 
identified with the transition to long-range order. Since such an identifica- 
tion cannot possibly be made for the isotropic 2-d lattices, there certainly 
is a problem. Of course one may doubt the results of the series analyses, 
since only a relatively small number of terms in the series is known. 
But  the method works well in lattices that  do show a transition to long- 
range order, so there is no a priori  reason to doubt it in the 2-d isotropie 
case. More recently, Stanley and Kaplan (1966) brought up this mat ter  
again, using longer series (see also Stanley 1967, 1968 a, b, Moore 1969, 
Watson et al. 1970, Berezinskii 1970, Lines 1971, Betts et al. 1971, Ishikawa 
and Oguehi 1971, Wood and Dalton 1972, t~itchie and Fisher 1973). 
Moreover, they made the important remark tha t  the two requirements of a 
zero spontaneous magnetization and an infinite susceptibility need not be 
incompatible, if, for example, certain restrictions are put on the dependence 
of the pair correlation function (S O . St} on the separation r. I t  is in 
this respect noteworthy that  in all the proof excluding the existence of 
long-range order, the possibility of a diverging susceptibility cannot be 
ruled out (Mermin and Wagner 1966, Fisher and Jasnow 1971). For 
instance, the bound imposed on the magnetization by the presence of a 
magnetic field itself contains the property of an infinite initial suscepti- 
bility at non-zero T, as can readily be observed from eqn. (3.2). In  
fig. 27 (a) and (b) we have compared qualitatively the magnetization 
curves appropriate to this new magnetic phase with those encountered in 
the case of a normal ferromagnetic transition. A t  and above To the 
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(a) (b) 

A qualitative comparison of the magnetization curves for the case of a normal 
ferromagnetic transition (a) and for the special type of transition to a 
state of infinite susceptibility but  without spontaneous magnetization 
(b). The isotherms are labelled by the numbers 1, 2 and 3, referring to 
temperatures below, at and above To, respectively. 

qual i ta t ive  behaviour  would be similar. Below T e a finite a mo u n t  of 
spontaneous  magnet iza t ion  is found for H = 0 in the  normal  fe r romagnet  
(a), whereas in case of a S t an l ey -Kap l a n  t ransi t ion all magnet izat ion 
curves below To would s tar t  f rom the  origin wi th  an infinite slope (b). We 
finally ment ion  t h a t  there  seems to  be no the rmodynamic  a rgument  
excluding the  possible occurrence of this new phase (Stanley 1971). 

W h a t  would be the  consequences on the exper imenta l  findings of the 
existence of a finite t ransi t ion t empera tu re  a t  which the  ferromagnet ic  
susceptibi l i ty (and also the staggered t an t i fe r romagnet ic  susceptibili ty,  
S tanley  1969 a) of a 2-d isotropic lat t ice diverges ? The  impor tance  of 
this predict ion lies herein, t ha t  it  implies t h a t  under  exper imenta l  condi- 
t ions long-range order  will be found below these temperatures .  One m a y  
unders t and  this by  considering t ha t  a t  these t empera tu res  the correlations 
have become of such a long range t h a t  a n y  existing deviat ion from the 
ideal system, however  small, will ' t r igger ' the  occurrence of long-range 
order  wi thin  the magnet ic  layers:~. And since we shall no t  be dealing with 
isolated mono-layers ,  it  m a y  be unders tood f rom simple energy considera- 
t ions t ha t  also an in te rp lanar  long-range order will be established th roughou t  

t By staggered it is meant the susceptibility in a staggered f i e ld / t  (likewise 
in the limit H-~0), which is a (theoretical) field that  is alternating in sign in 
going from one sublattice of the antiferromagnet to the other. Evidently, 
the spontaneous magnetization in an antiferromagnet is a staggered quantity. 

:~ I t  is pointed out that,  since the interlayer coupling constitutes a deviation 
from ideality, this argument implies that  the new phase with infinite X and 
yet no long-range order cannot occur in 3-d lattices. Otherwise one could 
have conceived of an intermediate temperature range, in between the tempera- 
ture of the susceptibility divergence (Tsg) and that  of the onset of spontaneous 
magnetization (To), since the two need not necessarily coincide. Indeed, 
no indications of such a situation were found in the numerical studies of 
Baker et al. (1970) on the 3-d Heisenberg model (nor in the calculations on the 
2-d and 3-d Ising models). 
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the sample. Depending on the strength of the existing deviations 
(anisotropy, interlayer coupling) the experimental T c so obtained will 
be shifted upwards by a small amount with respect to the temperature 
at which the susceptibility of the ideal mono-layer would diverge. Thus 
the crucial difference from the situation found in the magnetic chains is 
that  in the latter the deviations from ideality cause an upward shift of 
T e with respect to T = 0, whereas in the isotropic layers the shift is with 
respect to the Stanley-Kaplan temperature Ts• (it is worth mentioning 
that, as we have seen in the preceding section, the ferromagnetic suscepti- 
bility of isotropie chains is indeed predicted to diverge at T = 0). If the 
strength of the deviations can be made sufficiently weak it follows that  
T c will very nearly coincide with Ts~. We will come back to this 
point after having reviewed the hitherto discovered examples of 2-d 
magnetism, and will then present experimental evidence in favour of the 
existence of such a TsK. 

As concerns the behaviour of other thermodynamic quantities of interest, 
we may expect that  in the absence of long-range order the specific heats 
will exhibit similar broad finite maxima as in the case of magnetic chains 
(see fig. 6). The transition to long-range order, due to the deviations from 
ideality, will again be reflected as a sharp spike sitting on the flank of the 
broad short-range-order maximum. As to the precise form of the latter 
there is no theory available. At low temperatures, simple spin-wave 
theoretical arguments predict a temperature dependence that  is linear for 
the ferromagnetic and quadratic for the antiferromagnetic Heisenberg 
lattices (§ 4.2). In the high-temperature region the series expansion 
results for the heat capacity provide a reliable prediction. But  in the 
rather large intermediate region there are only experimental results 
available (see below). 

For the antiferromagnetic susceptibility one expects a similar behaviour 
as found for the isotropic antiferromagnetic chains (figs. 18 (a), 21 and 23), 
since they have in common the absence of long-range order and of aniso- 
tropy. Accordingly, a broad maximum due to the short-range-order 
effects should be found at the higher temperatures, whereas at T = 0 the 
susceptibility should attain a finite value. Since there is no closed-form 
theory available, we must once more rely on the high-temperature series 
expansions and on spin-wave theory in the high and low-temperature 
range, respectively. 

The series expansion results have been studied by Lines (1970), who 
used the six terms in the susceptibility series for general lattice and spin 
given by Rushbrooke and Wood (1958). Calculating the antiferromagnetie 
susceptibility of the quadratic Heisenberg lattice for various S values, 
Lines found that  the series prediction just covers the temperature range 
in which the broad maxima occur. At lower temperatures it becomes 
unreliable because of the finite number of terms known in the series 
(which is given in ascending powers of J / k T ) .  Lines also produced a 
formula relating the exchange constant for various S values to the 



Experiments on simple magnetic model systems 63 

temperature at which the maximum occurs, thus enabling an estimate of 
J/]c of the experimental examples. 

De Jongh (1972 c) has extended this work with the aid of additional 
terms in the series, finding slightly different quantitative results. He 
points out tha t  more reliable estimates of the exchange may be obtained 
by comparing with theory the height oi the observed susceptibility 
maximum rather than the temperature at which it occurs, since the 
former quanti ty can be established with a greater accuracy from the 
finite number of terms known in the series and is mostly also better 
determined experimentally. The values for the temperatures and 
heights of the maxima for various S are listed in table 4, and we shall 
make use of them in what follows in determining the exchange constants 
of the experimental examples. Anticipating the discussion of these 
examples below, we show in fig. 28 (De Jongh 1972 c) the susceptibilities 
of six approximations of the quadratic antiferromagnetie Heisenberg 
layer, with different spin values. In the region below T o (lcTc/ 
IJ IS(S + 1) _~ 1) the data represent the measured perpendicular suscepti- 
bilities. In the high-temperature region above T c the susceptibility is 
mostly found to be fairly isotropie, except for K~NiF 4 in which there is a 
discernible difference between X± and X, also above To, so that  for this 
salt only the X,E data have been plotted for T > To. By fitting the 
exchange constants, the experimental curves have been scaled upon the 
high-temperature series predictions, which have been drawn in the 
temperature region for which the calculations with a varying number of 
terms do not differ by more than a few per cent. Note the larger devia- 
tion from the molecular field theory when S is decreased. Although 
there are some discrepancies, which may be caused, for example, by a 
temperature dependence of J/k or by the limited number of terms in the 
series, there is on the whole very good agreement. 

I t  is also observed from fig. 28 that  the experimental perpendicular 
susceptibilities, extrapolated to T =  0, are in close agreement with the 
x~(O) values as predicted by spin-wave theory for a 2-d Heisenberg 
antiferromagnet. For S = ~ and S = 1 these values have been indicated 
in fig. 28 by the horizontal lines labelled a and b. We point out that  the 
difference between the spin-wave predictions for X±(0) and the MF result 
X±°= Nogl, BS/2HE" ~ is, apart from an anisotropy effect that  is extremely 
small in the compounds considered, wholly due to the effects of zero-point 
spin deviations (De Jongh 1972 b, c). Spin-wave theory yields (see, e.g., 
Keller 1966) 

o [ As(s) 1 x±(O) ,_1 s (a.6) 

Here X± ° is the MF prediction defined above, ~ = HA/H E, S is the spin 
value, z the number of nearest neighbours, whereas the anisotropy 

t HE is the effective field associated with J, according to the MF relation : 
gff BHE = 2rr I J IS. 
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Fig. 28 

0 QUADRATIC / 
[ ~ HEISENBERG [ 

010 6 ~ - - -~/M.E ANTI FERROMAGNETS~ 

A~v 

S=I t ~oo oo~'~'-'- " ~ ~ s  =1/2 

( - ] / k l  " (HA/HE) 

S=1/2 •_CuF 2.2H20 (13K) (3.7x10 -3) 

Iu-BoNiF4 (32K) (2x10 -2) 
5=1 ~.._K2NiF4 (/.9K) (2x10 -3) 

~'v - K2MnF 4 (4.20K)(3.9 xl0 -3) 
S =5/2 ~. - Rb2MnF 4 (3.76K) (4.7 x 10 -3) 

G, - BaMnF 4 (272K) (3.1 xl0 -&) 
r I i I 

2 /-, 

0.02 

0 I I 1 I 
0 6 8 

kY 
l ] lS (S+l )  

The susceptibilities of six examples of the quadratic Heisenberg antiferro- 
magnet. The experimental data in the high-temperature region 
(T> To ; kTo___S(S+I)IJI) have been fitted to the theoretical (solid) 
curves by choosing the right exchange constants J/k. These curves 
have been calculated from the high-temperature series expansions for 
the susceptibility (H.T.S.). Note the large deviation from the molecular 
field result (MF) for the susceptibility in the paramagnetie region and 
below the transition temperature 0l±). For references to the data, see 
the text. Below To the measured perpendicular susceptibilities of two 
S = { and two S = 1 compounds have been included. The extrapolated 
values to Y=0 may be compared with the X±(0) values predicted by 
spin wave theory (in the limit HA=0), which have been indicated by 
the horizontal lines a and b for N=~ and S = I ,  respectively. The 
differences between X± for compounds with the same S reflect the 
difference in anisotropy. 

dependent quantities AS(e) and e(a) reflect the effects of zero-point spin 
deviations on the effective length of the magnetization vector and on the 
ground-state energy, respectively. Consequently, the fact that  the 
experimental Xa curves agree with the spin-wave predictions at T =  0, 
constitutes experimental evidence for the existence of these zero-point 
deviations, since the parameters e and J/k have been determined inde- 
pendently from other sources. We shall return to this interesting point 
in § 4.2. Alternatively, the above argument may be reversed : knowing 
AS(a) and e(a) one may use the experimental x±(O) value to determine 
the exchange const&nt with the aid of eqn. (3.5). We shall frequently 
do this below, making use of the AS(a) values tabulated by Lines (1970) 
and Colpa et al. (1971). As shown by Breed (1969), the quanti ty e(~) can 

A P .  E 
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be t aken  equal to e(0)= 0.632 (for the quadrat ic  lattice, see Kel le r  1966) 
for  aniso t ropy values ~ < 1O -~. 

The applicabil i ty of spin-wave theory  for T > 0 and finite ~ is i l lustrated 
in fig. 29 (De Jongh  1972 c). Unde r  exper imenta l  conditions the  devia- 
t ions f rom ideal i ty  will cause a t ransi t ion to long-range order,  as discussed 
above,  and  once this has been established the  finite a mo u n t  of an iso t ropy 
t ha t  will always be present  will split up  the susceptibil i ty into a perpen-  
dicular and a parallel par t ,  so t h a t  one obtains the picture  seen in fig. 29. 
Knowing  J/lc and ~, bo th  X± and  X, m a y  be calculated from spin-wave 
theory ,  as has been done by  Breed,  using the  parameters  appropr ia te  to  
K2MnF 4 of which he measured  the  susceptibil i ty.  Renormal iza t ion  
effects (Oguchi's correct ion terms,  Oguchi 1960) were incorpora ted  in the  
calculations. As far  as the limiting low- tempera ture  behaviour  is con- 
cerned the  agreement  is seen to be good, b u t  there  is cer tainly a need for 
a be t te r  theory.  Note  t ha t  the behaviour  of the parallel susceptibi l i ty 
is reminiscent  of t ha t  of the 2-d Ising an t i fe r romagnet  (fig. 4). Also 
in this case T o coincides with the  t empera tu re  a t  which ~X, /~T reaches 

Fig. 29 

O 
0.06 

xlm . Tc ~ 
Nog21L2 B ~ . . . . ~  ,/,MIE 

wov\o 

o ~ K 2 M n  F 4 iS= 5/2) 

o o _ X//1 (BREED) 
• X±./ 

0.02 HA/HE = 3 9 x i 0 - 3  
3/k = -.420 K 

0 [ I I I _ 
O 2 4 6 kT 8 

IllS(S+1) 

The measured parallel and perpendicular susceptibility of K2MnF~, which is an 
example of the quadratic S = ~ Heisenberg antiferromagnet. The value 
of J/lc has been determined by fitting the high-temperature suseepti- 
bility to the series expansion prediction (H.T.S.). The value of the 
anisotropy parameter HA/H E is also indicated. Using these values of 
J/# and Ha/H E, Breed (1969) has calculated the spin-wave prediction 
for X± and X ~l shown in the figure. The measurements were also per- 
formed by Breed. The position of the transition temperature T c 
has been indicated. 
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its maximum, but the derivative remains finite here. The anisotropy 
in the susceptibility is observed to persist in a small region above To, an 
effect that  is commonly met in these 2-d antiferromagnets and is due no 
doubt to the substantial short-range order tha t  is present above T o. 

Thus, simple spin-wave theory, including a small anisotropy term, 
seems to give a reasonable description of the limiting low-temperature 
behaviour of the 2-d antiferromagnetic susceptibility. I t  is interesting 
to note tha t  the general appearance of the perpendicular susceptibility 
is rather similar to that  of the 3-d Heisenberg antiferromagnet, as dis- 
played in fig. 53 below. Also in three dimensions the X± firstly decreases 
with temperature, passing through a minimum as T o is approached. 
The increase in X± near To has been ascribed by Kanamori and Itoh 
(1968) to contributions of excitations of more than one magnons of non- 
zero wave-number, which are not taken into account in less sophisticated 
treatments. This is of importance since for the fully isotropic 2-d case 
simple spin-wave theory predicts a zero X± for any T > 0, in contrast 
with the 3-d analogue where for e = 0 there still is a finite XI, decreasing 
to first order quadratically with temperature (Keffer 1966). The anoma- 
lous behaviour in two dimensions arises from the unlimited decrease in 
the sublattice magnetization through the excitation of magnons dis- 
cussed above, since the term given in eqn. (3.5) enters in the expression 
for x±(T). However, in the case of the X± the anomalous decrease might 
be a result of the approximations made in the simple theory, and could 
possibly be compensated by mechanisms taken into account in more 
sophisticated calculations, such as mentioned above. In  this respect it 
is of importance to note that  for the 1-d Heisenberg antiferromagnet 
spin-wave theory is completely in error, predicting a X± at T =  0 that  
vanishes logarithmically with ~ in the limit e-+0, in contradiction to the 
numerical calculations and the experimental findings discussed in § 3.1. 
Experimentally, the behaviour of the manganese compounds in fig. 28 
indicates tha t  at small e (10-a-10 -4) a change of a factor 10 in ~ hardly 
has an effect upon the temperature dependence of X±, merely shifting the 
value of X±(0) by a small amount. In view of these considerations one 
might postulate a susceptibility behaviour of the ideal model quite similar 
to the experimental curves of fig. 28 (De Jongh 1972 c), bearing in mind 
that  in analogy with the 1-d antiferromagnet the derivative of the ideal X 
versus T curve is expected to remain finite everywhere in view of the 
energy-susceptibility relation discussed in § 1.2. Since a singularity in 
the specific heat will be reflected in O)I/OT, it may be argued that  the 
temperature dependence of the latter must be of a similar smooth, non- 
singular, form as the specific heat in case there is no transition to long- 
range order, as evidenced by the antiferromagnetic chains. This is clearly 
a matter tha t  has yet  to be solved theoretically. Although the effect of 
anisotropy does seem to be small, the experiments cannot exclude, for 
example, a logarithmic decrease of X± with ~, as is the prediction of the 
simple spin-wave theory. 

E2 
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There is an interesting aspect of the influence of the anisotropy on the 
perpendicular susceptibility that  we would like to discuss briefly. As 
seen from eqn. (3.6) Xz(0) is lowered with respect to X± ° by  increasing the 
anisotropy. At first sight this is in contradiction to the result obtained 
by  Fisher (1960 a) for the X±(0) of the 2-d Ising model, which was found to 
be twice as large as Xz °. But  a little reflection shows that this is one of 
the examples of the fundamental differences that  may arise from the 
particular way in which the anisotropy is introduced in the Hamiltonian, 
as has been pointed out in § 2.2. In the above spin-wave theory one 
starts with an isotropic exchange interaction, allowing for the anisotropy 
by  means of an effective anisotropy field Ha,  representing, for example, 
the single-ion or dipolar anisotropy. We may conveniently call this 
model the anisotropic Heisenberg model. On the other hand, in the 
Ising model an anisotropic exchange interaction is considered, leading 
to a lack of antiferromagnetic correlations in the perpendicular direction 
so that  the perpendicular susceptibility above T c is only lowered little 
with respect to the paramagnetic behaviour, as shown in fig. 30. This 
explains the relatively high value of X±(0) in the Ising model. 

We shall have occasion to return to this point, since it turns out  that  
especially the perpendicular susceptibility of the anisotropic examples of 
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A comparison of the perpendicular (Xz) and the parallel (X~) susceptibility of 
the quadratic lsing lattice (Fisher 1963, Sykes and Fisher 1962) with 
N=½. Curve a is the susceptibility of a paramagnetic substance. 
Curbe b is the molecular field prediction for the antiferromagnetic 
susceptibility in the paramagnetic region and for the perpendicular 
part below the transition temperature. Compare also figs. 16 and 17 (a). 
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2-d antiferromagnetism can mostly be better analysed in terms of the 
anisotropic Heisenberg model than that  of the Ising model. This may 
be understood by considering that  in the experimental examples the 
anisotropy originates mainly from crystal-field effects, the superexchange 
mechanism being in most cases quite isotropic. 

Quantitative values for the anisotropy can be obtained by various 
experimental techniques (magnetic torque, magnetic resonance, spin-flop 
experiments), and in fact for most of the compounds compiled below an 
estimate of the anisotropy could be given. In case the anisotropy is of 
orthorhombic symmetry one should distinguish between the different 
crystallographic directions. In a simple model, we shall denote by x, 
y and z the preferred, the next preferred and the hardest direction, 
respectively, and introduce the orthorhombic anisotropy in the 
Hamiltonian in the form of terms KSy 2 and L8~ ~, L > K > 0. For L > K 
the anisotropy becomes of the planar Heisenberg type, there being an 
easy plane in which the moments are nearly free to rotate, whereas for 
K~_L, an Ising-like character is approached by increasing K and L. 
With the anisotropy constants K and L one may associate the anisotropy 
fields HAI=2KS/gt~B and HAII=2LS/g~B. If HAIl>HA 1 one may 
simply take the former for the anisotropy H A. On the other hand, if 
Hx I and HA I1 are of the same order and if one does not want to differen- 
tiate between them it is not so obvious which quanti ty should be taken 
for ' t h e '  anisotropy. In what follows we have occasionally used the 
quanti ty (H AIH AII)ll2= H A. 

Estimates of the interlayer coupling J ' ,  which is the interaction in the 
third dimension, could not be obtained experimentally for most of the 
examples treated below. The exception is the case of ferromagnetic 
layers, coupled by an antiferromagnetic J ' ,  where it can in principle be 
calculated from the antiferromagnetic )/~ in the ordered region, )/± being 
inversely proportional to J '  (see below). For the other structures one 
must therefore take recourse to estimates of J '  by considering the inter- 
layer exchange paths and calculations of the interlayer dipolar coupling. 
Referring to the discussion in § 2.4, this leads, for example, to values 
[J'/J[~lO -6 in the compounds of the K=NiF~ structure and to 
]J'/JI ~ 10-3-10-6 in the series (C~H2,~+INHa)2CuC1 ~ when n is varied from 
1 to 10. I t  should be noted that  these values apply to the ideal crystallo- 
graphic structures and that  for instance in the K2NiF 4 structure the 
value of IJ'/JI will be up to two orders of magnitude larger in the case 
that  lattice defects or distortions of, for example, magnetostrictive origin 
invalidate the symmetry argument that  leads to the decoupling of 
nearest-neighbouring layers. On the whole, one is apt to think that  
lattice imperfections and other defects will set a lower bound to the value 
of IJ'/JI tha t  can possibly be achieved. Whenever one considers a 
IJ'/JI as small as 10 -1°, for example, one should certainly take into 
account the effects of these imperfections, as well as the fact that  the 
lattice is not rigid, due to the presence of phonons. 
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Ill conclusion we want to make a few remarks about the critical be- 
haviour to be anticipated in the experimental examples of 2-d magnetism. 
Here we must again differentiate between the compounds of the ]sing 
and of the Heisenberg type. For a 3-d array of nearly isolated layers with 
a highly anisotropic intralayer exchange (J) one expects to find a 2-d 
Ising-type behaviour, except in a narrow temperature range around T e 
where the small interlayer coupling (J') will come into play. The extent 
of this temperature region will depend on the relative strength of J ' .  
Taking the temperature dependence of the spontaneous magnetization as 
an example one expects to find a 2-d character with a critical exponent 
fi near to the 2-d value ~, except very close to To where fi should change 
to the 3-d value of about ~,1 according to the universMity hypothesis put  
forward by  Griffiths (1970 b) and Kadanoff (1970). This states that  
close enough to To the value of fi should be independent of the ratio 
IJ'/JI, except at the point J '  = 0, where it should change discontinuously 
from the 3-d to the 2-d value (Paul and Stanley 1971 b, Citteur 1973). 
The reason is that  for any finite value of J '  the system is essentially 3-d. 

In the case of the nearly 2-d Heisenberg magnets the situation is 
different because ideally these systems cannot sustain long-range order 
for T > 0. The spontaneous magnetization that  is nevertheless observed 
must therefore be attr ibuted solely to the combined effects of the aniso- 
t ropy and the inter-layer coupling. In § 3.1.1 we have already pointed 
out that  the difference between the magnetic chains and the 3-d Heisenberg 
magnets is that  in the former only the inter-chain coupling J '  can be held 
responsible for the presence of long-range order, whereas in the latter the 
anisotropy H A provides an additional mechanism. Depending on the 
relative strength of H A and J '  the behaviour will be predominantly of the 
2-d ]sing type or 3-d in character, again in accordance with the universality 
hypothesis. Considering again the spontaneous magnetization, one 
expects that  if gt~BHA >~J' (as is quite often the case) the critical behaviour 
will be 2-d Isingqike (fi _~ ~) over a wide temperature range, changing over 
to 3-d (fi ~ ½) when To is approached closely enough. As we will see below 
indications of such a cross-over of a critical exponent have indeed been 
found experimentally. 

We will now proceed to discuss the examples of the 2-d ]sing and planar 
Heisenberg models. In table 5 we have gathered the antiferromagnetic 
and ferromagnetic layer-type compounds that  receive consideration. I t  
can be seen that  these are mostly Co compounds. Subsequently, the 
approximations of the 2-d Heisenberg magnets will be reviewed. 

3.2.2. Survey o~ experimental results 

CoCs3Br~ 

In § 2.2 we have already discussed the anisotropy in the interaction 
between the Co s+ ions in this compound. As to the origin of the 2-d 
character it was mentioned in § 2.4 that  the cancellation of the interaction 
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in the third dimension is in this case thought to be accidental, since no 
crystallographic or other arguments can be brought up. 

J 
mole°K 

i o  

Cma!n 
I 

O.i 
0.2 

Fig. 31 
I 

T/Tc 

I I 

Co Cs 3 Br s 

) 

o© 

1 
1 2 5 10  

Magnetic specific heat of CoCsaBr 5 plotted versus the temperature relative to 
T c. The full curve represents Onsager's exact solution (1944) of the 
heat capacity of the quadratic, S = 1, Ising lattice. (After Wielinga et al. 
1967.) 

The magnetic lattice of the Co e+ ions is quasi simple cubic, the c axis 
of the tetragonM cell being about 10% longer (Figgis et al. 1964). The 
thermal and magnetic properties have been investigated by  Wielinga et al. 

(1967) and Mess et al. (1967), respectively. In fig. 31 the specific heat is 
compared with the theoretical curve of Onsager (1944) for the simple 
quadratic Ising magnet. Although there is a slight disagreement above 
To there is on the whole a striking resemblance. A similarly good 
agreement with theory is found in the case of the field dependence of the 
antiferromagnetie transition point, as plotted in fig. 32. The data were 
obtained by  Mess et al. (1967) from magneto-thermM experiments, while 
the theoretical curve has been computed by  Bienenstock (1966). This 
field-dependent behaviour will be treated in more detail in § 4.5. I t  
should be noted that  the agreement would be still better if the experi- 
mental data could have been corrected for demagnetizing effects, since 
this would lower the points at the lower temperatures by  a few per cent. 

Comparing CoCs3Br 5 with the other compounds it may be concluded 
that  its specific heat is up until now the best example of the Onsager 
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curve. Except for Co(HCO0)2.2H~O the other compounds have transi- 
tion temperatures tha t  are so high tha t  the subtraction of the lattice heat 
capacity becomes a very difficult matter, and for the formate the agree- 
ment with the theoretical curve is less satisfying (Takeda et al. 1971 a). 
Notwithstanding this, the low value of To in the case of CoCssBr 5 will 
have the consequence that  the effect of dipolar interaction cannot be 
neglected. As suggested by Wielinga et al. (]967) this could account for 
the difference of the obtained value To/0=0.64 with the theoretical 
number 0.567, and the other observed discrepancies. Unfortunately, a 
value for J '  cannot be deduced from the existing data. 

Fig. 32 
L J 

1 . O  - 

Co Cs 3 Br 5 

0.5 

HIHc l 
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O T I T  N 0.5 1.O 
I i i  

Antiferromagnetic phase diagram of CoCsaBr 5 as determined from magneto- 
caloric experiments. The full curve has been calculated by Bicnenstoek 
(1966) for the quadratic S= ½ Ising antiferromagnet. (After Mess et al. 
]967.) 

Co(HCOO)2.2H20 and Fe(HCOO)e. 2H20 

Two-dimensional magnetism in the transition metal formate dihydrates 
was first discovered in the manganese member of this series of compounds, 
which will be treated below amongst the Heisenberg compounds. At a 
later date also the Fe n+, Ni 2+ and Co 2+ salts were studied (Hoy et al. 1965, 
Matsuura et al. 1970 a, Pierce and Friedberg 1971, Takeda and Matsukawa 
1971). Of these the cobaltous and ferrous compounds possess strongly 
anisotropic properties as required for the Ising model. 

In magnetic respect the structure of these formates consists of alternat- 
ing A and B sheets of metal ions, those in the B sheets remaining para- 
magnetic down to temperatures much lower than that  at which the spins 
in the A sheets become antiferromagnetically ordered. The 2-d character 
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emanates from the fact tha t  the A sheets are as it  were separated from 
each other by the B sheets. At low enough temperature the spins in the 
B sheets are gradually ordered under the influence of the field exerted on 
them by the spins of the A sheets. Evidence for this subdivision in two 
differently behaving spin systems is provided by various pieces of experi- 
mental evidence and may be understood by considering the distinct 
exchange paths tha t  arise from the difference in environment of the metal 
ions in the A and B sheets. The existing values deduced for the ratio of 
inter to intralayer exchange are 8 x 10 -s for the cobaltous and 3 x 10 -~ 
for the manganese compound, these exchange constants having been 
derived from the heat capacity data. 
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The specific heat of Co(HCOO) 2 . 2H20 as measured by Matsuura et al. (1970 a) 
and Takeda et al. (1971 a). 

For the Co formate three maxima in the specific heat are found (fig. 33) 
(Matsuura et al. 1970 a, Takeda et al. 1971 a). At 5.12 K a sharp peak is 
observed due to the 2-d ordering in the A sheets. At lower temperatures 
the contribution of the ordering within the paramagnetic B sheets is 
reflected in the heat capacity in the form of a broad, Schottky-type, 
anomaly with a maximum at 0.50 K. Below 0.1 K the hyperfine coupling 
between the cobalt spin and its nucleus provides for yet  another maximum. 
This figure illustrates how much information can be obtained from the 
analysis of a specific heat curve. 

The susceptibility (Takeda and Kawasaki 1971) exhibits a large peak 
at  T c and rises again below To as a consequence of the paramagnetic 
contribution of the ]3 sheets. The features of the peak indicate the 
existence of a weak ferromagnetic moment due to a canting of the spins 
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in the A sheets, as was also found in the case of the isomorphous manganese 
salt. A similar anomaly in the susceptibility has been observed for the 
Fe formate (Hoy et al. 1965, Takeda and Kawasaki 1971). 

In the specific heat curve of the Fe formate no sign was found of the 
rounded maximum produced by the B sheets, at least not for T > 1 K. 
The heat capacity decreases exponentially below To = 3-75 K, as expected 
for an Ising compound (Pierce and Friedberg 1971, Takeda and Kawasaki 
1971). Above To there is a very large tail in the specific heat tha t  cannot 
be explained by 2-d short-range-order effects alone. There will probably 
be a contribution of low-lying excited levels and it has also been suggested 
by Pierce and Friedberg that  the apparent absence of the Schottky 
anomaly (although this could still appear at  temperatures much below 
1 K) might be explained by assuming that  the ions in the B sheet already 
lose their entropy above To. This would arise in the following way. 
From entropy considerations and the earlier M0ssbauer results (Hoy and 
Barros 1965), Pierce and Friedberg concluded tha t  most probably the A 
ions have an effective S=½, whereas the B ions have S=2 .  The 
M6ssbaucr experiments of Shinohara et al. (1972) confirm these assign- 
ments of spins and indicate tha t  the zero-field splitting of the B ion 
leaves a singlet ground state, sufficiently separated from the remaining 
components of the S =  2 manifold, so that  the B spins do not order 
spontaneously at any temperature. This implies that  JaB is rather 
small in this compound, as in the other isomorphs. The anomalously 
large specific heat above T c is therefore the result of short-range-order 
effects within the A sheets, combined with a Schottky-type heat capacity 
due to the B sheets. 

In view of the uncertainties that  still remain we have refrained from 
entering this compound in the table. 

Rb2CoF ~ and K2CoF 4 

The anisotropy in these salts, which have the K2NiF a structure, has 
already been discussed in § 2.2. The values for H A / H  E listed in table 5 
stand in this case for the quanti ty 1-b /a ,  where b and a have been 
defined in eqn. (1.1). 

After a preliminary experiment by Srivastava (1963) on K2CoF 4 the 
susceptibilities of these compounds have been investigated in extenso by 
Breed et al. (1969), and have been reproduced in fig. 34 (a). Apparently 
there is a large Van Vleck contribution, due to the presence of the higher 
energy levels, as may be inferred from the fact that  the parallel suscepti- 
bilities reach finite values at T = 0 .  The large uniaxial anisotropy 
favouring the c axis is clearly seen in the behaviour of the susceptibility 
measured perpendicular to this direction. The result for K2CoF 4, after 
subtraction of the Van Vleck contribution, is compared with the calcula- 
tions of Sykes and Fisher (1962) in fig. 34 (b). For this purpose we have 
assumed the Van Vleck term (determined from X, (0)) to be temperature 
independent, which is certainly not justified since the distance from the 
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lowest-lying doublet to the next  excited level has been calculated by 
Folen et al. (1968) to be about 400 K. As an additional complication 
To (=  107 K) and J /k  (= - 97 K) are of this order of magnitude, which 
makes a more sophisticated correction for the Van Vleck contribution 
unfeasible. For  these reasons it is easily understood why the data in the 
high-temperature region deviate from the theoretical curve. Notwith- 
standing this it may be seen that  a reasonable agreement is obtained at 
lower temperatures, using the J / k  and g values derived by Breed et al. 
(1969). I t  is worth mentioning here tha t  the theoretical prediction tha t  
T c should coincide with the temperature at which the derivative of the 
X, versus T curve reaches infinity (under experimental conditions : its 
maximum value), could also be verified by these authors, since they were 
able to locate T c independently from fluorine N.M.R. experiments 
similar to those described by Maarschall et al. (1969) for K2NiF 4. I t  
can be seen from fig. 34 (a) tha t  at T c the perpendicular susceptibilities 
have a maximum temperature derivative too. In  fact the X± can also 
be fi t ted to the theoretical curve up to T ~ 1.1 To by using the appropriate 
g value, but in order to accomplish this the Van Vleck contribution in the 
perpendicular direction has to be taken to be about two-thirds of its value 
parallel to the c axis. In view of this uncertainty we have refrained from 
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Fig. 34 (continued) 
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(a) Magnetic susceptibilities of K2CoF 4 and BB2CoF 4 (Breed et al., 1969), 
which are approximants of the quadratic S = ½, Ising antiferromagnet. 
The positions of To have been indicated by the arrows. The large 
uniaxial anisotropy favouring the c axis can be inferred from the be- 
haviour of the susceptibility measured perpendicular to this direction. 
The large Van Vleck contribution to the susceptibility is seen for instance 
from the fact that  the parallel susceptibilities do not decay to zero as 
ToO.  (After Breed et al., 1969.) (b) The susceptibility of K~CoF 4 
compared with the theoretical prediction of Sykes and Fisher (1962) 
for the quadratic, 8=-~,1 Ising antiferromagnet. In order to correct 
for the Van Vleek contribution the value of the parallel susceptibility 
extrapolated to T = 0 has been subtracted from the data. 

producing the  resul t  for X± here, all the  more since one m a y  seriously 
doub t  the  applicabi l i ty  of the Ising model  for  the  perpendicular  suscepti- 
bi l i ty of exper imenta l  examples,  as out l ined in § 3.2.1. 

These compounds  are also cur ren t ly  being studied by  Samuelsen with 
neu t ron  diffraction. As pre l iminary values for the  spontaneous magnetiza-  
t ion paramete rs  we quote  for  e.g. RbeCoF4: f i = 0 . 1 1 9 ± 0 . 0 0 8  and 
B _  1.16 _+ 0.03, in the  range 5 x 10 -4 < 1 - T / T  c < ] x 10 -1 (E. J .  Samuclsen 
1973 and pr iva te  communicat ion) .  These numbers  are within the  
exper imenta l  uncertaint ies  equal  to the  theoret ical  predict ions for the 
S =½ quadra t ic  Ising lattice, ]3 = 0.125 and B = 1.24 (for 1 - T/Tc  < 2 x 10-2). 

B a F e F  4 

This compound  belongs to the  BaMF 4 group of fluorides (M = divalent  
t ransi t ion ion). Other  members  of this series (M = Co, Mn and Ni) will 
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be encountered below. The orthorhombie crystM structure consists of 
puckered sheets of 3/IF s octahedra, separated by a layer of nonmagnetic 
Ba ~+ ions (Keve et al. 1969). The 2-d lattice is thus a puckered, quasi 
quadratic network. One does not expect the rumpling of the lattice to 
have substantial influence on the 2-d properties. We note tha t  also in 
this structure the interaction between neighbouring layers is cancelled 
because of symmetry. Since the structure is rather complicated, it is 
difficult to estimate the interlayer coupling. However, one may expect 
it to be of the same order of magnitude as in the K2NiF4-type compounds, 
so we have likewise listed the value IJ ' /Jl  -~ l0 -6 in table 5. 

Magnetic measurements have been performed by Eibschfitz et al. (1970). 
As in the case of Rb~FeF4, the data are consistent with an effective spin 
S = 2. This may be brought about by a crystal field of low symmetry, 
tha t  quenches the orbital angular momentum, leaving a ground state tha t  
possesses only the five-fold spin degeneracy. These levels will be split 
up even in the absence of a field by the spin-orbit coupling. If the 
exchange energy is sufficiently large as compared with the splitting of 
this manifold, one may expect a spin H~miltonian to be applicable with 
effective S =  2 and considerable single-ion anisotropy. The difference 
with Rb2FeF ~ is that  in BaFeF 4 the moments are parallel to the e axis, 
while in the former they are oriented within the magnetic layer. 

From the temperature T(XIimax) at which the m~ximum in X~L occurs 
we obtain J / / c = -  6.4 K, using the results for the Heisenberg model of 
table 4, there being no theoretical prediction available for the Ising 
model with S =  2. On the other hand, if we assume the percentage 
decrease in T(X,~x) in going from S=½ to S =  2 for the Ising model to 
be the same as for the Heisenberg case, this would result in /cT(Xm~x) / 
IJIS(S+I)  ~1-90 for the Ising model with S = 2 .  Using this value, 
the experimentally observed maximum yields J//c= - 7 . 0  K. With the 
molecular field result X±(0)= Ng~l~B~/4z IJI for the perpendicular suscepti- 
bility of the Heisenberg model at T = 0 ,  the value J / / c=-5 .7  K is 
obtained with g = 2-1, as derived from the vMue of the magnetic moment. 
Correcting this for the anisotropy, estimated below, gives J//c = -6 .3  K. 
If the Ising prediction for X±(0) is used, J//c = - 11.4 K results. We note 
tha t  taking IJ//cl > 7 K gives Tc/O < 0.48, which seems to be unreasonable 
since the quanti ty To/O will be increasing with spin value (the differences 
with molecular field theory become less if the spin value is increased) 
and because for S = ½ and S = 1 the theoretical Ising values are 0.57 and 
0.63, respectively (Fisher 1967, Guttmann et al. 1970). Therefore the 
exchange constant J//c ~- -6 .4  K, obtained by applying the anisotropic 
Heisenberg model, seems to be a better estimate. Clearly we have here 
an example of an anisotropic compound tha t  approximates the aniso- 
tropic Heisenberg model rather than the Ising model. Although in 
many of its properties the difference will not be obvious, e.g. g H, especially 
in the perpendicular susceptibility the inapplicability of the latter model 
is exposed. 
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The anisotropy estimate has been obtained by comparing the different 
values of the two perpendicular susceptibilities and by comparing the 
X, with spin-wave theory. We estimate HA/Hn~_0.2, where H~t= 
(HAIHAII) 112. Since the anisotropies HAI and HA n differ by a factor of 
about 5 we have listed the compound as being intermediate between the 
Ising and the planar Heisenberg model. Note that  the maxima in the 
two different perpendicular susceptibilities occur at different tempera- 
tures. Lastly, we mention that  the temperature dependence of the 
sublattiee magnetization has been derived from a Mt)ssbauer study by 
Eibschfitz et al. (1970). The best fit of the data to the power law 

Ms(T)/Ms(O ) = B(1 - T/Te)Z (3.7) 

was obtained with B = 1.18 and fi = 0.17 in the relative temperature range 
0.80<.T/T¢<.O.985. These values compare rather favourably with 
B=1.22 and fi=~=0.125 as predicted for the quadratic S=½ Ising 
lattice (Fisher 1967) and are certainly quite different from the 3-d S =  ½ 
Ising values, which are B _  1-52 and fi= 0.312 (Fisher 1967). One does 
not expect the critical exponent to be different for S = 2. In any case 
Guttmann et al. (1970) found identical f? values for S = I  as for S=½. 
The value of B, however, decreases slightly for increasing S. The data 
obtained have been reproduced in fig. 48, and will be discussed at the end 
of this section, together with those obtained on other compounds. 

Rb2FeF 4 

The sublattice magnetization of this member of the K2NiF a family has 
been measured by Birgeneau et al. (1970 b), using neutron diffraction 
techniques. In the range 0.7 < T/Tc< 0-98, about the same result was 
obtained as in BaFeF 4 (fl ~ 0-2). Closer to the transition point, however, 
the exponent fl was found to increase suddenly which, according to the 
arguments presented in § 3.2.1, can be explained by assuming that  for 
T/To > 0-98 the phase transition has become 3-d in character. Although 
the symmetry in I~b2FeF 4 is indeed slightly distorted below T o by magneto- 
striction (Wertheim et al. 1968), it is not clear how this may destroy the 
symmetry argument for the cancellation of the interactions between 
nearest neighbouring layers. For instance, the argument would not be 
invalidated if the symmetry would be lowered from tetragonal to ortho- 
rhombic, as is very likely. The apparent changeover in fi might also be 
explained by the observed spread in the transition temperature of about 
2 K (Wertheim et al. 1968, Birgeneau et al. 1970 b). 

As mentioned above, the spins lie in the basal plane. This was already 
concluded from the susceptibility measurements (Wertheim et al. 1968), 
which could be explained by assuming a domain structure in which the 
spins belonging to different domains are in two mutually perpendicular 
directions in this plane. Concerning the anisotropy value we can only 
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make a guess, since there is as yet  no experimental information available 
to this end. Comparing the susceptibility curves with those of BaFeF~ 
one may infer that  the anisotropy is somewhat smaller, so that  the value 
H~,/HE~_O.1 seems to be as reasonable an estimate as can be made. 
One may, however, draw the conclusion from the X behaviour that  the 
anisotropy within the layer is much smaller than the out-of-plane aniso- 
tropy, which makes this compound also intermediate between the Ising 
and the planar Heisenberg model, the latter being probably the most 
appropriate. 

CoCI~ and FeC12 

For more than 50 years the peculiar properties of FeC12 and CoC12 
have drawn the attention of experimental and theoretical physicists (for 
a review of the earlier data see Wilkinson et al. 1959). I t  gradually 
became clear (Landau 1933) that  they could be explained by assuming the 
magnetic structure to consist of ferromagnetic layers, with an intralayer 
exchange J ,  coupled by a much weaker antiferromagnetic interaction J ' .  
Since J > [J'l, these systems will have positive Curie-Weiss temperatures, 
whereas at low temperatures and in low fields they will behave as anti- 
ferromagnets. Because of the small value of the antiferromagnetic 
coupling the magnetization already reaches near-saturation values in 
moderate fields (gtxsH~-2z']J'lS), the crystals becoming essentially 
ferromagnetic. More about the field-dependent behaviour will be said 
in §¢.5. 

The crystal structure of these compounds (and also of NiCle) is of the 
CdC12 type, with hexagonal layers of metal ions, separated by two 
hexagonal layers of chlorine anions. They are different in that  in FeCl= 
the (strong) anisotropy is uniaxial, favouring the hexagonal c axis and 
thus making the compound of the Ising type, whereas in CoCI~ there is a 
strong anisotropy constraining the moments within the layer, the in- 
plane anisotropy being very small, so that  it qualifies for the planar 
Heisenberg model. 

The fact that  an effective S =  1 may  be assigned to the Fe 2+ ion in 
FeC12 has been discussed by  Ono et al. (1964), and Birgeneau et al. (1972 b). 
With reference to the discussion of BaFeF 4 we note that  this can be ex- 
pected if the departure from cubic symmetry of the crystal field is small, 
leaving an orbital triplet lying lowest. Spin-orbit  coupling will split up 
this manifold in three levels, having of = 1, 2 and 3. Provided the effects 
of non-cubic components of the crystal field are small, the lowest of = 1 
level may be treated with an effective spin S = 1 in the Hamiltonian. 
The second proviso for this, namely, that  the spacing of the of = 1 and 
the next level (of = 2) is large as compared to the transition temperature 
is reasonably well met, since the distance is about 5To in FeC12. An 
evaluation of the exchange constants has been accomplished by  Birgeneau 
et al. (1972 b). From a fit to spin-wave theory of the dispersion curve of 
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the ferromagnetic (planar) spin waves, as measured with neutron diffrac- 
tion, they obtained the exchange between nearest and next-nearest 
neighbours within the plane as well as the anisotropy, finding + 3.9 K, 
- 0 - 5 2 K  and D = - 1 7 K ,  respectively, within the effective S = 1  
formalism. The antiferromagnetic coupling between the layers may 
be determined from the metamagnetic transition field H~ as measured 
by Jacobs and Lawrence (1967). Using 2zlJ'lS=glzBH~ and Ho= 
1.1 × 104 Oe, g=4.1, we obtain J ' /k= -0 .25 K. 

Another value may be obtained from the susceptibility measurements 
of Bizette et al. (1965 a, b). The parallel susceptibility shows the sharp 
peak characteristic for this type of antiferromagnetic arrays, reaching 
Xm = 0"89 cm3/mole at T~. Taking, as in the molecular field approxima- 
tion, this value to be equal to the (isotropic) perpendicular susceptibility 
at T = 0, we calculate, using X±(0) = Ng~tzB2/4z ]g'], g'/k = - 0.29 K. I t  is 
not clear whether the authors corrected the susceptibility for demagnetiz- 
ing effects. If not, the corrected X±(0) would be a few per cent higher, 
improving the agreement between the two J'/k values. We have therefore 
taken J'/k = -0 .25 K. For the effective intraplanar exchange we have 
taken the sum of nearest and next-nearest neighbour interactions per 
nearest neighbour, assuming these to be additive as in molecular field 
calculations. 

The critical behaviour was found to be 3-d in character (Yelon and 
Birgeneau 1972), which may be understood from the relatively large value 
of the inter-layer coupling. In fact the sublattiee magnetization and the 
susceptibility, as determined by neutron diffraction, show properties 
appropriate to the 3-d Ising antiferromagnet with fi= 0.29 and B =  1.47 
(eqn. (3.6)). We will return to this matter at the end of this section and 
now proceed to discuss CoC12. 

From the value of the spin-flop field HSF_ 2 kOe (Wilkinson et al. 
1959), and the field needed to saturate the sample, H~ _ 33 kOe (Jacobs 
et al. 1968), one obtains (with HsF2-= 2HnHA I and Ho = 2H E - H A  l) for the 
antiferromagnetic interlayer coupling J '  and the in-plane anisotropy HA I 
the values J'/k = - 1.08 K and HA 1 --~ l0 ~ Oe. From the parallel suscepti- 
bility at To (Bizette et al. 1956), X_~0.4 cm3/mole, it follows that  J'/k ~_ 
- 1.4 K. Here we have used g = 6.0, as obtained by Jacobs et al. (1968). 
The intralayer exchange cannot be derived from the existing data. 
From the work of Lines (1964), who obtained an approximate relationship 
between [g'/JI and To, one may estimate ]J'/gl _~0-1, giving J/k~_lO K 
and Tc/O ~_ 0.8, which does seem reasonable. The out-of-plane anisotropy 
was estimated to be of the same order as J .  

The transition temperature T~= 24.71 K was derived from the heat 
capacity measurements of Chisholm and Stout (1962), who devised an 
ingenious way to separate the lattice contribution. For the ideal 2-d 
planar Heisenberg model one expects a broad maximum in C m as in 
the case of the 2-d Heisenberg model, since both cannot sustain long-range 
order. No sign of such a maximum is found in the specific heat, which 
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only shows the sharp anomaly due to the onset of long-range order, 
although there is an appreciably large high-temperature tail. 

Apart  from the fairly large interlayer interaction J'/k, we may also 
consider the small anisotropy HA I within the layer (about 10 -a of J/k) 
as a possible mechanism for establishing the long-range order. The out- 
of-plane anisotropy HA II most probably does not come into play, since 
this brings about the planar IIeisenberg character and therefore does not 
help in bringing about a transition. According to whether [J' I >> gt*BHA I, 
or conversely, one expects to find a 3-d or a 2-d Ising character. Since 
in the present case I J ' [_  ~ 0.1J, we are apt to interpret the heat capacity 
as being of a 3-d nature, albeit with enhanced short-range-order contribu- 
tions. This view is supported by the fact that  in examples of the 2-d 
Heisenberg model to be treated below, which have anisotropies also of 
the order of l0 -a J/k  but J' /k  values of about 10 -5 of J/k,  the transition 
to long-range order is indeed only reflected in the heat capacity as a small 
spike, sitting on the flank of the broad maximum. Notwithstanding 
this, we shall see below that  minute amounts of anisotropy can put a 
considerable amount of Ising character into the system. 

CoC12 . 6H~O and CoBr 2 . 6H20 
The crystal structure (Mizuno 1960, 1961) of these compounds (and 

also of NiCl~ . 6H20 ) is monoclinic (space group C2/m). In the case of 
the Ni salt the moments are perpendicular to the c axis, whereas for the 
Co compounds they are parallel to it. The behaviour of the Ni salt is 
definitely 3-d, as can be concluded from the susceptibility behaviour 
(Haseda et al. 1959). Conversely, the susceptibility of CoC12 . 6H~O 
shown in fig. 35 (a) (Haseda 1960) exhibits 2-d characteristics, the broad 
maximum occurring at 3.3K, while the transition temperature, as 
determined from heat capacity experiments, equals T c = 2-29 K (Robinson 
and Friedberg 1960, Skalyo and Friedberg 1964). Hence, this compound 
is one of the first 2-d antiferromagnets on which experiments were per- 
formed. Robinson and Friedberg (1960) were certainly very near to the 
t ruth  when they remarked that  the amount of entropy gained above T o 
obtained by them (52% of the total AS) was comparable with the theo- 
retical result for the quadratic Ising model (56°) .  

The maximum in the temperature derivative of the )/~ coincides with 
T c as can be seen in fig. 35 (b) taken from Skalyo et al. (1967). In this 
paper an extensive experimental verification of Fisher's relation between 
the energy and the parallel susceptibility, as outlined in § 1.2, may be 
found. Since the interaction in CoCI~. 6H~O is of the planar Heisenberg 
type, this illustrates the general validity of this relation. 

The difference of the planar Heisenberg antiferromagnct from the 
Ising antiferromagnet (cf. fig. 34 (a)) is apparent, since in the latter the 
susceptibilities in the ,perpendicular directions are very nearly equal, 
whereas for the present compound (fig. 35 (a)) the X± measured within 
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Fig. 35 
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(a) Susceptibility of CoC12 . 6H~O, which may  serve as an example of a 2-d 
planar Heisenberg antiferromagnet. The planar anisotropy clearly 
follows from the fact tha t  above the maximum, the perpendicular sus- 
ceptibility as measured within the easy plane nearly coincides with the 
parallel susceptibility, whereas the perpendicular susceptibility in the 
direction out of the easy plane is much lower. (After Haseda 1960.) 
(b) The parallel susceptibility of CoCt 2 . 6HuO in the region around 
Tc=2.29  K, showing tha t  the maximum in dx/dT indeed very nearly 
coincides with the transition temperature which was determined from 
the heat capacity. The temperature at  which X, reaches its maximum 
is T- -3 .3  K. (After Skalyo et al. 1967.) 
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the easy plane is for T > Tma x, not much different from )/,,, in contrast 
with the susceptibility perpendicular to this plane, which is lowered 
substantially as a consequence of the planar anisotropy. 

As in CoC12, the form of the specific heat curve does not resemble a 
system that  ideally would have no transition to long-range order. In 
fact CoC12 . 6H~0 has been mentioned as an example of the 2-d Ising 
model. For IT -To l /To< 0.05, Skalyo and Friedberg (1964) found that  
the specific heat behaved as C/R=-O.2711n I T - T o i + A ,  with 
A = - 0.015 for T > T c and A = 0.559 for T < T o. Wielinga et al. (1967) 
have observed that  for ] T -  T o]/To < 0.1 the exact Onsager solution for 
the quadratic Ising lattice agrees within a few per cent with 

C/R=-0-49 In IT- Tol-0-29 

for T < T o as well as T > T o. One may conclude therefore that  although 
the qualitative behaviour is similar to that  of the 2-d Ising model, in 
quantitative respect there is a rather poor agreement. I t  should also 
be noted tha t  the measured heat capacity shows considerable rounding 
for I T -  To]/Tc< 10-3-10 -2. 

Numerical results for the intralayer interaction can be obtained from 
th~ specific heat and the susceptibility data. In both cases z= 4 has 
been assumed. From the total energy involved in the magnetic ordering 
Robinson and Friedberg (1960) derived Jilt= -2.45 K. 

In principle one could also determine Jilt from the X maximum by 
fitting to the high-temperature susceptibility. Unfortunately, although 
Betts et al. (1971) have calculated the susceptibility for the ferromagnetic 
2-d XY lattice, there is no comparable series for the antiferromagnetic 
quadratic XY lattice as yet. 

On the other hand, the magnetic phase diagram has been mapped 
completely by Metselaar and De Klerk (1973 a), extending the earlier 
work of Van der Lugt and Poulis (1960), Schmidt and Friedberg (1967) 
and McElearny et al. (1969). The results for the spin-flop field are 
in fair agreement, yielding an extrapolated value at T = 0  of HsF(0)-~ 
6-5× 103 Oe. The saturation field at T = 0  has been determined as 
Ho(0) = 4.6 × 104 Oe (Metselaar and De Klerk 1973 a). Using the formulae 

2HEH• I -(HAI) ~ = HsF 2 

and 2HE-H~I=Ho,  one obtains HE----2"25× 104 Oe and H A I = 9 2 0 0 e  
(in-plane anisotropy). With z=4 this yields J/]c=-  1.9 K. A larger 
value is calculated from the perpendicular susceptibility. Taking 
x±(O)=O.25cm3/mole (Metselaar and De Klerk 1973a, Flippen and 
Friedberg 1960, Haseda 1960) one obtains with x±(O)=Nog~l~s2/4z[JI 
the value J / k = - 2 - 3  K, after correcting for an estimated Van Vleck 

contribution of 0.01 cm3/mole and adopting g= 4.9 (l~ryu and Friedberg 
1965). In our opinion the seeming agreement with the result from the 
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heat capacity is fortuitous. Instead we take the value J/k = -1.9 K, 
obtained from He, to be most reliable in view of the uncertainties involved 
in the J/k determination from the specific heat. The larger value follow- 
ing from X±(0) is ascribed to the effect of zero-point spin deviations, that 
will also exist in planar antiferromagnets (see, e.g., Semura and Huber 
1971) and will lower the X±(0). In the present case the experiment sug- 
gests a reduction of about 20% for the S = 1 planar Heisenberg quadratic 
antiferromagnet. This may be compared to the X±(0) reduction of 
about 55% predicted for the S = ½ I-[eisenberg quadratic antiferromagnet. 

Since the anisotropy is for most part due to the g tensor, one may obtain 
a rough estimate of the out-of-plane anisotropy by putting 

a= 1 - J  x / J  ~E ~- 1 - (g ±/g H )2 ,,, 0.7 

(note that  the measured in-plane anisotropy of about 0.04 correlates 
well with 1 - (g~)/gc) 2 ~ 0-04). A value for the interlayer coupling cannot 
be obtained from the existing experimental data. 

Of the many investigations performed on this compound we mention 
further the resonance work of Date (1961) as well as the neutron investiga- 
tion of the magnetic structure by Kleinberg (1970). As concerns the 
sublattice magnetization, we have analysed the results obtained by Van 
der Lugt and Poulis (1960) with an N.M.R. technique. For ( T c - T ) /  
Te < 0.4 we find a critical index fi ~ 0.18, implying a fairly low value for 
IJ ' /J  I indeed (see the discussion in § 3.2.3). Unfortunately their results 
did not extend nearer to To than (T c -  T ) / T o =  0-04. 

As in the case of CoC12, we may ask the question whether it is the in- 
plane anisotropy HA I of the interlayer interaction J ' / k  that  is most 
important for establishing the long-range order in CoC12 . 6H20. From 
the low value of fi, which is nearer to the 2-d Ising value ~ than to the 
3-d result ½, one would conclude tha t  I J ' l ~ g t % H A  I it1 this salt, which is 
not unreasonable in view of the rather large HA I value (one order of 
magnitude larger than in CoC12). A more elaborate study of the sub- 
lattice magnetization would be very welcome to substantiate this, es- 
pecially closer to T c, where one would expect to observe a changeover 
from 2-d Ising to 3-d behaviour. In this picture the critical behaviour 
of the specific heat for I T - T o I / T o < O . 0 5 ,  mentioned above, can be 
understood as being due to a mixture of the effects of the in-plane aniso- 
tropy and the interlayer coupling. 

A specific heat measurement on the isomorphous bromine compound 
has been performed by Forstat  et al. (1959), who found T~_~ 3.07 K and 
obtained 38% for the amount of entropy gained above To, considerably 
less than in the chlorine compound. The magnetic structures of the two 
salts were found to be most probably identical by Spenee et al. (1964). 

We may use the g values obtained by Murray and Wessel (1968) to 
estimate the intralayer exchange constant from the susceptibility 
measurements of Garber (1960), which also indicate T c_ 3.1 K (see also 
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Metselaar and De Klerk 1973b). With X±(0)~0-19cma/mole and 
g~_5-1, we calculate in the same way as for the bromide J / k  ~ _ - 3 . 4  K. 
The phase diagram has been studied by McElearney et al. (1969) and by 
Metselaar and De Klerk (1973 b), yielding an extrapolated value of 
7.5 × 103 0e for HSF(0 ), and He(0 ) = 5.4 × 10 a Oe. Accordingly one calcu- 
lates H E ~ 2.7 × 104 Oe, J/lc = 2.3 K and HA I = 1.0 × 103 Oe. Comparing 
the J/lc values, one again observes an apparent reduction of about 30% 
of the X±(0), that  is most probably due to zero-point motions. 

From the specific heat and the susceptibility results one may conclude 
tha t  the 2-d character is less pronounced in the bromine as in the chlorine 
compound (compare also the Te/O values). I t  is further remarked that  
in these structures the cancellation of the interaction in one direction 
must be accidental, in view of the 3-d behaviour of the isomorphous 
nickel compound. Although in crystallographic respect the crystals do 
have a layered structure, with perfect cleavage along the (001) plane 
(Mizuno 1960, 1961), using this as an argument would be fallacious since 
it would also apply to the Ni 2+ compound. 

BaCoF 4 

This orthorhombic compound has the same structure as BaFeF 4 (see 
above) and has been investigated by Eibschiitz et al. (1972 b), who per- 
formed susceptibility and neutron diffraction measurements. Although 
the anisotropy is of orthorhombic symmetry, it is not so good an example 
of the planar model, since the anisotropy within the easy plane is relatively 
larger than in CoC12 . 6H~0, as can be seen from the behaviour of the 
susceptibility. I t  is therefore intermediate between the planar and the 
Ising model. 

In order to obtain the exchange we only have the susceptibility avail- 
able and again we must take recourse to the relation X±(0) = Nog31~B~/4z [Jl" 
However, in the present case, also the X±(0) within the easy plane is 
considerably lowered as a consequence of the anisotropy. An estimate 
of J/lc can therefore only be obtained in the following way. From 
inspection of fig. 35 (a) it can be inferred tha t  most probably the X±(0) 
of the planar model is for S = ½ about the same as the value attained at 
the rounded maximum. Substituting the latter, after subtraction of the 
Van Vleck contribution, in the MF relation for X±(0) and allowing for a 
probable reduction of about 20% due to the effects of zero-point spin 
deviation, as found in CoC12.6H20, we obtain for the exchange J / k  ~- 1 O0 K .  
Here the g value was taken to be about 6.8, as following from the neutron 
diffraction work. Evidently, this result is only a crude estimate. Note, 
however, tha t  the J / k  value so derived is of the same order as those 
obtained for the other two cobalt fluorine compounds in table 5. 

The in-plane anisotropy following from the apparent reduction of the 
Xl(0) in the ' easy '  plane gives ~ _~ 0.4. I t  is thus of the same order as 
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the out-of-plane anisotropy, which amounts to e_~0.8, as may be in- 
ferred from the susceptibility and from the g anisotropy, which in view 
of the value of g ~ may be anticipated to be about  the same as in the other 
cobalt-fluorine complexes. 

Having surveyed the strongly anisotropie 2-d magnets, we now proceed 
to the examples of the 2-d Heisenberg antiferromagnet, which have been 
compiled in table 6. I t  can be seen that  numerous approximations have 
already been discovered, many of which have the K2NiF 4 structure 
described in § 2.¢. We have mentioned above that in the case of 2-d 
antiferromagnets it is all but  impossible to obtain quantitative informa- 
tion about  the interlayer coupling J ' .  This mainly arises from the fact 
that  J '  is usually so small as compared to J that  its effect on the thermo- 
dynamic properties cannot be measured quantitatively. Only in 
Mn(HCOO)e. 2geO could an experimental value for J '  be deduced (from 
heat capacity measurements). For the compounds with the K2NiF 4 and 
the BaNiF 4 structure we have put  ]J'/JI =10-6, which is the earlier 
mentioned estimate, obtained by  considering that the next-nearest 
neighbouring layers are decoupled because of the crystal symmetry. 
However, deviations from the ideal crystal structure (distortions, lattice 
defects, phonon effects) may (partly) invalidate the argument leading to 
the cancellation of the coupling between nearest neighbouring planes. 
In that  case the ratio IJ'/JI can be up to two orders of magnitude larger, 
as follows by  considering, for example, the dipolar interlayer coupling. 

D P A N  

This four-letter word stands for the aromatic free radical (HaCOC6H4)2 
l~lO (di-p-anisylnitrosyl). In this compound, studied by Dully et al. 
(1969), the magnetic moments are situated at the sites of the nitrogen 
atoms, which have an unpaired electron. The crystal symmetry is 
orthorhombic (space group Aba2) and the nitrogen radicals form layers 
perpendicular to the b axis, the nearest-interplane-neighbour distance 
being about  three times larger than the nearest-neighbour distance within 
the plane. As mentioned in § 2.2, free radical solids can be considered 
to approximate the Heisenberg S = ½ model. 

The value of the exchange constant was deduced by Dully et al. from 
various experimental data. The compounds DPAN and CuF a . 2H20 
constitute the few examples of the 2-d Heisenberg antiferromagnet that  
have transition temperatures low enough to enable a more or less reliable 
separation of the magnetic specific heat from the lattice contribution. 
The specific heat reported by Duffy et al: is indeed a smooth, non-anomalous 
curve, as expected for the isotropic 2-d lattice which ideally cannot sustain 
long-range order. At the transition temperature, To=2-7 K, as deter- 
mined from the discontinuity in ~)I/~T, there is only a very slight indica- 
tion of a heat capacity spike due to interplanar coupling and anisotropy 
effects. However, a comparison with the results obtained for CuF 2 . 2H20 
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and for the ferromagnetic 2-d Cu salt, shows that  the near non-existence 
of the spike in DPAN does not point to a very small J '  and anisotropy, 
but  is probably due to a limited experimental resolution or to sample 
imperfections. In these other examples the contribution of the deviations 
from the ideal model to the heat capacity is clearly resolved from the 
rounded maximum, whereas from inspection of the To/O and To/T(Cm~x) 
values (T(Cmax) denotes the temperature of the broad maximum) it 
follows that  these deviations from ideality must be considerably larger 
in DPAN. 

Comparing the specific heat at low temperatures with Kubo's  (1952) 
spin-wave prediction (Cin ~ T2), we found no correlation with theory. 
The experimental specific heat lies above Kubo's  curve instead of below, 
as would be expected (see CuF 2 . 2H~O). The apparent fit reported by 
Dully et al. is erroneous and is due to a misinterpretation of the theoretical 
coefficient of the quadratic spin-wave term in the specific heat, as calcu- 
lated by  Kubo. In conclusion one may state that  DPAN unfortunately 
turns out  to be a rather poor example of 2-d antiferromagnetism. 

CuF 2 . 2H~O 
I t  is a pity that  this interesting compound has nearly escaped the 

attention of experimenters, since, with its low spin value, it constitutes 
an interesting object of inquiry. 

As far back as 1961, Shulman and Wyluda observed that the To 
deduced from their fluorine resonance experiments (10-92 K) did not at 
all correlate with the maximum in the (powder) susceptibility that  was 
found by  Bozorth and Nielsen (1958) to be 26 K. The susceptibility 
measurements on a single crystal by  Tazawa et al. (1965) confirmed these 
findings. I t  seems therefore that  CuF 2 . 2H20 is the earliest investigated 
quasi 2-d isotropic antiferromagnet. We have used both susceptibility 
measurements in constructing the curve shown in fig. 28. 

Although similar in chemical formula to CuC12 . 2H20, the fluorine 
compound has a monoclinic crystal structure, whereas CuCl~. 2H~O is 
orthorhombic. Accordingly, the two compounds are quite different in 
magnetic respect, which is immediately obvious from a comparison of the 
specific heats as measured by Clay and Staveley (1966). For a discussion 
of the magnetic structures see, e.g., Nagai (1963). CuC12 . 2H20 consists 
of ferromagnetic layers coupled by  an antiferromagnetic interaction 
along the c axis (Shirane et al. 1965, Poulis and I tardeman 1952), the 
latter being probably a bit larger than the ferromagnetic exchange within 
the layer, the reby  forming antiferromagnetic chains along the e axis. 
This results in a slight enhancement of the short-range-order effects in 
this otherwise 3-d crystal. On the other hand, the structure of 
CuF~. 2H20 (Geller and Bond 1958, Abrahams and Prince 1962) may be 
regarded as consisting of antiferromagnetic layers of CuF202 groups, 
parallel to the (101) plane, the (superexchange) connection between the 
planes being made by long Cu-F bonds. There might have been a direct 



90 L. J. de Jongh and A. R. Miedema on 

exchange along the c axis between Cu ions of neighbouring planes, but the 
large Cu-Cu distance of 3.244 A (in Cu metal 2.55 A) and the fact that  
along this axis the spins are parallel ordered implies that  this interaction 
must be very small, since a direct exchange would favour an antiferro- 
magnetic orientation. 

From the fit of the high-temperature susceptibility (fig. 28) we obtain 
J / k =  - 13 K, after correcting for the diamagnetic contribution, estimated 
as 0-6 x 10 -4 from the known susceptibilities of H20, CaF 2 and ZnF 2. 
Using this J / k  value we may derive the anisotropy from the AFMR 
frequency at T =  0 in zero field, measured by Peter and Moriya (1962). 
With the aid of the well-known formula hv = gf fB(2HEHA + HA2) 1/2 (H  = 0), 
it follows from v=9.6x1010Hz tha t  H A_1300Oe (~=3.7x10-8).  
These authors found the anisotropy to be uniaxial and determined the 
direction of the magnetic moments to be about 3-5 ° away from the c axis. 

The specific heat between 1 and 80 K has been measured by Clay and 
Staveley (1966). We have attempted to separate the magnetic part from 
the lattice contribution in the following way. Using J / k = -  13 K, we 
have calculated the magnetic specific heat from the high-temperature 
series expansion for the quadratic S=½ lattice (Baker et al. 1967 a, b), 
which in this ease is reliable down to T ~ 30 K. Subtracting this magnetic 
part from the total measured heat capacity we obtain the lattice contribu- 
tion for T > 30 K. This has been fitted to a Debye function (0 D ~ 135 K) 

Fig, 36 

[]/mol K] 
4 

Cm 

2 

1 spin w a v e /  
I ( C m . ~ /  

0 ~  ~ 
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H.T.S. 

[QUADRATIC HEISENBERG 
ANTIFERROIAGNET) 

P I J i _  I _ _ _ .  

1 2 3 
~__ kT / I ] l  

Magnetic specific heat of CuF 2 . 2H20, as derived from data of Clay and Staveley 
(1966). Included are the high-temperature series expansion prediction 
and the spin-wave result for a 2-d antiferromagnet with S--½, both 
calculated with J/l~ = - 13 K, which is the value obtained from the fit of 
the susceptibility to the high-temperature series expansion, as shown in 
fig. 28. 
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and thereby a rough estimate of the lattice specific heat over the lower 
temperature range is obtained. The resulting magnetic part  has been 
plotted in fig. 36, together with the series expansion prediction and the 
theoretical spin-wave heat capacity, as calculated by Kubo (I952). The 
rounded maximum is clearly resolved, although its exact height and 
position are still uncertain, due to the large error possibly involved in the 
subtraction of the lattice contribution. From the fact that  T c occurs 
not very far below T(Cm~x) it can be inferred that  the interlayer inter- 
action is relatively large (from a comparison with the ferromagnetic Cu 
salts discussed below, which have comparable anisotropies, the value 
[J'/J[ _~1.5× 10 -2 may be deduced). As expected, the experimental 
specific heat at low temperatures lies below the spin-wave prediction, 
since in this region the energy involved in the 3-d ordering has to be 
' pa id  back '. The relatively large value of IJ'/JI in this compound 
may explain why the experimental value of X±(0) = 5.26 × 10 -3 cma/mole 
is considerably larger (26%) than the spin-wave value, since the presence 
of J '  will tend to reduce the effects of zero-point spin deviation (which 
lower the X±(0) with respect to the MF value). However, one cannot 
exclude the possibility that, especially for S = ½, the spin-wave prediction 
may be quantitatively in error in two dimensions (De Jongh 1972 c). 

Another interesting experiment performed on this compound is the 
study of the temperature dependence of the paramagnetic resonance 
line-width by Nagata and Date (1964). A comparison of the behaviour 
in MnF 2 shows the enhancement of short-range order in the lower dimen- 
sional compound. 

Cu(HCOO)~. 4H20 

Two-dimensional magnetism in cupric formate te t rahydra te- -not  to be 
confused with the dihydrate--was first suggested by Martin and Waterman 
(1959) from crystallographic consideration. In the monoclinic structure 
the Cu ~+ ions, linked together by  formate groups, form layers that  are 
separated from one another by layers of water molecules. Their pre- 
liminary experiments were soon followed by  the susceptibility measure- 
ments of Kobayashi and Haseda (1963) and of Flippen and Friedberg 
(1963). The susceptibility is characterized by  the occurrence of a broad 
maximum near 60 K, and a transition to the ordered state at about 17 K, 
accompanied by the appearance of a weak ferromagnetic moment. The 
latter authors also reported that  no pronounced anomaly could be detected 
in the specific heat at neither of these temperatures. 

Taking the maximum in the susceptibility to be at 65 K in view of the 
findings of Seehra (1969), we calculate (table 4) J / k - - - 3 4 K .  From 
Xm~x=3.0× 1O 3 cm3/mole (Kobayashi and Haseda 1963) one obtains 
with the series result :  J / k = - 3 O K .  We have adopted the value 
J/k = - 30 K. 

The magnetic structure has been investigated by N.M.I~. techniques 
by Van der Leeden et al. (1967) and by Dupas and Renard (1970 a). The 
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latter authors also studied the temperature dependence of the sublattice 
magnetization by N.M.]~. (Dupas and Renard 1970 b) and performed an 
accurate determination of T c (=16-57 K). The value found for the 
critical index for the magnetization was fi= 0.32. Of great interest is 
the large spin reduction of 47%, derived by them by comparing observed 
and calculated values of the proton frequencies, a reduction that  is of the 
same order as the theoretical value of 36%. The difference may be 
attributed to the crudeness of the dipole model used in calculating the 
frequencies. 

The same authors also derived a value for the anisotropy by fitting the 
magnetization at low temperature to the calculations of Lines (1970). 
Combining their result with those of Seehra and Castner (1970) we obtain 
the estimate a = 1 x 10 -3. 

The value for ]J'/J] in table 6 has been estimated by Kobayashi and 
Haseda (1963) in view of the different exchange paths. A similar result 
has recently been obtained by Ajiro and Terata (1970). 

Apart from susceptibility measurements (Flippen and Friedberg 1963), 
the dihydrate has until now not been studied. I t  will most likely have 
the Mn(COOH)2.2H20 structure and thus will exhibit 2-d properties too. 
From the low 0 value (2 K) one expects the maxima in X and C m to 
Occur at a much lower temperature (T < 4.2 K) than in the tetrahydrate.  

BaNiF 4 

This compound has essentially the BaMnF 4 structure already described 
under BaFeF4. Neutron diffraction and susceptibility experiments have 
been performed by Cox et al. (1970). The magnetic moment was found 
to be 2.0/z n per Ni ion. Although this is fairly low considering tha t  the 
g values in Ni salts are usually about 2.25, the experimental error of 
0.2/~B prevents a definite conclusion regarding the spin reduction (which 
would be 0.14/z B theoretically) to be drawn. From the fit of the high- 
temperature susceptibility, shown in fig. 28, the value J / k = -  32 K is 
derived. Here we have corrected for a diamagnetic contribution 
Xdia=--0.1×10-acma/mole, which, following Breed (1967), has been 
estimated from the known susceptibilities of BaFe, CaF 2 and ZnF 2. 
Inspection of the X ~ curve shows that  T c = 70 + 5 K. An estimate for 
has been obtained by comparing the X J~ curve with spin-wave theory, 
using J / k = - 3 2  K. As shown in fig. 28 (see also § 4.2), the value of 
X±(0) attained at T = 0 is in good agreement with the spin-wave prediction. 

Rb2NiF a and T12NiF 4 

These compounds are both isomorphous with K2NiF 4. We have re- 
interpreted the susceptibility and spin-flop measurements of Matsuura 
et al. (1970 b) on l~bzNiF a. From T(XIEm~)=210 K we calculate 
J / k = - 4 7  K. After subtraction of the Van Vleck contribution, X±(0) 
is obtained as 2.1 × 10 -3 cma/mole. In the same way as above we have 
estimated the diamagnetic susceptibility Xdia=-0.1  x l0-acma/mole 
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from the known susceptibilities of Rb F ,  CaF~ and  ZnF  2. Wi th  
~=  9.5 x 10 3, AS(a )=0 .16  and e(~)=0-632 (cf. eqn. (3.6)) it follows t h a t  
J/k = - 42 K.  F r o m  the value Xmax = - -  2-5 x 10 -3 cma/mole at  T(X ~l max) 
we also obta in  J/k = - 42 K (with g = 2.27). Since the first result  is the 
most  uncer ta in  we adhere to the value of the  la t te r  two, J/]c = - 42 K,  and 
from the spin-flop field a t  T = 4-2 K of 350 kOe we subsequent ly  calculate 
Ha/H E _ 1 × 10-2. 

The t ransi t ion t empera tu re  has been located by  Maarschall et al. 
(1969) a t  90.4 K.  This has been checked by  addit ional  susceptibil i ty 
measurements  in the  region 80< T <  120 K (De Jongh,  unpublished) in 
which the  m a x i m u m  in ax/aT was found to  occur at  T ~ 92 K, so tha t  
we have l isted To= 91 K in table 6. 

Maarschall  et al. (1969) also obta ined  T o = I O 0 . 8 K  for Tl=NiF 4. 
Susceptibi l i ty measurements  on thei r  (powdered) sample (De Jongh,  
unpublished) confirm this value. The m a x i m u m  in X l~ was found at  
220 K,  giving J/lc = - 50 K.  F r o m  Xm~x = 2"31 x 10 -a cma/mole, likewise 
corrected for Xd i~=- -0 .12x  10 3cma/mole, we obta in  J / k = - 4 1 K .  
The difference in bo th  values is explained b y  the  fact  t h a t  there  was an 
impur i ty  present  in the sample. Although its cont r ibut ion  to the  suscepti- 
bi l i ty was only substant ia l  a t  t empera tu res  considerably lower than  
T(X~lmax), i t  will nevertheless heighten the  value of Xmax by  a small 
amount ,  the reby  lowering the J/lc value der ived from it. Wi th  an eye on 
the corresponding results for l~b2NiF 4 we have  listed the value J/lc= - 45 K 
in table  6. For  H < 400 kOe no spin-flopping could be observed,  implying 
t ha t  HA/H~> 1.4 x 10 -2. This is in accordance wi th  the  kTo/lJ[ value, 
which is considerably higher than  t ha t  of Rb2NiF a. A value of a f rom 
the X E~ curve could not  be derived, there  being only a powder  specimen 
available. 

K~NiF 4 

The compound K2NiF 4 is cer ta inly the most  extensively invest igated 
2-d ant i fer romagnet .  A short  historical survey  therefore  seems appropriate .  

The first  clue to  the  2-d propert ies  was given in the neu t ron  investiga- 
t ion by  Legrand and Plumier  (1962 a, b), who pointed  out  t ha t  in the 
ant i fer romagnet ic  s ta te  the exchange and the  dipolar in terac t ion  between 
neighbouring Ni ~+ sheets will cancel. Th e y  observed ant i fer romagnet ic  
correlations below a t empera tu re  T ~ 180 K.  The subsequent  suscepti- 
bil i ty measurements  of Sr ivastava (1963) showed the  familiar 2-d X curve, 
with the  character is t ic  m a x i m u m  at  a t empera tu re  abou t  twice as high 
as tha t  a t  which the  )( becomes anisotropic ( _ 100 K). 

In  1967 Lines collected and discussed the various pieces of informat ion 
then available and showed t ha t  the presence of a broad  ma x i mu m in the 
paramagnet ic  susceptibil i ty indeed emerges f rom series expansion calcula- 
tions. He  also explained t ha t  the t ransi t ion t empera tu re  To could very  
well occur far  below this max imum,  thus  reconciling the neu t ron  and the 
susceptibi l i ty results. 
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Maarschall et al. (1969) re-measured the susceptibility and were able 
to locate the transition temperature T o by studying the temperature 
dependence of the fluorine resonance linewidth, thereby proving that  To 
indeed coincides with the temperature at  which the derivative of the X ,, 
curve reaches its maximum, instead of with that  of the susceptibility 
maximum. 

At about the same time Birgeneau et al. (1969) had performed their 
first neutron experiments, showing the magnetic scattering above To to 
be of 2-d nature. The important work of this group will be discussed 
further in the next section. Below T c long-range 3-d ordering was found 
to set in. They also studied the temperature dependence of the sub- 
lattice magnetization, obtaining fi=0.15 (compare with the 2-d Ising 
value • = 0,125 !) and To = 97.1 K. Short-range-order effects were found 
to persist up to T = 2T c. The magnetization curve in the critical region 
is displayed in fig. 47. In subsequent papers of this group of workers, 
neutron diffraction techniques were used to their full extent to derive as 
much information as possible (Birgeneau et al. 1970 b). Skalyo et ¢tl. 
(1969 a) measured the spin-wave dispersion curve shown in fig. 37. The 
lack of dispersion found in the direction perpendicular to the layers in 
reciprocal space (crosses in fig. 37), implies that  I J ' / J I  < 3.7 × 10 -3, the 
limit being set by the experimental resolution. Furthermore, the 
temperature dependence of the dispersion revealed the important fact 
that  renormalization effects do not come into play up to T ~ 1.1 To, quite 
different from the behaviour in 3-d antiferromagnets where they are 
usually already seen at T ~ 0 . 3  To (cf. §4.2). In subsequent work 
(Birgeneau et al. 1970 b) the magnetization measurements were refined, 
yielding fi=0.138+_0.004 and B=0 .973  in the temperature region 
3 ×  I O - ~ < I - T / T c < 0 " 2 ,  with T ~ = 9 7 . 2 3 K  (see fig. 47). The low value 
of fi is certainly very near to the 2-d Ising value ~ =  0.125 (see discussion 
in § 3.2.3). Contrastingly, the critical exponents ~ and v of the staggered 
susceptibility and the correlation length, respectively, appear to have 
classical rather than 2-d values (Birgeneau et al. 1971 b). We will return 
to this matter  in § 4.4. 

Values for the intralayer exchange constant are available from various 
experiments. From the magnon dispersion curve, Skalyo et al. (1969 a) 
obtained J / k = -  56 K at 4.2 K. From Raman scattering experiments 
Chinn et al. (1971) have deduced J / k = - 5 5 " S K .  Yamaguchi and 
Sakamoto (1969) found J/lc = - 60 _+ 5 K from measurements of the 
susceptibility of Ni-doped K2MgF ~. These authors also determined the 
next-nearest neighbour interaction within the plane to be J 2 / k  ~_ - 0.5 K 
(Je /J1  ~- 10-2) • From T(Xm~x)=230 K (Maarschall et al. 1969, Matsuura 
et al. 1970 b) it follows that  J / k  = - 52 K with table 4. Values for X.(0) 
have been measured by  Srivastava (1963), Maarschall et al. (1969)and 
Matsuura et al. (1970 b), who obtained 8-35 × 10 -6, 9.3 × 10 -6 and 9.8 × 10 -6 
cm3/g, respectively. Also in case of the value Xmax attained a t  Tma x 

there is a similar disagreement since Srivastava reported a value of 
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Fig. 37 
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Spin-wave dispersion curve of K2NiF4, measured with neutron diffraction by 
Skalyo et al. (1969 a). The 2-d character follows from the apparent lack 
of dispersion in the direction in reciprocal space perpendicular to the 
magnetic layers (dashed curves). The energy gap found for zero wave- 
vector ~ reflects the small anisotropy present in this compound. 

10.1 × 10 -~, whereas Maarschall  et al. give 10-6 and Matsuura  et al. 
10.8×10-% Legrand  and Van den Bosch (1969) have published 
10-1 × 10 -~, in agreement  with Srivastava.  Since these differences m a y  
be due to  various sources such as impur i ty  contr ibut ions,  misorientat ion,  
or exper imenta l  uncer ta int ies  arising f rom the  fact  t ha t  the  susceptibil i ty 
is ve ry  small, we took  mean values, corrected Ior an es t imated diamagnet ic  
cont r ibut ion  of 0 .4× 10-~cma/g and  a Van Vleck contr ibut ion of 
1.0 × 10 -~ cma/g. The  la t ter  has been deduced f rom X r, (0) and assumed 
to be the  same for X~(0) and for )/,,(max). In  this way we obta in  
)/tL(max) = 9.8 × 10 -6 and )/±(0)= 8.6 x 10 -~ cm3/g, yielding (with g= 2.27) 
J / k = - 4 8  K and - 4 9  K,  respectively,  in the la t ter  case assuming a 
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spin reduction AS(a)=0.18 and taking e(ot)=e(O)=0.632.  The best fit 
of the high-temperature susceptibility data shown in fig. 28 was obtained 
with J/k = - 49 K and g-- 2.27. We note that  in an earlier calculation 
(De Jongh et al. 1972 a) J/]c = - 57 K was deduced from the X±(0) obtained 
by Matsuura et al. This originates from the fact that  no correction for 
Xdi~ was made and the e(~) term was not accounted for. In summing up 
we may say that  the susceptibility data yield J / k  = - 49 K. The apparent 
large difference with the other determinations, e.g. from the spin-wave 
dispersion curve, can be removed since Skalyo et al. did not take into 
account renormalization effects in their calculation. Using a renormalized 
spin-wave theory, De Wijn et al. (1973 b) obtained J / k = - 5 1 _ + 0 . 4 K .  
We conclude therefore that  the value of - 5 0  K will be trustworthy 
within about 3% over the temperature range 1-300 K. 

The anisotropy has been obtained by Birgeneau et al. (1970 a) from 
AFMI~ experiments and by Matsuura et al. (1970 b )and  ¥amazaki  et al. 
(1972) from the value of the spin-flop field. All results agree to 
~= 2.0 x 10 -3. A comparison with the dipolar anisotropy, which yields 
~ = 4 . 8 x  10 -4 only (Colpa, private communication), shows tha t  the 
observed anisotropy must for the most part be attributed to the single- 
ion mechanism. 

Values for the spin reduction can be deduced from )l±(0) as well as from 
measurements of the sublattice magnetization by neutron (Birgeneau 
et all 1970 a) and magnetic resonance techniques (De Wijn et al. 1973 b). 
Birgeneau et al. found a 15_+ 50/o reduction of the magnetic moment 
(including the effects of covalency), De Wijn et al. found a reduction of 
20_+ 3%. Furthermore, an upper limit for IJ ' / J  I was estimated from the 
resonance study, viz. IJ ' /JI  < 2 x  10 4. This is in accordance with the 
already mentioned estimate of about 10 -8, following from a comparison 
of the intra and interlayer superexchange paths. The interlayer 
dipolar coupling has been calculated by Colpa (private communication) to 
be a mere 6.8 x 10 -9 of the intralayer exchange. 

Lastly we mention a specific heat measurement of Salamon and Hat ta  
(1971), who detected a small anomaly at  98.7 K, which result is inter- 
mediate between the To=97-23 of Birgeneau et al. (1970b) and To= 
100.5 K reported by Maarschatl et al. (1969). These small differences are 
not so surprising and may, for instance, be due to calibrational errors or 
small chemical impurities, as can be understood by realizing that  replace- 
ment of Ni by other elements results in widely different Tc's. 

Ni(HCO0)2.2H20 
This Ni salt has the manganese formate structure already discussed 

above. As in the case of Co and Mn formate, the specific heat shows a 
Schottky anomaly at low temperature, ascribed to the gradual ordering 
of the paramagnetic B sheets, and a broad maximum at more elevated 
temperatures due to the antiferromagnetic ordering within the A sheets. 
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The heat capacity has been measured by Pierce and Friedberg (1971) 
and Takeda and Kawasaki (1971). Also in this case the experimental 
resolution has most probably not been sufficient to resolve the peak due 
to the 3-d ordering from the broad maximum. 

The transition temperature, as determined from the susceptibility 
experiment of Hoy et al. (1965) is To= 15.6 K. Unfortunately these 
measurements did not extend to high enough temperatures to detect the 
high-temperature maximum (which should occur at 40-50 K) predicted 
by the series expansions and as observed in Mn formate. As a consequence 
we do not have experimental information from which an estimate of J/Ic 
can be made. In view of the results for the other Ni salts listed in table 6, 
we may however, expect IJI/lc to be in the range 6.5-7.5 K. 

Obviously, a value for H A / H  ~ is also not available at present. We have 
classified the compound as being of the Heisenberg type in view of the 
small anisotropies found in the other Ni 2+ salts. 

Ca2MnO4 

This is another compound with the K2NiF 4 structure. From the 
susceptibility measurements of Davis (see MacChesney et al. 1967), 
one finds Xmax = 2.76 x 10 -8 cm3/g and T(Xmax) ~ 220 K, giving (table 4) 
J//c = - 28.6 and J/]c = - 27.9 K, respectively, accounting for an estimated 
diamagnetic contribution of 0.07× 10-3cm3/g. For reasons already 
explained we take the former value. Also To = 114 K was found in this 
work. Unfortunately there is no experimental result for the anisotropy. 
Neutron diffraction studies (Cox et al. 1969, Ollivier and Buisson 1971) 
revealed a magnetic unit cell tha t  is doubled in the c direction as compared 
to that  of K~NiF 4. The 2-d character was found to be not as pronounced 
as in the case of K2NiF 4 (e.g. fl _ 0.3). The value of the magnetic moment 
was 2.0 _+ 0.3/Zs, much lower than the expected 3/z B, even after correcting 
this for the spin reduction of 0.4/z B from zero-point spin deviations. 
Cova!ency effects may play a role. Another explanation suggested is the 
fact that  the model of localized electron spins may be not wholly appro- 
priate for this material. 

RbFeF4, CsFeF~ and KFeF 4 

Although also orthorhombie, the crystal structure of these compounds 
differs considerably from that  of BaNiF 4. Also in this case the layers 
are puckered, but it is not the 2-d magnetic lattice built up by the Fe 8+ 
ions that  is rumpled, the washboard effect being caused by the tipping out 
of the layers of the F - F e - F  bonds (Heger et al. 1971). The sheets of 
FeF 6 octahedra are separated by layers of l~b + ions. Of importance is 
the fact that  the symmetry argument leading to the cancellation of the 
interactions between nearest neighbouring layers in the K2NiF ~ structure 
is also valid for the KFeF  4 structure, but not so for 1%bFeF~ and CsFeF 4, 
as can be derived from the magnetic structure proposed by Eibschfitz 

A.P. G 
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et al. (1972 a) on the  basis of thei r  neu t ron  diffract ion measuremen t s .  
E s t i m a t e s  of the  superexchange  in te rac t ion  be tween  the  layers  yield 
IJ ' /JI  ~ 10 -4 and  10-~-10 -8 for  the  K F e F ~  and for the  R b F e F  4 s t ructure ,  
respect ively.  

Magnet ic  susceptibil i ty,  M6ssbauer  effect  and  neu t ron  diffract ion 
expe r imen t s  on R b F e F  4 have  been pe r fo rmed  b y  Eibschfi tz  e ta l .  (1971, 
].972 a). Wi th  the  aid of t ab le  4 we calculate J / k = - 1 2 . 0  K f rom 
T(Xn,~x)=215_+ 10 K.  The t rans i t ion  t e m p e r a t u r e  indica ted  b y  ~X/~T 
was T o= 133_+ 2 K.  F r o m  the  va lue  Xllm~x= 6"71 × l0 -3 cmS/mole and  
X±(0) = 7.25 × 10 -8 cmS/mole, allowing for  Xdi~ = -- 0.66 × l0  -8 cm3/mole, 
AS(~) = 0.16, e(~) = 0.632, we calculate  J / k  = - 12.2 K and  J / k  = - 11.7 K .  
Consequent ly  we t ake  J / k  to  be  a b o u t  - 12 K.  An es t imate  for the  aniso- 
t r o p y  was ob ta ined  b y  Eibschfi tz  etal .  (1971) b y  f i t t ing the magne t i za t i on  
curve  a t  low t e m p e r a t u r e s  to  sp in-wave  theory ,  t he r eby  der iving an 
energy  gap  of 30 _+ 5 K .  A 16% lower resul t  was  ob ta ined  b y  De Rosa  
(pr iva te  communica t ion  to  Eibschi i tz  etal .)  f rom AFMR,  which yields the  

va lue  l isted in table  6. N e a r  to T o (0.40 < T / T o  < 0.99) the  magne t i za -  
t ion was found  to follow a power  law wi th  ~ = 0.245 _+ 0-005. 

Similar  results  were ob ta ined  f rom the  M5ssbauer  s t u d y  of K F e F  4 
(Eibschii tz et al. 1972a).  Fo r  0 . 7 2 < T / T o < 0 . 9 9  t hey  found  f i=  
0-185_+0.005. These fi values  are discussed in § 3.2.3. For  T o the  
au thors  ob ta ined  137.2_+0.1 K,  in good agreement  wi th  the  value 
T o = 137 ± 1 K der ived b y  Hege r  etal .  (1971) f rom M~ssbauer  and  neu t roh  
studies t .  

Hege r  e ta l .  also measured  the  suscept ibi l i ty  of a powdered  sample  of 
K F e F  4. U n f o r t u n a t e l y  there  was a cont r ibut ion  f rom impur i t ies  a t  
T <  To, so t h a t  we only have  the  h igh - t empe ra tu r e  X f rom which to 
ob ta in  J/k .  The t e m p e r a t u r e  T(Xmax) = 222 K yields J / k  = - 12.4 K .  
F r o m  the  va lue  Xmax = 6"68 × 10 -z cma/mole,  corrected for Xdi~ = 
- 0 . 0 6 ×  10 -8 cma/mole, J / k = - 1 2 . 3  K follows. The la t t e r  resul t  has  
been  listed in table  6. We no te  t h a t  th is  J / k  value m a y  be a l i t t le too 
small  due to the  i m p u r i t y  cont r ibu t ion  t h a t  will increase the  suscept ib i l i ty  
of the  m a x i m u m  b y  a small  amoun t .  Also for this c o m p o u n d  Eibschi i tz  
ob ta ined  an  energy  gap  of 30 -+ 6 K f rom the fi t  of the  magne t i za t ion  to 
sp in-wave  theory .  I n  view of the  jus t  men t ioned  findings of De Rosa ,  we 
conclude t h a t  K F e F  4 mos t  p r o b a b l y  has  abou t  the  same an i so t ropy  value  
as R b F e F  4. 

I n  the  case of CsFeF 4 we derive the  exchange  f rom the suscept ibi l i ty  
measu remen t s  of Eibschi i tz  et al. (1972 a). The t e m p e r a t u r e  of the  
suscept ibi l i ty  m a x i m u m  T(Xmax)=235 K gives J / k = - 1 3 . 1  K.  F r o m  
the va lue  Xma~=5.75× 10-Soma/mole  a t  the  m a x i m u m ,  and  f rom 
X±(0) = 6.0 × 10 -8 cm3/mole, b o t h  corrected for a d iamagne t ic  cont r ibu-  
t ion Xdi~ = - 0.06 × 10 -8 cm3/mole, the  values  J / k  = - 14.2 K and  J / k  = 

Heger and Geller (1972) have subsequently reported the considerably 
higher transition temperature To = 148 K. 
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- 14.1 K are derived, respectively (taking AS(a) = 0.16). We conclude to 
J /k= - 1 4 . 2  in view of the large uncertainties involved in the first de- 
termination. An estimate of the anisotropy may be obtained by com- 
paring the X E, curves of CsFeF 4 and RbFeF 4 on a relative temperature 
sc~le~ from which it is concluded tha t  a must be about the same. 

Rb2MnF 4 and K2MnF ~ 

These fluorine compounds are also amongst the most extensively 
investigated members of the K2NiF 4 family. The earliest inquiries were 
susceptibility and spin-flop experiments by Breed (1966, 1967, 1969), 
from which the 2-d character was established and a determination of the 
anisotropy could be made. Neutron diffraction investigations were 
subsequently carried out by Loopstra et al. (1968) and by Birgeneau et al. 
(1970 b). The latter authors found the Rb2MnF 4 crystals to consist of 
two phases, one with the K2NiF 4 and the other with the Ca2MnO 4 struc- 
ture, both phases occurring even in the same single crystal. This is an 
important discovery, for the following reason. The fact that  the phases 
with a ferromagnetic and an antiferromagnetie alignment along the c axis 
are both observed in the same sample may be interpreted in the sense 
that  there exists a subtle balance between the different kinds of coupling 
between the (next-nearest) layers, as there are the dipolar and the super- 
exchange interaction. Which of the two phases will occur in a particular 
p~rt of the crystal would then be determined by lattice imperfections. 
Since the dipolar interlayer coupling favours a ferromagnetic alignment 
along the c axis, the superexehange part would tend to establish the 
antiferromagnetic alignment. 

The importance of this intuitive picture is that  it implies that  the two 
different kinds of interlayer coupling must be about equal in magnitude. 
Since the dipolar part  can be evaluated numerically, we obtain in this way 
an indication as to the quantitative value of the interlayer interaction. 
C~lculations of the dipolar interlayer coupling by Colpa (private com- 
munication) yield IJ ' /J l=5.8×lO-S and 8.2×10 -s for l~b~MnF4, re- 
spectively, indicating tha t  the estimate [J'/J] " 10 -6 (at highest) for the 
compounds of the K2NiF 4 structure may indeed be correct. 

The temperature dependence of the sublattice magnetization, in parti- 
cular in the critical region, has been studied with neutron diffraction by 
Birgeneau et al. (1970 b) and by Iked~ and Hirakawa (1972) for l~b~MnF 4 
~nd K2MnF4, respectively. The former authors derived fi= 0.18 and 
B =  1-02 for both phases of l~b~MnF 4 from measurements in the region 
1 - T /To  > 3 × 10 -8. I t  is a pity tha t  their work does not extend nearer to 
T c because just at 1 - T/To _~ 4 × 10 -3, Ikeda and Hirakawa (1972) observed 
a change-over of the fi value of K~MnF 4 from fi = 0.188 (1 - T/To < 4 × 10 -3) 
to a 3-d value (in the range 2.5×10 - 4 < I - T / T  c<4×10-8).  Both 
measurements have been reproduced in fig. 47 and will be discussed 

G2 
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in § 3.2.3. We remark that  the magnetization curve of K2MnF ~ just 
mentioned applies to a phase with the magnetic K2NiF ~ structure. Ikeda 
and Hirakawa also reported the existence of a second magnetic phase 
with a different T c in their crystals, which they identified as a K2MnF 4 
phase having the magnetic Ca~MnO 4 structure. We have strong reasons 
to doubt this identification, since in l~b2MnF4, Rb2MnC14 and CseMnCla 
(see below), these two phases were reported to have the same transition 
temperature within the experimental resolution. This is what one would 
anticipate, since T c is to a very high degree only determined by the 
exchange within the layer (see discussion in § 3.2.3), which is not expected 
to be different for both phases. On the other hand, Ikeda and Hirakawa 
report To= 42.37 K and To = 58.0 K for K2MnF ~ of the K2NiF 4 and the 
Ca~MnO 4 magnetic phase, respectively. An explanation would be the 
presence of an impurity in their crystals. For instance, the fact that  
Cs~MnC14 and Rb2MnC14 both have T o _  55 K (see below) is very sug- 
gestive~. 

In the lower temperature region the sublattice magnetization has been 
accurately measured by N.M.R. techniques (de Wijn et al. 1971, ]973 b). 
The excellent fit of the data on K2MnF 4 and K~NiF 4 to spin-wave theory 
up to T ~ 0.5 T c, is shown in fig. 38. Furthermore, various authors have 
reported on the observation of the effects of zero-point spin deviations in 
these compounds (Breed 1967, Loopstra et al. 1968, De Wijn et al. 1971, 
Colpa et al. 1971, Schrama 1972, De Jongh 1972 b, e). We will collect and 
discuss these findings in § 4.2 and as a last reference mention the s tudy of 
the fluorine N.M.R. linewidth in K2MnF 4 by Maarschall (1970) and Bucci 
and Guidi (1970, 1974). 

Values for the exchange constants may be obtained from various sources. 
From the fit of the high-temperature susceptibilities, shown in fig. 28, 
J / k = - 3 . 7 6  K and -4 .20  K are obtained for Rb2MnF 4 and K~MnF 4, 
respectively. The low-temperature determinations are in fair agreement 
with these values, since Breed (1969) finds -3-65 K and -4 .20  K from 
the fit of the X~l curve to spin-wave theory, while De Wijn et al. (1973 b) 
obtain - 3.69 -+ 0.045 and - 4.205 _+ 0.03 K from the spin-wave analysis 
of the sublattice magnetization. We thus conclude to J/lc= - 3.73 K and 
- 4.20 K, with no temperature dependence of the exchange for T < 100 K. 
The experimental values of )/±(0) are moreover in good agreement with 
the spin-wave prediction (fig. 28), calculated with these exchange constants 
and the measured anisotropy parameters. From the spin-flop fields 

t Our conclusions are corroborated by the recent neutron diffraction study 
on K2MnF 4 by Birgeneau et al. (1973), who find no evidence for the second 
phase reported by Ikeda and Hirakawa. They obtain Tc=42.14K, and 
further J/lc=-4.23_+0.05 K from the dispersion curve. Moreover, their 
magnetization curve differs considerably from that of Ikeda and Hirakawa 
in that the magnetization is higher over most of the critical region, and that no 
kink is found down to a temperature of 1 - T / T o =  6 × 10 -4. For the fl they 
report fl = 0"15 + 0.01 for 6 × 10 -a < 1 - T/To < 0"3. See also § 3.2.3. 
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Temperature dependence of the sublattice magnetization in K2MnF ~ and 
K2NiF 4 as determined from the N.M.R. frequency of the fluorine nuclei 
by De Wijn et al. (1971). The circles are the measuring points, the 
solid curves have been calculated from spin-wave theory for a 2-d 
Heisenberg antiferromagnet with a small anisotropy. 

(Breed 1967) H s F  = 55.1 + 1.0 and  50.8 + 1.3 kOe (at T = 4.2 K)  one calcu- 
lates ~ = 3-8 × 10 -3 and  4.0 × 10 -~ for K2MnF ~ and  l~b~MnF4, respect ively.  
We m ~ y  compare  these an i so t ropy  values  wi th  the dipolar  anisotropies,  
t h a t  yield ~ = 4 . 0 6 ×  l0 -3 ~nd 4.¢¢× 10 -~ for K2MnF 4 and  Rb~MnF4, 
respect ively,  in which caIculat ion the effect  of spin reduct ion  hus been 
included (Colpa, p r iva te  communicat ion) .  De Wi jn  et al. (1973 a) deter-  
mined the  sp in-wave  energy gaps  a t  T = 0 K f rom A F M R  measu remen t s  
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to be 7.40 _+ 0.05 K and 7.28 _+ 0.05 K for K~MnF 4 and t~b~MnF 4 respec- 
tively, which yield a = 3-9 × 10 -3 and 4-7 z l0 -3 for the potassium and the 
rubidium salt, respectively. Since the AFMt~ results are the most 
accurate, we have entered these in table 6. The listed values of T c 
follow from the work of Breed et al. (1969), Birgeneau et al. (1970 b, 1973) 
and Ikeda and Hirakawa (1972). 

Mn(HCOO)~. 2H20 

Numerous experiments have been performed on this example of the 
2-d Heisenberg antiferromagnet with S =  ~. Of great advantage is its 
low T c value, which enables a reliable determination of the magnetic 
specific heat since the lattice contribution can be obtained with reasonable 
accuracy. As described above under the isomorphous Co salt, its 
magnetic structure consists of antiferromagnetic A sheets separated by 
paramagnetic B sheets. In some way this situation resembles that  found 
in § 3.1.2 for the linear chain compound CuSO 4 . 5H~O. Evidence for 
the peculiar magnetic structure can be found from various sources, for 
instance, the proton N.M.R. experiments of Abe and Matsuura (1964) 
and the susceptibility measurements of Abe and Torii (1965) and inde- 
pendently of Cohen et al. (1964). Apart  from crystallographic considera- 
tions, strong support was also obtained from the heat capacity data of 
Pierce and Friedberg (1968), who found that  even down to T_~0.5 To, 
only about  one-half of the expected entropy R In (2S+ 1) was removed 
from the system. In this paper a MF calculation, based upon the above 
sketched division in differently behaving A and B sheets, was carried 
out and found to be consistent with the experimentally observed behaviour. 

The overall magnetic properties are best described by  considering the 
specific heat behaviour (fig. 39). At T O ___ 3.7 K there occurs a transition 
to long-range antiferromagnetie order within the A sheets. The spike 
reflecting this cooperative phenomenon is superimposed on a broad 
anomaly, which is once more at tr ibuted to the short-range-order processes 
that  are inherent on the ideal 2-d Heisenberg system. The fact that  T~ 
lies nearly on top of this maximum, whereas for the 2-d copper compounds 
with S = ½ (see below) Tc ~ 0.5 T(Cm~x), is partly explained by the high 
spin value of ~. The transition at 3.7 K is accompanied by  the appearance 
of a weak ferromagnetic moment, directed along the c axis of the mono- 
clinic structure (ao= 8.86 A, b o= 7.29 A, c 0= 9.60 z~ ; fl= 97.7°). The 
extremely sharp peak observed at T _~ 0.46 To is associated with a spon- 
taneous reorientation of the antiferromagnetic axis (first-order transition). 
Accordingly, below this temperature the direction of the weak ferro- 
magnetic moment is found to be parallel to the b axis. Evidence for the 
weak ferromagnetic behaviour has been brought forward by  Yamagata  
(1967) from torque measurements, by  Matsuura et al. (1969) and Ajiro 
(1969) from susceptibility experiments (see also l~lryu 1965), and by 
Bertaut  et al. (1969) who studied the magnetic structure as a function of 
temperature with neutron diffraction. 
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Fig. 39 

8 C~ag (glK.mol) 

4 

T/-CN 

o 1.0 _~.0 

Specific heat of Mn(HCO0)2.2H20 versus the relative temperature T/T~. 
The measuring points have been taken by Pierce and Friedberg (1968) 
and by Matsuura et al. (1970 a). The heat capacity of Co(HCO0)2 . 2I-I20 
is included for comparison. 

The third maximum observed in fig. 39 at T-~ 0.2 K represents the 
contribution of the paramagnetic B sheets (evidence for the hyperfine 
contribution has also been found at still lower temperatures). Below 
T c the Mn 2+ ions in the B sheets are gradually ordered as a consequence 
of the effective field exerted on them by the antiferromagnetically ordered 
spins in the A sheets (Pierce and Friedberg 1968, Burlet et al. 1969, 
Matsuura et al. 1970 a), resulting in a broad Schottky=type maximum. 

The susceptibility (Matsuura et al. 1969) appears roughly as a para- 
magnetic curve, due to the contribution of the B spins, with super- 
imposed on it two sharp peaks, one at T c, the other at T=1.72 K 
(=0.46 T¢), both reflecting the weak ferromagnetic bchaviour. Un- 
fortunately, measurements in the region T > 4.2 K are not available so 
that  the positions of the maximum associated with the shortrange 2-d 
interactions has not been located. With the aid of table 4 and the J/k 
value to be derived below, this maximum may be expected to be found 
at about 6.5 K. 

In order to obtain J/lc one must therefore resort to the caloric data. 
From the heat capacity in the higher temperature region, Pierce and 
Friedberg (1968) found the intralayer exchange within the A sheets to 
be J / k = - 0 . 3 7 K .  By analysing the Schottky anomaly at 0-2K, 
Matsuura et al. (1970 a) and Takeda et al. (1971 a) were able to estimate the 
interlayer couplings, obtaining 7 x 10 -2 J for the coupling between A 
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and B sheets and 3 × 10 -8 J for the interaction between the A sheets. 
The latter value is listed in table 6 as representing ' t h e '  interlayer 
coupling. 

As regards the value of the anisotropy a definite conclusion cannot be 
drawn, due to the fact tha t  various mechanisms contribute to it and 
experimental determinations are still lacking. The dipolar anisotropy 
is of the order of 1 × 10 -3 of the exchange, but, as pointed out by Bertaut  
et al. (1969), it cannot be the only source since for 1.7 < T < 3.7 the spins 
are within the magnetic layer, an orientation that  is not favoured by the 
dipolar anisotropy in case of an antiferromagnetic intralayer exchange. 
From the study of the weak ferromagnetic behaviour it transpires that  
the anisotropic part of the exchange interaction is less than 1% of the 
isotropic part. As a third factor we have to consider the single4on 
anisotropy. Although this quanti ty is small for Mn ~+ ions it may not 
be neglected because of the small value of the exchange. According to 
the E.S.R. experiments of Morigaki and Abe (1967), the single-ion aniso- 
tropy is about 0.04 K, giving ~ _~ 3 × 10 -2. 

Comparing the Tc/O value of Mn(HCOO)e. H20 with other S = ~  
examples of table 6 of which an ~ value is known, one would conclude 
to a value of about 1 × l0 -a. This value is in accord with what one may 
derive from the magnetic phase diagram (Ajiro 1969, Schutter et al. 1972). 
If the lowest transition observed with the field parallel to the b axis is 
indeed due to spin-flopping, one may obtain HA_2.5  × 10 -3 from the 
value of the spin-flop field HSF ~ 4 kOe. This would imply tha t  the 
different sources of anisotropy somehow cancel one another. Since we 
have seen that  the spin direction does not correlate with the dipolar 
anisotropy, this does not seem to be an unreasonable assumption. We 
might add that  also in the case of the other Mn salts, the measured 
anisotropy is often lower than the calculated dipolar value. 

Lastly, we point to the neutron scattering study of Skalyo et al. (1969 b), 
which provides proof of the 2-d character of the substance, since up to 
T =  2To the existence of 2-d magnetic correlations could be established. 
These authors also studied the temperature dependence of the magnetic 
moments on the A and B sheets. For the critical index fi of the sub- 
lattice magnetization of the A sheets they found fi= 0.23 _+ 0'01 in the 
range 5.5 × 10 -2 < 1 - T/To  < 0.55. In a subsequent proton N.M.R. study, 
Ajiro et al. (1970) obtained the slightly different result fi = 0.22 _+ 0.02 for 
1.5× 10-e< 1 - T / T o < 0 . 4 7 .  We will come back to these fi values in 
§3.2.3. 

RbeMnCla and Cs2MnC14 

The magnetic structure of these chlorine compounds has recently been 
investigated by Epstein et al. (1970) and Gurewitz et al. (1970) with neutron 
diffraction. They found it to be of the K2NiF 4 type when the crystals 
were prepared from molten salts. On the other hand crystals of Rb~MnC14 
prepared from aqueous solutions were shown to possess the magnetic 



Experiments on simple magnetic model systems 105 

Ca2MnO 4 s t ructure .  In  this case the  two phases do no t  co-exist in the 
same sample, as in Rb2MnF 4. Ins tead  the  authors  observed t h a t  af ter  
annealing the crystals prepared  f rom aqueous solutions possess the 
K2NiF 4 s t ruc ture  too, which seems therefore  to be the most  stable phase. 
The t rans i t ion t empera tu re  was found to be the same for bo th  phases, 
being To = 57 K and  52 K for the Rb  and the  Cs salt, respectively.  Spin 
correlat ions within the magnetic  layers were observed to persist  up to 
2OO K. 

Magnetic measurements  on Rb2MnC14 have  been carried out  by  De 
Jongh  (unpublished).  F rom susceptibi l i ty and spin-flop experiments ,  
the values Jil t= - 6.2 K,  T c = 56.5 _+ 1.5 K and ~ = H s /H E_~ 1.5 x 10 -a 
could be derived,  the  la t te r  being equal to the  calculated dipolar  anisotropy 
within the  exper imenta l  error (Colpa, pr iva te  communicat ion) .  

(C, H2~+INH3)2MnC14 ( n =  1, 2, 3 . . . .  ) 

As poin ted  out  by  Van Amstel  and De Jongh  (1972), the face-centred 
te t ragonal  s t ruc ture  of these compounds  offers the possibili ty of f inding 
the ' best  ' 2-d ant i ferromagnets ,  in the sense t h a t  i t  allows in principle for 
the smallest  ]J'/JI values tha t  can possibly be reached. This arises from 
the fact  t h a t  in this s t ruc ture  the  s y m m e t r y  a rgument  leading to the absence 
of an in terac t ion  between neighbouring layers, t h a t  provides for the 2-d 
propert ies  in the K2NiF ~ structure,  is combined with the  mechanism of 
separat ing the layers by  increasing n, which leads to the  pronounced 2-d 
character  of the Cu compounds (C~H2~+INHs)2CuC14 (see § 2.4). For  
instance,  the  dipolar  in ter layer  coupling in (C~H2~+INHa)~MnC14 has 
been calculated by  Colpa to be 2-5× 10 -9 , 2.2 × 10 -~° and 1.3 × l0 -11 
of the exchange,  for  n = 1, 2, 3, respect ively  (using the J/lc value for the 
methy l  compound  der ived below). The superexchange inter layer  
coupling is even for the n = 1 compound  es t imated  to be a mere l0 -1° of J ,  
since it  has to occur via two (CHsNHs) groups and two C1 anions. The 
lower bound  to IJ'/JI will in this case no doub t  be set b y  latt ice imperfec-  
tions or the  presence of phonons,  as has been poin ted  out  above. We have 
t en ta t ive ly  entered  the value 10 -8 in table 6. Since the crystal  s t ructure  
allows for the replacement  of Mn by  other  meta l  ions, for instance the 
isomorphous Fe  compounds  ( n = l ,  2, 3) have been found to be also 
tetragonal (Mostafa and Willett 1971), it certainly offers many pos- 
sibilities. 

The t empera tu re  dependence of the E.S.R.  l inewidth in methyl  and 
e thyl  am mon ium manganese chloride has been studied by  Boesch et al. 
(1971). Indicat ions  were found t ha t  the  position of the t ransi t ion 
t empera tu res  will p robab ly  be near  50 K. This was corrobora ted  by  the 
susceptibi l i ty measurements  of Van Amstel  and De Jongh  (1972) on 
(CHsNHs)2MnC14, who obta ined To=47_+ 3 K. The exchange constant  
was de te rmined  as J/]c = - 5.0 _+ 0.2 K,  while the an iso t ropy der ived from 
the value of the spin-flop field was a = 1.1 × 10 -8. 
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The transition temperatures of the Fe salts were found at 96 K and 
90 K for n =  1 and 2, respectively (Mostafa and Willett 1971). A sharp 
peak at T c was observed in the (otherwise) antiferromagnetic suscepti- 
bility of the methyl compound. This will likely be due to the presence 
of a weak ferromagnetic moment. I t  would be interesting to analyse 
this susceptibility divergence in view of the large value of the suscepti- 
bility exponent y that  is expected for 2-d lattices (y=  1.75-2-0). These 
compounds have not been included in table 6, due to the limited amount 
of information known to date. 

BaMnF4 

This manganese compound distinguishes itself by its very low value 
for the anisotropy parameter e, in spite of its rather low J / k  (see table 6). 
Once more we may derive the exchange from the susceptibility curve, 
which has in this case been measured by Holmes et al. (1969). From the 
fit of the high-temperature susceptibility shown in fig. 28 we obtained 
J / k = -  2-72 K. The value following from X±(0)=3.0 × l0 2 cm3/mole is 
in fair agreement, since taking AS(e)=0. ]9  and e(a)=e(0)=0-632 and 
allowing for Xdi~=--0"lx 10-acm3/mole, one derives J / k = - 2 . 7 8 K .  
We conclude therefore to J / k  = - 2.75 K, with no apparent temperature 
dependence below T =  100 K. The anisotropy follows from the spin-flop 
field via the formula HSF2= 2HAHE(1--XIt/X~) 1. With HSF = 10.4 kOe 
and Xn/x±=O'047  (Holmes et al. 1969) this yields a = 3 . 1 ×  10 -a. The 
transition temperature T¢,__ 24-25 K is indicated by the observed be- 
haviour of the AFMl~ (T<  To) and E.S.R. (T>  To) modes, and by the 
parallel susceptibility curve. 

MnTi03 

Manganese titanate is the only example in table 6 of a 2-d antiferro- 
magnet in which the 2-d network is not quadratic. The compound has 
the hexagonal ilmenite (FeTiO3) structure and consists of. magnetic Mn 2+ 
layers, separated from each other by  two oxygen and one Ti sheets. In 
the hexagonal layers, the Mn 2+ ions have three nearest neighbours 
(honeycomb lattice). Susceptibility experiments on powdered specimens 
have been performed by Heller (1964) and Sawaoka et al. (1966), whereas 
Akimitsu et al. (]970) have studied a single crystal. The susceptibility 
shows the usual characteristics, with a broad maximum at about  100 K, 
whereas the values of To reported from various experiments lie in the 
range 60-65 K. 

The early neutron diffraction investigation of Shirane et al. (1959) 
confirmed the antiferromagnetic structure within the layer. In later 
work, Akimitsu et al. (1970) observed the typical 2-d correlations, thereby 
confirming the 2-d character of the salt. 

To derive a value of J/]c is not so easy because of the limited amount of 
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information available. In the high-temperature region we may use the 
series expansion of the susceptibility of the honeycomb lattice with 
S = ~-, of which six terms have been obtained by Rushbrooke and Wood 
(1958). We have analysed this expansion in the same way as for the 
quadratic lattice. The susceptibility caleulated from six terms exhibits 
a maximum at about k T / I J I S ( S +  1)~ 1.5, but  this number is uncertain, 
due to the limited number of terms. For instance, with five terms the 
maximum is found at 1.15. Assuming tha t  the maximum will be some- 
where near 1-35, it follows that  J/k~- - 8.5 K. We have tried to fit the 
data of Akimitsu et al. to the series prediction for T > T ~ x ,  but  this 
could not be achieved properly. I t  seems as if other contributions to the 
susceptibility (apart from Xdi~) are present, which may be at tr ibuted to 
the presence of the Ti ions. An indication for this may also be the fact 
that  different values for Xn, ax have been found, ranging from 8 x 10 -5 ema/g 
(Heller 1964) to 9.8 x 10 -a cmS/g (Akimitsu et al. 1970). 

Calculating J/k from X±(0) = 9.7 x 10 -a ema/g (Akimitsu et al. 1970) is 
therefore also a risky matter,  more so since quanti tat ive estimates of the 
effects of zero-point spin deviations (AS(0) and e(0)) are missing for the 
honeycomb lattice. Nevertheless one may t ry  to estimate AS(0) and 
e(0) from the corresponding values for the quadratic lattice, by comparing 
the differences in these quantities found for the simple cubic (z = 6) and 
the body-centred cubic (z=8) lattice. In this way we may guess that  
AS(0)_0.25 S and e(0)_~0.63. After correction for Xdia ~ - 0 " 0 5 x  10 -3 
ema/mole, one then obtains from X±(0)J/Ic~_- 9.4, in reasonable agree- 
ment with the estimate on the basis of T(Xmax). Without  the corrections 
for zero-point spin deviations, th6 value would have been - 8.2 K. 

With J/lc~_- 9.0 K one may subsequently calculate the anisotropy 
from the zero-field AFMR frequency extrapolated to T = 0, as determined 
by Stickler et al. (1967). From v= 156 kMe/see the value o~=HA/HE~_ 
1.2 x 10 -a is obtained. The number 5 x 10 .5 quoted by De Jongh et al. 
(1972 a), is wrong, due to a ealculational error, arising from the fact that  
co R and v a are interchanged in the paper of Stickler et al. (1967). 

The ratio IJ'/J] is not known for this compound, but  will be considerably 
larger than in the K~NiF 4 structure, since within the hexagonal symmetry 
there exists no deeoupling of nearest neighbouring layers. Accordingly, 
the sublattiee magnetization in the region 1 - T / T o <  0.125, was found 
to follow a power law with the ' 3-d ' fi value 0.32 + 0.01, pointing indeed 
to a substantial interlayer coupling. 

We next  proceed to discuss the ferromagnetic layer-type compounds, 
gathered in table 7. I t  is seen that  only Cu and Cr compounds have been 
found to approximate this model. This arises because in the other 
magnetic ions with a fairly isotropie interaction, e.g. Mn ~+ and Ni 2+, 
apparently the exchange nearly always has the antiferromagnetie 
sign. 

The interaction between the layers is mostly antiferromagnetie, so tha t  
below T e the ferromagnetic layers become ordered antiparallel with 
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respect to one another. This situation is favoured by the dipolar inter- 
layer coupling, although this is mostly too small to account for the 
observed value of J'. The only exceptions are K2CuF4 and(CH3NH3)~CuCIa, 
which behave ferromagnetically also below T c. This points to the presence 
of various types of interlayer interactions, with different signs. 

As already remarked above, the combination J> 0, J'< 0 has the 
advantage that quantitative estimates of J' are easily obtained from the 
value of the (ant±ferromagnetic) susceptibility at or below T c (X±), which 
is inversely proportional to IJ'l. It is remarked that, due to the fact that 
J >)IJ'l, effects of zero-point spin deviations are negligible in this special 
type of antiferromagnets (De Jongh 1972 a), justifying an MF calculation 
of J' from Xa via the relation X± = NOg2tLBe/4z IJ'] • Since the actual X± will 
in most cases decrease below Tc by, amongst other things, the presence of 
anisotropy, one may conveniently use x(Te) in this formula, which equals 
X~(0) (for H A = 0) in both MF and spin-wave theory. 

The anisotropy in these compounds is of orthorhombie symmetry, with 
HAIl>) HA 1. This points to a planar IIeisenberg character, were it not 
that also HA I1 ~ H E. We prefer therefore to classify them as Heisenberg 
compounds, bearing in mind that there is a small planar type anisotropy 
superimposed upon the overall Heisenbcrg character. There certainly 
remains the possibility that, near enough to To, the critical behaviour will 
be more appropriately described by the planar model. 

Values for the in-plane (HA l) and the out-of-plane (HA I1) anisotropy 
may be obtained by torque or ferromagnetic resonance measurements, or 
in the case of an ant±ferromagnetic J '  by  measuring the magnetization or 
the susceptibility as a function of field in the different crystallographic 
directions (at T <  To). From the values of the spin-flop field and the 
fields needed to saturate the sample, both HA 1 and HA II may then be 
deduced (cf. § 4.5). 

The compounds of table 7 fall into three groups, those of the K2NiF 4 
type, the (C~H2~+INHa)eCuX 4 series and the chromium compounds. We 
will start with the first category. 

K2CuF4 

The experiments performed on K2CuF a include magnetization (Yamada 
1970), N.M.R. (Yamada et al. 1971), neutron scattering (Hirakawa and 
Ikeda 1972) and specific heat measurements (¥amada 1972). In the 
latter experiment T c = 6.25 K is indicated. The exchange constant J / k  
was obtained as 11.2 K from the high-temperature susceptibility and as 
8.8 K from the linear temperature dependence of the spin-wave contribu- 
tion to the heat capacity (see below). Similar differences have been 
found in the case of the (CnH2n+IlqHa)2CuX4 series (see below). The 
values for the anisotropy (HA 1 and HA I1) were obtained from the 
magnetization measurements. The ferromagnetic coupling between the 
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layers has been estimated to be about 0-03 K (J'/J~-3.5x l0 3) by 
Hirakawa and Ikeda (1972). 

In view of the rather large value of J'/J, as compared with those en- 
countered in the 2-d antiferromagnets, one expects the critical behaviour 
of the magnetization to be 3-d in character. On the other hand the 
interlayer coupling is small enough for the spin-wave spectrum to be 
predominantly 2-d in nature (compare with the results obtained for 
FeCL. and (C~H2~+INH3)~CuX~). The apparent agreement of the tempera- 
ture dependence of the magnetization in the region O.12<kT/J< 0.36 
with the T 3/2 law predicted by spin-wave theory  for a 3-d ferromagnet, as 
reported by  Kubo, may therefore be fortuitous. Although by taking 
To--6.25 K, Hirakawa and Ikeda deduced a fi value of about 0.22 for 
0.01 < l - T c / T <  0.17, this result does not seem to be conclusive. We 
would rather say that  the 2-d behaviour in the region near To is spoiled by  
interference of J ' .  For instance, by  taking Tc=6.32 K, which is the 
temperature at which the neutron intensity (which is proportional to Ms2 ) 
actually falls of, the authors reported that the fit of the data to a power 
law did not yield a straight line, so that a unique value for ~ could not be 
derived. 

Rb2CuC1 ~ 

The system l~b2CuC14, l~b~CuC13Br , Rb2CuC12Br 2 is currently being 
investigated by Witteveen (1973). The transition temperatures have 
been determined from specific heat and susceptibility measurements, 
the J/lc's from the analysis of the high-temperature susceptibility (see 
below). The anisotropy parameters follow from the measurement of the 
magnetization curves at temperatures far below To. (We are much 
indebted to H. T. Witteveen for providing these results prior to publica- 
tion.) 

I t  is quite interesting to observe how by the successive replacement of the 
C1- ions by  Br-  the anisotropy HA II increases by an order of magnitude, 
whereas the anisotropy within the layer is hardly affected. This arises most 
probably because the Br -  ions fill in the out-of-plane positions in the octa- 
hedral environment of the Cu~ + ions. Similar indications for the presence 
of an anisotropy associated with the superexchange mechanism are fre- 
quently found when comparing otherwise isomorphous C1 and Br com- 
pounds (e.g. CrC13 and CrBr3, (NH4)2CnBr 4 . 2H~O and (NH4)2CuC14 . 2H20 , 
(C,~H2n+INH3)2CuX a (n= 0, 1, 2, 3, . .., 10 ; X = C1 or Br) 

This series of compounds has been the object of extensive studies at our 
laboratory, including specific heat, E.S.R., susceptibility, magnetic torque 
and thermal conductivity measurements. Although the crystal structure 
is orthorhombie, the magnetic layers are very nearly quadratic since the 
difference between the lattice parameters within the Cu planes is only 
about 30/0 . We have already outlined in § 2.4 how the pronounced 2-d 
properties in these compounds arise from the separation mechanisnl, 
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based upon the fact that  the organic alkyl ammonium groups can be 
greatly enlarged. As may be inferred from table 7 the distance between 
the copper ions in neighbouring magnetic layers is increased by a factor 3 
by varying n from 1 to 10, whereas the configuration within the layer is 
hardly affected~. As a consequence of this piling up of organic material 
between the magnetic layers, the estimates of the interlayer super- 
exchange interaction, as well as the interlayer dipolar coupling (in the 
case of a pure antiferromagnetic arrangement of the ferromagnetic layers), 
amount to I J ' / J l < l O - 5  for n > 3 .  In the case of (NH4)2CuC14 and 
(C2HsNH~)2CuC14 the directions of the moments of neighbouring layers 
are indeed fully antiparallel (in zero external field). In (CH~NH3)2CuC14 
the interlayer interaction is ferromagnetic, whereas in other compounds 
weak ferromagnetic moments have been observed, the direction of this 
moment being within the layers for the chlorine and perpendicular to it 
for the bromine compounds. Consequently, the magnetic behaviour 
found below T c is often quite complex and difficult to analyse. I t  is 
remarked that  with these small J '  values also the Earth 's  magnetic field 
comes into play, that  is about 10 -6 of J ,  and was not compensated for in 
the experiments. In view of the above we may expect that  the fields 
acting on the sample, other than arising from the anisotropy, will be of the 
order of l0 5 HE or less for the compounds with n > 3 (cf. the observed 
values for n ~< 3 in the C1 series). 

The anisotropy within the layer HA I is seen to vary between 10 -5 and 
10 -~ of HE, whereas the out-of-plane anisotropy HA n is typically 10 -3 H E 
for all compounds. As mentioned above, one intuitively expects that  
HA I will be the quanti ty tha t  must be taken into account in discussions 
concerning the occurrence of long-range order, since HA II merely intro- 
duces a planar Heisenberg character into the system. 

The above discussion also indicates the difficulties encountered in the 
interpretation of magnetic measurements on these compounds. As an 
illustration we point out tha t  in the case of an antiferromagnetie inter- 
layer coupling J '  as small as 5 × 10 -5 of J,  the susceptibility at T c reaches 
a value about equal to tha t  expected for a ferromagnetic platelet-shaped 
sample (J and J '  both > 0), which is determined by the demagnetizing 
factor. With these extremely small J '  values, it is all but impossible to 
decide experimentMly whether the interlayer coupling is ferro or anti- 
ferromagnetic if further information is lacking. This may also be under- 
stood from the fact that  for J '  < 0, the field needed to saturate the sample 
is roughly given by 4z'lJ' lS/gt~ ~, which for IJ ' / J l~- lO -5 amounts to 
10 Oe, only. 

I t  can be seen from table 7 tha t  the compounds with a positive J ' ,  
K2CuF a and (CH3NH3)~CuC1 a, form an exception in the sense tha t  they 
have considerably smaller ]J'/J] values than their nearest neighbours in 

Recently Kitamura and Tsujikawa have extended the series to n= 18, in 
which case d~/d 1 ~ 8 (private communication, to be published). 
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the row of compounds (compare the T./0 values). The value of lJ'/JI of 
(CH3NHa)2CuC14 has been determined by  Yamazaki (1973) from E.S.R. 
measurements and by Bloembergen (private communication) from torque 
measurements. The only explanation for this peculiarity that  we can 
give is that  in these compounds there is a competition between interlayer 
couplings of different sign. Assuming that  in the other salts the various 
interlayer interactions would all prefer an antiferromagnetic arrangement 
of the layers, the argument would be that  they add up, except in K2CuF 4 
and (CH3NHa)2CuC14, where they would partly cancel one another. 

In order to obtain more quantitative estimates of the anisotropy and of 
J ' ,  Bloembergen et al. (1972, 1973) have started a programme of magnetic 
torque measurements. Although the analysis of these measurements is 
still under way, the preliminary results do confirm the picture just outlined. 

After this general description we will present some of the experimental 
results of importance within the present context. The fact that  a ferro- 
magnetic interaction within the Cu layers is the predominant exchange 
has been proven by susceptibility experiments in the paramagnetic 
region T>~ T o (De Jongh et al. 1969, De Jongh and Van Amstel 1970), 
and by measurements of the spin-wave contribution to the heat capacity 
at T ~ T o (Colpa 1972 b). In the latter experiment, a linear dependence 
of the specific heat on temperature was clearly indicated, as predicted 
by simple spin-wave theory for a 2-d Heisenberg Ierromagnet (see fig. 67 
and the discussion in § 4.2). The high-temperature susceptibility yields 
positive Curie-Weiss temperatures, moreover the data could be adequately 
analysed in terms of the series expansion for this model. For S = ½, ten 
terms are known in this expansion (Baker et al. 1967 a), which give a pre- 
diction for the susceptibility that  may be trusted down to T_~ 1.5 J/k. As 
a typical example we give in fig. 40 the fit of the (powder) suceptibility 
of (C~HsNH3)2CuC14 to the series expansion result (curve 1). Here  U/xT 
is plotted versus O/T, so that  the Curie-Weiss law appears as the straight 
line C/xT= 1-O/T (curve 3). The exchange constant J/k is the only 
unknown needed to scale the experimental points upon the theoretical 
curve. Note the huge deviation of the 2-d ferromagnetic susceptibility 
from the Curie-Weiss law, even at T = 20. For comparison the deviation 
of the series result for the ferromagnetic b.c.c, lattice has also been in- 
cluded (curve 2). I t  is seen that  even for a 3-d ferromagnet, estimates 
of J/k from a value of the Curie-Weiss 0 determined in the range 
T m 40 _ 6T~, may result in serious errors. 

For T<J/k (=½0) the susceptibility becomes field dependent in 
fields of a few kOe. In fig. 41 it is shown how the (initial) suscepti- 
bilities of eleven Cu compounds of the series in the region up to T ~J/k 
scatter evenly around a common curve, in spite of the fact that  the various 
compounds differ in magnitude and sign of J '  and in anisotropy. For 
each compound the value of J was determined by the fit to the series 
expansion result for T > 1.5 J/k. Since there is no apparent difference 
for the various compounds for T >  0-9 J/k, one may consider the curve 

A.P. H 



114 

T 

1.0 

0,5 

L. J. de Jongh and A. R. Miedema on 

Fig. 40 

I I 

×oo 
~ 4 " : ~  "O.x,;; :...~ .. ~ .~ ..,.,,~.. 

I . . . . . . . . . . . . . . . . .  t, ......................... 
0 1 2 3 

The susceptibility of the ferromagnetic layer compound (C2HsNH3)2CuC14 in 
the high-temperature region (T>~T e ; 0/To~3.6). The full curve ] 
drawn for P/T< 1.4 has been calculated from the high-temperature 
series expansion for the quadratic Heisenberg ferromagnet with S=  1. 
The exchange constant J/k was obtained by fitting the data to this 
prediction. The dotted curve 2 represents the series expansion result 
for the b.c.c. Heisenberg ferromagnet. The straight line 3 is the MF 
prediction C / x T = I - O / T  for the quadratic ferromagnet. (After De 
Jongh et al. 1972b.) A : H=10kOe ;  © : H = 4 k O e ;  × : H = 0  
(a.c. susceptibility measurements). 

drawn through the data of fig. 41 as an experimental continuation of the 
series expansion prediction with ten terms into a region wherein it is no 
longer trustworthy. 

For T <  0.9J/k, the influence of the interlayer interaction and the 
anisotropy gradually become manifest. This is depicted in fig. 42 where 
the parallel susceptibility of (C~HsNHa)sCuC1 a, in which the ferromagnetic 
layers order antiferromagnetically at Tc, is compared with the sucepti- 
bility of (CHaNHs)2CuC1 ~ and (Cx0H21NHs)sCuC14 (De Jongh et al. 1972 b). 
The X of the methyl compound diverges at To, since J '  > 0. In practice 
this means of course that  x(T) becomes equal to 1/D, where D is the 
demagnetizing factor of the sample. The same situation was found in 
the decyl compound, which led the authors to believe initially that  in 
this ease J' is positive too. However, as stated above, we are at the 
moment inclined to think tha t  for all compounds with n > 1, J '  is negative, 
attributing the high values of X reached at T o in (C10H2INHs)2CuC14 to 
the extremely low value of J'. Be this as it may, from the much lower 
values of [J'/J[ in the methyl and decyl compound (compare the To~6 
values) and from the fact tha t  their susceptibilities coincide, it  can be 
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Susceptibility data of eleven different members of the series (CnH2~+INI-Ia)~CuX 4 

in the region 0"5 < J/k T < 1.1 (J/k = 0/2). Since the results for the various 
compounds coincide, although they differ in strength and type of the 
inter-layer interaction as well as in anisotropy, the straight line through 
the data may be considered to represent the X of the ideal quadratic 
tteisenberg ferromagnet (tabulated values have been published by 
De Jongh and Van Amstel 1970). As such this result may be seen as an 
extension of the series expansion prediction, which is trustworthy up to 
J/kT < 0.6 only. 

inferred tha t  in the temperature region shown, the upper curve in fig. 42 
may be regarded as representing the susceptibility of a system of isolated 
ferromagnetic layers. The lower curve of (C2HsNHa)2CuC14 is then ob- 
tained by ' switching on ' the weak antiferromagnetic interaction between 
these layers. We point out that  the value of xTo/C in this unusual type 
of antiferromagnet is extremely high (_~ 85), as a consequence of the 
small value of [J'/J[. In ' normal ' antiferromagnets, in which a similar 
division of the spins in (ferromagnetic) sublattices can be made, xT/C is 
usually smaller than unity, since the ferromagnetic intra-sublattiee 
interaction, corresponding to J ,  is mostly much smaller than the anti- 
ferromagnetic intersublattice interaction (J'). 

In table 7 the values of the exchange constants J/k, as obtained from 
the  analysis of the high-temperature susceptibility with the aid of the 
series expansion, have been compared with those derived from the 
coefficient of the linear spin-wave term in the heat capacity. I t  is seen 
that  there is a systematic difference between the two results° Taking into 
account the errors of a few per cent involved in  both determinations, we 
may say tha t  the mean difference is about 10~o. I t  is noteworthy that  
the same discrepancy has been obtained in the case of K2CuF 4 (Yamada 
19~2). 

An obvious way out of the problem would be to postulate a temperature 
dependence of the exchange, the susceptibility analysis being performed 
in the region T > 1.5 J/k, whereas the specific heat data considered were 

~2 
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Fig. 42 
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Comparison of the parallel susceptibilities of three Cu compounds. ©: 
(C2HsNHal2CuCla ; A : (CH3NHa)2CuCla ; [ ]  : ( C 1 0 H 2 1 N H a ) 2 C u C I 4 .  
In the temperature region shown, the curve common to the methyl 
and decyl compound represents the (diverging) susceptibility of a system 
of isolated ferromagnetic layers, with an intralayer exchange J. The 
curve for (C2HsNHa)2CuC14 can be thought of as being obtained from 
this by including a weak antiferromagnetic coupling J'([J'[/J _~ 8 × l0 -a) 
between the layers. (After De Jongh et al. 1972 b) 

for T<O.O5J/k.  However, the X data show no apparent sign of a 
temperature dependence of J in the range T <  150 K. Moreover, one 
would expect an increase of J as the temperature is lowered, as in fact is 
mostly found experimentally (also for Cu compounds), whereas in table 7 
the reverse is seen to be the case. The possible effect of J '  on the aniso- 
tropy and of an interaction with second neighbours within the layer have 
been considered in detail by Colpa (1972 b) with negative results. Taking 
into account these by-effects will either increase the discrepancies or their 
influence is too small to be perceived. 

Since the series expansion for the susceptibility is an exact result, at 
least as far as the temperature is high enough not to invalidate the calcula- 
tion because of the limited number of terms, a possible explanation would 
be to assume the spin-wave prediction to be quantitatively in error. 
Indeed, such a situation is encountered in the magnetic chain systems, 
where spin-wave theory does predict the right variation with temperature 
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of the ferro and antiferromagnetic specific heats at low temperatures, but  
quanti tat ively gives quite incorrect answers regarding the amplitude of 
these temperature dependences (Bonner and Fisher 1964). We will 
return to this mat ter  in § 4.2. In any case it is clear tha t  the determina- 
tion of J/]c on the basis of the spin-wave theory stands on a less sure 
footing than that  from the series expansion for X, so we have used the 
latter in the subsequent calculations. 

We remark that  the parameters of (NH4)2CuC14 listed in table 7 have 
been derived by Ldcuyer et al. (1972)from powder susceptibility measure- 
ments tha t  were analysed in the same manner as described above. Their 
result provides a welcome addition to the work on the other Cu compounds. 

With the aid of the so-derived J/k values, Bloembergen et al. (1970 and 
to be published) have succeeded in separating the lattice contribution 
from the total measured heat capacity of these compounds in the following 
way. Assuming the magnetic part  in the high,temperature region to be 
given by the series expansion prediction for C m calculated with the known 
J/k's, the lattice contribution is known for say T __ 2 J/k and an extrapola- 
tion down to T = 0 can be made, using different procedures of a varying 
degree of sophistication. As consistency checks, one has available the 
requirements that  the total energy and entropy derived from the subse- 
quently resulting magnetic specific heat must be equal to the expected 
values for S = 1. In  addition the lattice specific heat thus obtained can be 
compared with the measured heat capacity of the isomorphous non- 
magnetic compounds, which are obtained by replacing the Cu atoms by Cd 
or Zn. Moreover the specific heat in the spin-wave region is known, since 
at these low temperatures the lattice part  is either negligible or can be 
more easily accounted for. 

Proceeding in this way, estimates of C m for a large number of Cu 
compounds have been obtained tha t  more or less fall on the same curve. 
From these one may then construct a ' mean ' curve, which should repre- 
sent the behaviour of the ideal model within an accuracy of a few per cent. 
In fig. 43 the resulting prediction is shown, with superimposed the small 
spike (2) due to the occurrence of long-range order at To, as found in 
(C2HsNHa)2CuCla, which has the highest [J'/J[ value of the members of 
the C1 series on which measurements have been made. In the other com- 
pounds similar but  smaller anomalies have been observed, the interesting 
feature being that  the heat content of these peaks (i.e. the area under the 
spike) diminishes with increasing n. This is what may  be anticipated, 
because by  increasing n the ideal 2-d model is better  approximated (as can 
be inferred from the To/O values) and since one expects the size of the 
anomaly at To to reflect the strength of the deviations from ideality 
that  are present. Accordingly, for the chlorine series the highest peak 
was found in case of the ethyl compound. As can be seen from fig. 43, 
even in this case the peak at To is so small tha t  one may easily accept the 
interpretation that  it arises from spurious by-effects and is not an intrinsic 
property of the ideal system. To illustrate this point we have also 
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The dashed curve in this figure represents the heat capacity of the ideal quadratic 

tIeisenberg ferromagnet as predicted on basis of the e=~perimental find- 
ings (P. Bloembergen, private communication). I t  is the mean of the 
results obtained for various members of the series (C~H2n+INH3)2CuX 4. 
Except near to To, the data of the individual compounds scatter evenly 
within a few per cent around this common curve. As in the magnetic 
chains there is a small spike observed at To in each compound, super- 
imposed upon the broad maximum. The arrows 1 and 2 indicate the 
peaks observed in (CH3NH3)2CuC14 and (C2HsNH3)2CuC14, respectively, 
and have been included to show the behaviour observed near the transi- 
tion point, arising from the existing deviations from the ideal model, 
which are most pronounced in the ethyl compound. The full curves 
are the series expansion prediction at the high-temperature side, and 
the spin-wave contribution at low temperatures, as measured and calcu- 
lated by Colpa (1972). 

included in fig. 43 the spike observed in (CHaNHa)2CuC14 for comparison 
(1). This compound has a much lower To/O value, because of its smaller 
interlayer interaction. As discussed above this is probably due to an 
accidental partial cancellation of interlayer interactions of different sign. 

The advantage of having the non-magnetic isomorphs has also been ex- 
ploited in measurements of the heat conduction of these compounds. In fig. 
44 the thermal conductivities of (CHaNH3)2CuC14 and (CH3NHa)2CdC14 
are compared, from which it is seen that  the lattice contribution is rather 
well represented by the behaviour of the non-magnetic compound. The 
small shifts needed to let the curves coincide for temperatures exceeding 
the T~ of the Cu compound may be easily at tr ibuted to small differences 
in the Debye temperature (horizontal scale) and in the dimensions of the 
two samples (vertical scale). Below T o the curve of (CHaNH~)2CuC14 
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clearly shows a huge contr ibut ion  of the magnet ic  exci tat ions to the  hea t  
conduct ivi ty .  T h a t  the surplus conduc t iv i ty  is indeed of magnet ic  
origin could be confirmed by  subsequent  measurements  in magnet ic  fields 
of vary ing  s trength.  

In  concluding the  discussion of the  Cu compounds  of table 7 we remark  
tha t  in t ry ing  to correlate the  observed decrease of To/O with ei ther  
IJ'/JI or H ~  I or HA H, the  following features  become apparent .  F i rs t ly  
in comparing Rb2CuC14, (CHaNHa)2CuC14 and  (C2HsNHa)2CuC14 one con- 
cludes t ha t  for these compounds  it  is the q u a n t i t y  IJ'/JI t ha t  determines 
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The thermal conductivity (in zero field) of (CHaNHa)=CuC14 as compared with 
that  of the isomorphous, non-magnetic Cd compound. The small 
shifts needed to let the two curves coincide above the transition tempera- 
ture, To=8.91 K, of the Cu salt have been indicated in the left-hand 
corner below. The Cd data can be seen as representing the lattice part, 
the huge surplus conductivity observed below To in the Cu compound 
may be attr ibuted to the contribution of the magnetic excitations. 
The T a/~ dependence at low temperatures is expected for the magnon 
conductivity of a 2-d ferromagnet from simple spin wave theory. (After 
Gorter et al., 1969.) 
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for the most part the position of the transition temperature. Also, from 
the fact that Tc/O decreases in going from Rb2CuCl 4 to K2CuF4, whereas 
the latter has a ten times larger HA H value, it seems that the out-of-plane 
anisotropy is indeed ineffective in establishing the long-range order, in 
accordance with our assumption that HA n merely introduces a planar 
Heisenberg character. For the (CnH2n+INHa)2CuCI 4 series with n > 3 the 
quantity IJ'/JI becomes of the same order or smaller than HA I so that we 
expect that for these salts the actual value of Tc/O is determined by a 
mixture of both these deviations from the ideal model. Furthermore, 
we point out that with the aid of table 7 one may estimate the IJ'/Jl 
values of DPAN and CuF 2 . 2H20 to be 4 x I0 -2 and 1.5 x I0 -~, respectively, 
from the Tc/O values of these compounds. 

Concerning the temperature dependence of the sublattice magnetiza- 
tion, the only result obtained so far is an indirect determination following 
from the behaviour of the critical saturation field in (CaHsNHa)2CuCI 4 
with temperature (De Jongh et al. 1972 b). According to both spin-wave 
and MF theory this should reflect the temperature dependence of the 
magnetization (cf. § 4.5). A 3-d value of fl was found ( _ ½) which is to 
be expected, since the interlayer interaction is fairly large ( [J ' / J]  ~_ 10 -a ; 
see also § 3.2.3) in comparison with K2NiF ~. 

AgCrS%, NaCrS2 and  NaCrSe 2 

In the hexagonal structure of these compounds the Cr 3+ ions form 
ferromagnetic layers in which each magnetic ion is surrounded by six 
nearest neighbours (triangular lattice). These layers are antiferro- 
magnetically coupled and are separated by three non-magnetic sheets, 
the ratio d2/d I being about 2. Unfortunately they have not been greatly 
studied so far. Bongers et al. (1968) have measured the susceptibility 
of powdered specimens, whereas for the ease of NaCrS~ additional single- 
crystal data have been obtained by  Blazey and Rohrer (1969). These 
authors also derived the antiferromagnetic phase diagram of this salt 
from magnetization and differential susceptibility measurements. Thus 
for NaCrS2, values for the antiferromagnetic J '  and H A could be obtained 
from the values of the antiferromagnetic susceptibility at  To, from the 
spin-flop field and from the critical field needed to saturate the sample, 
yielding Ja~/]c ~_ - 0"6 K and HAI _ 3 kOe. Apparently the value of HA n 
is only slightly larger than HA I. These results may however suffer from 
substantial errors, since Blazey and Rohrer did not correct their data 
for demagnetizing effects. 

Since the high-temperature susceptibility was not analysed in terms of 
a series expansion, we could only derive a crude estimate of the ferro- 
magnetic intralayer exchange from the reported value of the Curie- 
Weiss temperature. The same can be said for NaCrSe~ and AgCrSe 2. 
In the latter case J '  was calculated from the value of the susceptibility 
at T c. We point out that  NaCrSe2, with its low IJ ' /J I  and To/O values, 
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presents an interesting object of further studies, since the experimental 
information on ferromagnetic layer compounds with S > 1 is still limited. 

CrIa, CrBr3 and CrC13 

The hexagonal structure of the chromium tri-halides consists of ferro 
magnetic honeycomb layers (z = 3) of Cr 3+ ions, separated from one another 
by two layers of halogen ions. Again the ratio d~/d I is about 2. The large 
variation in the quanti ty IJ'/J] for these compounds, as observed from 
table 7, may be attributed to the existence of different interlayer inter- 
actions of opposite signs. Thus in CrBra, Samuelsen et al. (1971) reported 
that  of the main three interlayer interactions two were ferromagnetic 
and one antiferromagnetic. The fact that  in CrC1 a the ferromagnetic 
layers are coupled antiferromagnetically with respect to one another, 
whereas in CrBr a and CrIa the effective J' is positive, also points to a 
variation in sign and magnitude of these three interlayer interactions. 
The low value of IJ'/JI in CrC13 would then be the result of a partial 
cancellation of the individual interactions. 

The exchange constants listed in table 7 are the result of spin-wave 
theoretical calculations of the magnetization, in which a simplified two- 
parameter model was used, the various inter and intralayer interactions 
being substituted by an effective J '  and J ,  respectively. In this way the 
results obtained for the different halides can be better compared. I t  
should be pointed out that  a more extensive analysis on the basis of a 
many-parameter model, which has been carried out for CrBr a (Samuelsen 
et al. 1971), leads to slightly different results. In this case an inelastic 
neutron scattering experiment was concerned in which the dispersion in 
the different crystallographic direction was measured. Quite similarly, 
as in the case of other 2-d magnets (cf. figs. 24 and 37), the spectrum was 
found to be very flat, with little dispersion in the c direction. 

When likewise analysed in terms of a two-parameter model, however, 
these neutron data yield quite similar results for J and J', as given in 
table 7, where the listed parameters for CrBr a follow from the work of 
Davis and Narath (1964), who investigated the temperature dependence 
of the magnetization with an N.M.R. technique and fitted their measure- 
ments to a renormalized spin-wave theory on the basis of the two-para- 
meter model. In the same way, Narath and Davis (1965) and Narath 
(1965) obtained the exchange constants of CrC1 a and CrI a. We remark 
that  the values for the intralayer exchange J thus derived are consider- 
ably lower than those calculated from the measured Curie-Weiss tempera- 
tures (Hansen and Griffel 1959), in accordance with the picture given in 
the discussion of fig. 40. 

For CrBr a slightly different transition temperatures have been found 
for different samples (Samuelsen et al. 1971, Ho and Litster 1970, Senturia 
and Benedek 1966, Jennings and Hansen 1965). A mean value is given 
in table 7. The To of CrC1 a has been determined in a heat capacity 
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experiment by Hansen and Griffel (1958), whereas the value for CrI 3 
follows from the work of Williams and Sherwood (see Dillon and Olson 
1965). In the heat capacity measurements (Jennings and Hansen 1965) 
large short-range-order contributions have been observed, the amount of 
entropy lost above To being 45% and 63% of the total R In (2S+ 1) for 
CrBr 3 and CrCI3, respectively. 

The observed anisotropy is uniaxial in CrI~ and CrBr3, favouring the 
hexagonal c axis. Quantitative values have been determined by Dillon 
(1964) and Samuelsen el al. (1971) for CrBr 3 and by Dillon and Olson 
(1965) for CrI3. Contrastingly, CrC13 has a (much smaller) anisotropy of 
orthorhombic symmetry. In this case HA I and HA II could be estimated 
from the spin-flop field and the saturation fields, respectively (Narath 
and Davis 1965). The fact that  in CrCl~ the direction of the moments is 
within the layer, whereas it is perpendicular to it in CrBr~ and Crib, 
points to the presence of an anisotropy in the superexehange mechanism 
via the halogen ion, as mentioned above. In the case of ferromagnetic 
layers, the dipolar anisotropy favours an orientation within the layer. 

In view of the large IJ'/J[ value of CrBr~ it is not surprising that  the 
critical behaviour of this salt has been found to be fully 3-d in character 
(He and Litster 1970, Senturia and Benedek 1966). More about the 
critical parameters found for this salt will be said in § 4.4. 

3.2.3. Concluding remarks 

After having taken stock of the wealth of  available experimental in- 
formation, we are now in a position to t ry  to tackle some of the funda- 
mental questions, left by theory, concerning the thermodynamic behaviour 
of the isotropic 2-d systems (see § 3.2.1). As regards the 2-d Ising system, 
the situation is fairly well established theoretically and, as we have seen, 
the experimental work nicely confirms the~ picture given by theory. 

Let us then focus attention on the examples of the 2-d I-Ieisenberg 
model, and first of all make some remarks about the high degree of 
approximation that  has already been reached. Regarding the interlayer 
interaction, J ' ,  we have learned tha t  the estimate IJ'/JI ~ 10 -° or smaller 
for the members of the K2NiF 4 group is most probably correet. Although 
no exact determination of J '  has hitherto been accomplished, there are 
indeed indications (see discussion of Rb~MnF4) that  it is of the order of 
the dipolar coupling, which has been calculated to be about 10-s-10 -7 of J.  
Furthermore, we have found that  there is probably no lower limit to the 
value of IJ'/JI that  can be reached experimentally, other than tha t  set 
by lattice imperfection or other sources, e.g. phonons (see under 
(C~H2~+INH~)~MnC14). 

Accordingly, it is the anisotropy that  is the prime deviation from the 
ideal system that  we are left with. In fact, when comparing the ]J'/JI 
and ~ = HA/H E values obtained, the conclusion is that  in most examples 
is at least one order of magnitude larger than IJ'/JI. Unfortunately 
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values of ~ smaller than  about  10 -a are not  easily reached, since even for 
a fully isolated (but  finite) layer  one always has the in t ra layer  dipolar 
anisot ropy to  deal with. The only way out  is in having competing aniso- 
t ropy  mechanisms,  with different  preferent ial  directions, so t h a t  the  
various sources more  or less cancel one another .  This however  is a r a the r  
unpredic table  occurrence, so t ha t  it becomes a ma t t e r  of trial and error  to  
find such a compound.  

The most  p rominent  questions to answer are those concerning the order-  
ing problem. Do the  exper iments  confirm the  theoret ical  proofs excluding 
the es tabl ishment  of long-range order  at  a finite t empera tu re  ? In  our  
opinion the  answer is definitely yes, based upon  the observed specific heat  
behavionr .  Especial ly in the case of the 2-d fer romagnet ic  Cu compounds,  
we have encounte red  overwhelming evidence for the fac t  t ha t  the specific 
heat  of the  ideal model  will be a smooth non-anomalous  curve, quite 
similar to those found for the chain s t ructures  t .  Less conclusive bu t  
nevertheless clear indications to this end are the heat  capacities of the 
quasi 2-d ant i fcr romagnets  CuF 2 . 2H20 and  Mn( t ICO0)2 .2H~O.  We 
remark  t h a t  f rom the exper imenta l  findings predict ions for the height  
and the position of the specific hea t  m a x i m u m  for the 2-d Heisenberg 
systems m a y  be obtained.  Es t imates  for var ious S have  been compiled 
in table 8, where we have used the hea t  capacities of (C~H~+INHa)gCuX4, 
CrBr~, CuF 2 . 2H20 , and of Ni and Mn formate .  In  comparing these 
results with the values of these parameters  in the Hcisenberg chain model 
(table ~), a number  of interest ing conclusions m a y  be drawn: First ly,  
one observes a similar dependence on S and also the fact  t h a t  the ma x i mu m 
occurs a t  a higher t empera tu re  in the  case of an ant i fcr romagnet ic  inter- 
action. Secondly,  there  is t h e  striking fea ture  t h a t  the  predictions for 
Cm~x/R for  different  S of the 2-d an t i fe r romagnet  are equal  to those given 
for the ant i fer romagnet ic  chain in table  1. In  contras t  with this there  is 
no such correlat ion for the fer romagnet ic  case. Whereas  the ferro- 
magnetic  chain max ima  are considerably lower than  their  antiferro- 
magnet ic  counterpar ts ,  in two dimensions the  heights of the antiferro- 
magnetic  and  ferromagnet ic  specific heat  max ima  seem to have about  the 
same value. 

The second quest ion is : Do finite t ransi t ion t empera tu res  exist  in these 
systems, at which the ferromagnetic (or the staggered antiferromagnetic) 
susceptibility diverges, in spite of the fact that there cannot be long-range 
order ? As argued in § 3.2.1, in order to answer this, one must try to 
establish whether the experimentally observed Te's are upwardly shifted 
(by the existing deviations of ideality) with respect to T= 0 or with 

"~ Although the experiments clearly indicate the absence of a diverging specific 
heat for the ideal 2-d tteisenberg model, the possibility of a weaker singularity, 
e.g. a diverging temperature derivative of C m at the point where the suscepti- 
bility becomes infinite, cannot be excluded. Quite recently, Betts et al. (1973) 
have found evidence for the C m of the 2-d, S = ½, X ¥  model to be qualitatively 
of the same form as the curve shown in fig. 43. 
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Table 8. Values for the height and the temperature of the specific heat 
maximum of the quadratic Heisenberg layer as predicted by the experi- 
mental findings. The observed dependence on the spin value S may 
be compared with tha t  encountered for the magnetic chains, as given in 
table 1. 

Ferromagnetic 

Cmax/R 

~_0.37-0.38 

_~ 0.65 

kT(C . . . .  )/J 

_~0'8 

_~4 

Anti ferromagnetic 

Cmax/R 

~_0-35 
_~0"52 

__.0'71 

kT(Cm~)/[JI 

_~ 1"4 
___2.1 

___10"6 

respect  to a finite (S t an l ey -Kap l an )  t e m p e r a t u r e  Tsg .  I n  o ther  words, 
do the  exper imenta l  To's,  when  s tudied  as a funct ion of the  s t r eng th  of 
these deviat ions,  ex t r apo la t e  to zero or r a the r  to a finite va lue  ? Evi -  
dent ly ,  mak ing  such ex t rapo la t ions  to the  ideal case is the  only w a y  open 
to  the  exper imenta l i s t  to cont r ibu te  to  the solution of the  problem.  

Bloembergen  et al. (1970) were the  first  to make  such an inquiry ,  wi th  
the  aid of the  series of fe r romagne t ic  Cu compounds .  T h e y  a rgued  t h a t  
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The relative transition temperatures Tc/O of ten Cu compounds of the series 
(C~H2n+INH~)~CuX 4 plotted versus the energy content of the small 
spikes which are found at T o in the heat capacity, superimposed upon 
the ideal behaviour. A : X - - B r ,  n = l , . . . , 5 ;  ©:  X = C I ,  n = I , . . . , 5 .  
The direction of increasing n is from the right to the left. I t  is seen that  
for most of the materials the energy content of the peak is only about 
10 3 or less of the total  energy involved in the magnetic ordering. 
(After Bloembergen et al. 1970.) 
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the energy  conten t  of the  small  spikes, found  super imposed  upon  the f lanks 
of the  b road  m a x i m a ,  m a y  be regarded  as reflecting the  s t rengths  of the  
var ious devia t ions  f rom the ideal sys tem (for the  la t te r  the  spike obvious ly  
will be absent) .~ E v a l u a t i n g  the  area  under  these small  anomal ies  for 
ten different  compounds  of the  series, t hey  s tudied  the  w a y  in which the  
relat ive t rans i t ion  t e m p e r a t u r e  To/0 depends  on this minu te  a m o u n t  of 
energy. Thei r  f indings have  been reproduced  in fig. 45, f rom which it  
m a y  be seen tha t ,  when the  peak  energy  is p lo t t ed  on a l inear scale, the  
ex t rapo la t ion  to the  ideal case (Epeak=0) does indeed seem to yield a 
finite t rans i t ion  t empera tu re .  Note  t h a t  for the  compounds  with  large n 
the energy  content  of the  specific hea t  spike diminishes to values  of the  
order of 10 -4 of the  to ta l  magnet ic  energy. 

Fig. 46 

I ~ ' ~ ' " 1  ' ~ . . . . .  1 ' ' . . . . . .  I ' ' . . . .  211'0 
_ o 5=I/2 / - t  
.s=i / I 

-,~S=2 a b/ qTc/e 

° ° 

='-- ----'I-____O 0-" .... ...... O~~I-- • * -i I I I I11[ I I I Ill-- OIl- 
10 4 16  3 10 -2  101 1 

- . - - - - - - ~ - .  c(. 

Relative transition temperatures Tel8 as a function of the anisotropy para- 
meter  ~, for the quadratic layer-type compounds of different spin value. 
The symbols refer to the examples of the 2-d antiferromagnet for which 
the anisotropy is expected to be at least one order of magnitude larger 
than the interlayer interaction, both as compared to the intralayer 
exchange. Only for the S = ½ ease have some ferromagnetic layer com- 
pounds been included which satisfy the same requirement. The various 
materials have been collected in tables 6 and 7 and the references to the 
data are given in the text. The curves a, b and c are theoretical results 
discussed in the text. The three dashed curves represent the limiting 
values to which the experimental data for S =  ½, 1 and ~ seem to con- 
verge. (After De Jongh et al. 1972 a) 

t I t  has recently been realized by the authors tha t  the argument is not 
entirely correct if, as we expect, the planar par t  of the anisotropy is indeed 
ineffective in establishing the long-range order, since it would then not contri- 
bute to Epeak. Because HAII/H E has about the same value ( ~ l0 -a) for all the 
compounds, its effect cannot be eliminated by  the extrapolation, so that  the 
obtained result for Tc/O might in principle be affected. 
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As pointed out by De Jongh et al. (1972 a), another extrapolation 
can be made by taking advantage of the large number of 2-d antiferro- 
magnets of widely varying anisotropy that  has been discovered. Since 
in these compounds the interlayer interaction is usually considerably 
less than the anisotropy (both compared to J), one may assume that  the 
anisotropy is the predominant deviation from the ideal system one has 
to reckon with. As a happy coincidence the anisotropy in antiferro- 
magnetic substances can be determined relatively easy from spin-flop or 
AFMR measurements, so tha t  in most cases a quantitative estimate of 
is available. A plot of Te/O versus ~=HA/H E for these substances will 
indeed yield the anisotropy dependence of the transition temperature. 
In  fig. 46 this has been done for the materials discussed in the preceding 
section that  receive consideration. As could already be inferred from 
table 6, the Tc/O values do seem to converge to finite values, indicated 
by the horizontal broken lines. These limiting values are dependent on 
the spin value, as is to be expected, since the deviations from MF theory 
become larger with decreasing S. For comparison three theoretical 
predictions concerning the dependence of Te/O on ~ have been included. 
Curve a has been calculated by Lines (1970), who considered the quadratic 
Heisenberg antiferromagnet, introducing the anisotropy in the form of a 
field in the Hamiltonian. Curve b has been obtained by Dalton and 
Wood (1967) for the ferromagnetic quadratic lattice with a n  anisotropic 
exchange. For small ~ the results are seen to be very nearly the same, 
whereas for ~ > 10 -a the difference between the two approaches clearly 
manifests itself. In both cases the Green-function method in the random- 
phase approximation has been used. Since in this method the occurrence 
of a transition is associated with the onset of long-range order, To is 
predicted to decay to zero for e->0. Furthermore, this approximate 
theory is expected to give best results for the high spin values. Lastly, 
curve c represents the dependence of T c on e obtained by Dalton and 
Wood from series expansions of the susceptibility of the quadratic S = ½ 
Heisenberg ferromagnet with an anisotropic exchange. For e =  1 the 
result correctly coincides with the prediction for the S = 1 Ising model. 

From inspection of fig. 46 one may observe tha t  especially for the higher 
spin value S = ~-, for which deviations.from the curves a and b will already 
oecurr at relatively high ~ values since To/O increases with S, there is a 
clear departure from these predictions, the experimental points in the 
range 10-4-10 -a lying 20-30~o higher. 

In table 9 we have listed the limiting temperatures, derived from the 
plots of figs. 45 and 46, and compared them with the TsK'S obtained by 
Stanley and Kaplan from their analysis of the susceptibility series. 
These were found to agree to within a few per cent with the formula 
(Stanley and Kaplan 1966) 

Tsi ~ ~ ~(z-  1)[2S(S + 1) - 1]J/lc, (3.8) 

The S = ½ case is excluded, since for this spin value the evidence from the 



Table 

Experiments on simple magnetic model systems 127 

9. Limiting values of T~/O as a function of S derived from the plots of 
figs. 45 and 46. These results are compared with the predicted transi- 
tion temperatures TSK/O to a state of infinite susceptibility, as obtained 
by Stanley and Kaplan from their analysis of the high-temperature 
susceptibility series expansions for the quadratic lattice (eqn. (3.8)). 
One should also take into account the value Tc/O ~_ 0.40 obtained from 
the series for the classical model (S = ~),  which differs from that calcu- 
lated from eqn. (38), as well as the result Tc/0~_0.35 for the quadratic 
planar model with S = ~ (Stanley 1968 a). 

S 

To/O 
T s~:/ O 

0.22 0.36 
0.34 

0.39 
0.42 0.45 

series was not conclusive. Dividing by the Curie-Weiss temperature, 
with z = 4, gives 

TsK/0 ~ 0.225[2- 1/S(S + 1)] (3.9) 

from which the values given in table 9 may be calculated. We remark 
that  the uncertainties in these predictions are fairly large. As an indica- 
tion of the errors involved we point to the result TsK/O ~0.30-0.35 for 
the S= ~ case tha t  was subsequently obtained by Stanley (1967) from 
the series for the classical Heisenberg model, much lower than the value 
calculated from eqn. (3.9). On the other hand, Lines (1971) derived 
TSK/O=0.40 from the same S =  co series (see also Ritchie and Fisher 
1973). One is therefore inclined to take 0.40_+ 0-05 as the estimate for 
S-~ ~ ,  which is indeed close to the experimentally found value for S = ~. 
Since the errors involved in the experimental Te/O values are also con- 
siderable, one should not put  too much weight on the quanti tat ive agree- 
ment. ]n  qualitative respect, however, experiment and theory do yield 
the same picture. 

In summing up we state tha t  the experimental evidence obtained so 
far, favours the existence of finite TsK'S, although the precise values 
remain rather  uncertain. In § 3.2.1 it has been explained how the 
occurrence of such a temperature at which the susceptibility diverges 
will lead to the establishment of long-range order under experimental 
conditions, although this could not happen in the ideal model. 

We will conclude the discussion of 2-d magnets with a few remarks 
concerning the temperature dependence of the spontaneous magnetization 
is these systems. To this end we have reproduced in figs. 47 and 48 the 
magnetization curves of a number of isotropic and anisotropic compounds, 
respectively, available from the literature. For comparison the result 
for the quadratic Ising lattice (S= ½) has been included in both figures, 
whereas in fig. 47 the behaviour of a typical 3-d isotropic salt (MnF2) has 
also been drawn. 
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Firstly we observe that,  since the 2-d Heisenberg lattice cannot sustain 
long-range order, the conclusion must be that  any spontaneous magnetiza- 
tion found in an experimental example cannot be an intrinsic property 
of the ideal system but is the result of the deviations from ideality, i.e. 
the anisotropy and/or the interlayer interaction. In § 3.2.1 we made 
the assumption that  the behaviour of the spontaneous magnetization 
will be of a 2-d anisotropic character or of a 3-d (Ising or Heisenberg) 
nature, according to whether gl~BHa >> IJ'l or conversely. Furthermore, 
in the former case one expects that  the effect of J '  will still become 
manifest, if only the transition temperature is approached closely enough, 
the width of this range around T c being dependent on the strength of J ' .  

Fig. 47 

l I l l l l l / 1  i l l l t l l l ]  I 1 l l l l t l ]  l I l l i l  

1,0 

0.6 
M S (T) 

/ ' / ~ / / / / / /  / ""Rb2 Mn F4 

O.2 

0.1 
15 4 1d 3 lg 2 10 -1 

~ 1  -T/Tc 
Magnetization curves of three examples of the quadratic Heisenberg anti- 

ferromagnet in the critical region, plotted on a double logarithmic 
scale. The prediction for the quadratic S = ½ Ising lattice and the result 
obtained for MnF~ experimentally by Heller (1966) are also shown. 
For references to the data, see the text. 

Arguing in this way, one may define a ' changeover '  temperature 
T*(J'), below which the system behaves two-dimensionally, whereas in 
the region T o -  T* the behaviour is of a 3-d character. I t  is not obvious 
a priori that  the changeover will indeed occur abruptly at a certain 
definite temperature, or tha t  the transition will be more or less smeared 
out. As seen from figs. 45 and 46 two examples have been found that  
seem to behave according to the picture just given, and the changeover 
does take place rather suddenly, in particular in K2MnF 4. In I~b~FeF~ 
the temperature T* is about 0.97 To, whereas in K2MnF 4 it is about 
0.996 To. The explanation for the fact tha t  in the other compounds no 
such effects have been observed would be that  in those eases the transition 
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Fig. 48 
I i ] l l l l ]  I t I ~ l i l l l  I I [ I I I I I  

f /  
1.0 - 

0.6 - ~' - ~ " ~ -  ~ ' d ~ J ' r ' -  - Ms(O) 

I / ~ B~oF4- 

0'3 1 / ° Rb2FoF4- 

0.21 J , , ,,J,,l , , t r,,,,l , i , ,K,, 

10 -3 lO -2 10 -1 1 
- - ~ - - -  l-T/m c 

A similar plot as in fig. 47, but  now for three anisotropic examples of 2-d 
antiferromagnetism. The origin of the data has been cited in the text. 

t empera tu re  T c has no t  been approached  closely enough. Thus in 
K21qiF4, T* would be nearer  to T c than  ~ hundred th  of a per cent  ! 
Since the  difference T c - T *  is re la ted to IJ'/J[ i t  would follow th a t  for 
some reason or the  other  this quan t i t y  is much  larger in Rb~FeF 4 than  in 
K2NiF4, the  case of K2MnF 4 being in termedia te  be tween these two. On 
the other  hand,  the  s i tuat ion is far f rom being solved, since the  apparen t  
cross-over behaviour  m a y  ve ry  well be caused b y  a dis tr ibut ion of transi-  
t ion t empera tu res  th roughou t  the  crystal  (Birgeneau et al. 1973). Clear 
indications for this have been found in the case of l~b2FeF 4 (see above). 
The effect of such a dis tr ibut ion on the da ta  analysis has been discussed 
both  qual i ta t ively  and quan t i t a t ive ly  by  Birgeneau et al., explaining the 
apparen t  cross-over observed by  Hi rakawa  and Ikeda  in K2MnF a by  
a spread in T c of the  order  of 10 -a To in thei r  sample. Their  own data,  
in which no kink could be observed, are indicated in fig. 47 by  the broken 
line. The conclusion therefore  must  be t h a t  in these two compounds 
the apparen t  cross-over is most  p robably  a spurious effect. An example 
of a changeover  of an exponent  t ha t  is more likely to be real will be given 
in §4.4. 

In  any  case one would expect  t ha t  in ter layer  interact ions of the order  
of 10-4-10 -a will be sufficient to bring the region T * -  T~ down to about  
0.99 to 0.90 of To, so t ha t  log-log plots of M~(T)/Ms(O ) versus E = 1 - To/T 
will then  yield fi values which are ei ther near  to the 3-d value fi = ½ or 
lie in between 1 and the 2-d Ising value ~ if the changeover  t empera tu re  
T* is smeared out.  In  order to tes t  this we have ga thered  in table 10 
the observed fl's in the 2-d compounds of the preceding section, together  
with thei r  an iso t ropy parameters  and in ter layer  in terac t ion  constants.  
Also listed are the  ampli tudes of the  singulari ty B, as defined by  eqn. 
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(3.7). For comparison the values of fi and B for the 2-d quadratic Ising 
model and for the 3-d Heisenberg and Ising lattices are given, together 
with the range of e in which the magnetization of these models does follow 
the limiting behaviour given by the power-law of e qn. (3.7) (Wielinga 1971). 

By studying table 10 one may indeed observe a correlation between the 
fi value and the interlayer coupling. FeC12, CrBr a and (C2HsNHa)2CuC1 a 
clearly show 3-d behaviour. Note in particular that  the parameters of 
the anisotropic compound FeC12 are very close to the 3-d Ising predictions, 
whereas for the reasonably isotropic salt CrBr 3 the results are in better 
agreement with those of the 3-d Heisenberg model. Also for MnTiO 3 
a 3-d fl value is found, which finds its explanation in the fact that  in this 
hexagonal compound there is a direct coupling between the neighbouring 
antiferromagnetie layers, in contrast with the situation in the K2NiF 4 
structure. The ratio IJ'/JI will therefore probably also be of the order 
of 10-a-10 -2, as in the Cr compounds of table 7, which have a rather 
similar structure. Such a direct coupling also exists in the structure of 
l~bFeF4, that  accordingly has a higher fi (within the same e range) than 
KFeF4, in which the interaction between the nearest layers is cancelled 
because of symmetry. In spite of this the ratio of [J'/JI in KFeF  4 will 
likely be larger than in the K2NiF a structure because the exchange paths 
connecting the next-nearest layers involve three F ions, instead of the 
two F and two K ions in K2NiF 4. 

The '  intermediate '  fi values of about 0.22 of I{bFeF4, Mn(HCO0)2.2H20 
and K2CuF 4 may be understood in terms of a smeared-out transition 
range, taking into account that  they have been determined in a relatively 
high range of the relative temperature (e > 0.01). Although for K2CuF 4 
an additional lower decade in e was explored, the uncertainty in the choice 
of To in this case enables a fairly wide range of possible fl values. The 
same remark also applies to some of the other compounds of table 10, 
since one must keep in mind that  for • < 10 -~ a knowledge of the T o of 
the investigated sample better than 0.1 °/o is necessary to obtain a reliable 
result for the ft. 

From the fact tha t  in the 2-d Ising model the spontaneous magnetiza- 
tion retains near-saturation values up to a much higher relative tempera- 
ture than in the 3-d models, it is explained why the log-log plots of the 
quasi 2-d salts in figs. 47 and 48 lie in between the 2-d Ising curve and the 
MnF~ result, and also why the measured B values of the isotropic 2-d 
compounds are much lower than the Ising prediction. The particular 
value of M~(T)/Ms(O ) at a certain relative temperature will be dependent 
on e, IJ'/J I and on S. Concerning the dependence on S, for instance, it is 
known from the 3-d models and the 2-d Ising model tha t  the value of B 
will decrease by increasing S, although the exponent fl will to all proba- 
bility retain the same value. For compounds of similar IJ'/J I and a, 
the magnetization at a particular e value will be lower the lower is S. 
Thus K2NiF 4 is nearer to the Ising result for S = 1 than I~b21V[nF4, although 
it is more isotropic. Far away from To, for • > 0.1, one may observe that  

I2 
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the Fe compounds are even closer to the 2-d Ising prediction than KeNiFt, 
which can be explained from their highly anisotropie properties. Not 
surprisingly, the magnetization curve of one of the 2-d Co salts that  
have S = ½ is extremely close to the Ising prediction (preliminary measure- 
ments of Samuelsen on Rb2CoF4, see Samuelsen 1973). In view of the 
above discussion we may add that  only the experiments on extremely 
anisotropic compounds may provide essential information regarding the 
critical behaviour of the spontaneous magnetization in 2-d systems. By 
this we mean that  the measurements of the long-range order in the iso- 
tropic salts, although extremely useful for other purposes, are concerned 
with a property that  is not intrinsic to the ideal system. The purpose of 
such work should therefore lie elsewhere, for instance, to provide more 
detailed studies about the nature of the changeover effect. 

In concluding this section we would like to add that  a slightly different 
approach to the changeover mechanism may be taken. Quite generally 
one might assign a transition temperature To to an ideal model system, 
and then assume that  the deviations from this model will result in a shift 
of To to a To', which would be the experimental transition temperature. 
For temperatures for which I T - T o l  is large as compared with the 
difference I To - To' I , the critical behaviour will then be in accordance with 
the ideal model ; for instance, the susceptibility behaviour will yield the 
right exponent. But as To' is approached, the system realizes that  its 
actual transition temperature is not To but a shifted To', and the character 
of the susceptibility plot is changed. One may thus define an inner region 
I T o ' - T *  I in which the presence of the deviations are felt, the suscepti- 
bility in this range behaving as diverging at Te', with a changed critical 
exponent. 

In the 2-d quasi-isotropie magnets one may identify the ideal T c with 
the Stanley-Kaplan temperature TsK, whereas the shifted T c' would be 
the experimentally observed transition temperature. I t  is of importance 
to note that  for these systems the cross-over can be different for both 
sides of T c. In the case of the spontaneous magnetization observed 
below T O the cross-over will be from 2-d Ising to 3-d Ising-like behaviour, 
and is due solely to J ' .  Above T c the susceptibility, for instance, may 
first change from 2-d Heisenberg to 2-d Ising and thereafter from 2-d 
Ising to 3-d Ising behaviour if, as in most cases, the anisotropy is con- 
siderably larger than the interlayer coupling. We will take up this 
matter again in § 4.4. 

3.3. Three-dimensional magnetic systems 

3.3.1. Introductory remarks 

To his likely surprise, the reader will find the number of experimental 
examples treated in this section to be less than in the previous ones on 
1-d and 2-d magnets. There are a number of reasons for this. Firstly, 
since in this paper 1-d and 2-d magnetism is reviewed for the first time, 
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the authors thought it appropriate to give an extensive treatment of the 
lower dimensional systems, considering also the less ideal examples. 
Evidently, the fact that our own research has been in this field for several 
years plays a role too. Secondly, the number of 3-d magnetic compounds 
being so vast, it would be an almost impossible task to discuss them all, 
so that we decided to regard only the very best examples of either the 
Ising or the Heisenberg 3-d models (a good example of the 3-d planar 
I-leisenberg model is yet to be found). It turns out that in this way one 
is left with few compounds. In particular the number of ferromagnetic 
insulators approximating the nearest-neighbour-only Ising or Heisenberg 
model to a sufficient degree turns out to be disappointingly small. 

Before embarking on a discussion of the experimental examples we 
shall, as before, briefly mention some of the theoretical results that are 
available. Here again such a summary of necessity has to be of a very 
brief and general nature, due to the enormous amount of papers bearing 
on the subject. For more extensive information the reader is referred to 
the review papers mentioned in § 1.1. 

As a first remark we recall that the MF theory is more closely approxi- 
mated in 3-d systems, at least in comparison with the complete inap- 
plicability of this theory in l-d and 2-d cases. Referring to the discussion 
in § 1.2, the explanation is the relative weakness of the effects of short- 
range order in 3-d systems. In fact, if one is not interested in details 
(e.g. critical behaviour), effective field theories will give a satisfactory 
account of the overall behaviour found in 3-d magnets. 

However, near to the transition point (and in the ease of the isotropio 
magnets in the spin-wave region) the failure of the effective field concept 
becomes apparent and one has to take recourse to more sophisticated 
theories. Since no exact treatments of the 3-d Ising and Heisenberg 
models are available, the information about the thermodynamics has been 
supplied byapproximate solutions. In the low-temperature region, T~ Tc, 
one expects spin-wave theory to give a reasonable description of the thermo- 
dynamic behaviour of the I-Ieisenberg model, as is indeed confirmed by 
the experimental findings (see below). On the other hand, in the [sing 
model the extreme anisotropy makes it possible to calculate the limiting 
(T-*0) low-temperature behaviour of the thermodynamic functions, which 
is of exponential form. Combined with results obtained from low- 
temperature expansions this yields a thrustworthy prediction in the region 
T ~ Te, in some cases even quite close to T c. In the critical region, 
high (T > Tc) and low (T < Tc) temperature series expansions have been 
used in both models. By carefully analysing these series with various 
techniques one has obtained estimates of the critical behaviour of the 
specific heat, the ferromagnetic susceptibility and the magnetization, 
that compare favourably with the obtained experimental results (see 
§ 4.3). Thus, in spite of the non-availability of exact solutions, one often 
has come quite far by linking together the results deduced by the approxi- 
mate methods in various temperature regions (evidently the MF theory 
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constitutes the high-temperature approximation). In that  way a 
prediction valid over quite a wide range el temperatures relative to T c 
can be constructed in practice. 

Since the quantitative theoretical information obtained for the critical 
exponents (series expansions) and for the low-temperature behaviour 
(spin-wave theory) will be reviewed in § § 4.2-4.4, together with the experi- 
mental findings, we shall not give a survey of these predictions here. 
They will, however, be mentioned when they arise in the discussion of the 
experimental examples below. 

3.3.2. Survey  o / exper imen ta l  results 

As in the preceding section we will commence with the anisotropic 
compounds. In table 11 we have collected what we consider to be  the 
best examples of the 3-d Ising model known at present, together with their 
critical parameters, as derived from the heat capacity data. These will 
serve to compare the experiments with the theoretical predictions in- 
cluded in the table. 

CoCs3C15 and CoRb3C15 

The origin of the anisotropic properties of these compounds has already 
been mentioned in § 2.2. They are isomorphous to CoCs3Br~, which 
has been discussed in the preceding section. The magnetic ions form a 
simple tetragonal lattice, with a cola o ratio of about 1-1 so that  the struc- 
ture is approximately simple cubic. We have seen that  in the case of 
the bromine compound there is apparently an accidental cancellation of 
the interaction along the c axis, giving the substance a pronounced 2-d 
magnetic character. In the two chlorine compounds, on the other hand, 
the interactions along the c axis and in the a - a  plane are nearly equal. 
From E.S.R. measurements in ZnCsaC15 doped with Co 2+, Van Stapele 
et al. (1966) found that  the exchange within the a -a  plane is antiferre- 
magnetic, whereas the interaction along the c axis is of ferromagnetic 
sign and about 25% smaller in magnitude. For CoRb3C15, on the other 
hand, B1Ote (1972) deduces the coupling in the c direction to be also anti- 
ferromagnetic, by comparing the total energy involved in the magnetic 
ordering (derived from the heat capacity) and the measured Curie Weiss 0. 
The occurrence of both ferro and antiferromagnetic interactions along the 
c axis in this series of compounds may provide an explanation for the 
apparent cancellation of this interaction in the case of CoCs3Br 5. 

Since in the Ising model the sign of the exchange constant is irrelevant 
as concerns the heat capacity, the experimental data on both CoCs3C15 
and CogbaC15 may be compared with the theoretical curve for the simple 
cubic Ising model. Basing themselves upon the work of Baker (1963) 
and Sykes et al. (1972), Bl(~te and Huiskamp (1969) obtained a prediction 
for this model that  is shown as the full curve in fig. 49. I t  can be seen 
from this figure and table 11 that  their data on CoRbaC15 fit the theory 
excellently. For CoCsaC15, which was studied by Wielinga et al. (].967) 
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the agreement is slightly less. As mentioned by Wielinga et al. (1967) 
and B16te and Huiskamp (1969), this may be attr ibuted to the lower T c 
of the chlorine compound, as a consequence of which dipolar interactions 
will be relatively more important. These long-ranged interactions can 
enhance the asymmetry of the specific heat curve by the fact that  they 
may tend to increase the effective number of nearest neighbours. In 
fact it is observed from table 11 that  the caloric data on CoCs~C15 are in 
better agreement with the predictions for the b.c.c. Ising model. Thus, 
although on the basis of the crystal structure one would choose a s.c. 
magnetic structure, the specific heat is best described by an Ising model 
with a higher (effective) coordination number. 

C/R 

Fig. 49 
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Heat capacities of CoRb3CI 5 and CoCsaCl ~ compared with the theoretical pre- 
diction for the simple cubic Ising model. (After B15te and Huiskamp 1969). 

The transition temperatures and exchange constants listed in table 11 
have been derived from the heat capacity data. In the ease of CoCs3C15 
the J / k  so obtained was in reasonable agreement with the average value 
deduced from the E.S.R. experiment. I t  must be noted that  the listed 
exchange constants include the dipolar contributions. 
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Magnetic experiments on CoCs3C1 ~ have been performed by  Mess et al. 
(1967). However, the existence of a ferromagnetic interaction in this 
compound makes a comparison with the antiferromagnetic Ising model 
irrelevant. Not surprisingly, the measured antiferromagnetic suscepti- 
bility deviates strongly from the prediction for the s.c. Ising antiferro- 
magnet. Unfortunately, apart from the powder susceptibility, no 
magnetic measurements on Col~b3C15 have been performed up until the 
present. 

The interactions in the three Dy compounds in table 11 are predomi- 
nantly of the dipolar kind, but  they are well approximated by an Ising 
S= ½ model. The highly anisotropic properties of the Dy 3+ ion have 
been discussed in § 2.2. The energy separation of the lowest Kramers 
doublet and the first excited state is about 70 cm -1 in DyPO 4 and DAG, 
and about  55 cm -1 in DyA1Os. Since the ordering temperatures are in 
the liquid helium range, the population of the excited level is negligible, 
leaving a ground state with a nearly perfect uniaxial magnetic character 
(gll-~18; g±_~0.5). 

DyAIOa 

The crystal structure of DyAlOa is a distorted perovskite in which the 
Dy ions occupy two magnetically inequivalent sites. The magnetic 
structure has been determined by  neutron diffraction by Bidaux and 
Mdriel (1968) and can in the antiferromagnetic state be described in terms 
of a four-sublattice model, with the principal axes within the a-b plane. 
There are six nearest neighbours, four in the a-b plane and two along the 
c axis. From their optical work, Schuchert et al. (1969) found the inter- 
actions to be mainly of dipolar origin with substantial further neighbour 
contributions. Furthermore, they deduced the exchange interactions 
within the a-b plane to be much smaller than along the c axis. Conse- 
quently, the total magnetic interaction along the c axis is predominant, 
which may explain why the critical parameters given in table l l, as 
obtained by  Cashion et al. (1968) from the specific heat, are in better  
agreement with an Ising model having a lower coordination number than 
s.c. (compare with the diamond lattice, z=4) .  In table 11, Tc/O has 
been deduced from the total magnetic energy (Cashion et al. 1968). By  
fitting the measured parallel susceptibility to the Curie-Weiss law in the 
region 6 < T < 20 K Schuchert et al. (1969) obtained 0 = 18 + 3 K, giving 
T¢/O ~_ 0.20 ! This again illustrates the errors that  may  arise when the 
MF theory is applied, even in the temperature range 2To < T < 5T c, in 
particular for S = ½. 

From their measurement of the magnetoelectric susceptibility, Holmes 
et al. (1971) were able to determine the critical behaviour of the sub- 
lattice magnetization. The power-law fit yielded fl=0.311 +0.005, 
B =  1.51 + 0.03 and T c= 3-525 + 0.001 K. The latter value is in good 
agreement with Tc=3.52 K, as derived from the specific heat. The 
fl value is within the uncertainty equal to the theoretical prediction for 
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3-d Ising lattices (fi is thought to be independent of the precise lattice 
structure). On the other hand, B is predicted to decrease slowly with 
coordination number, being 1.66, 1.57 and 1.49 for the diamond, s.c. and 
b.c.c, lattice, respectively (see, e.g., Fisher 1967). 

DyaA15OI~ 

Dysprosium aluminium garnet (DAG) has the cubic garnet structure 
containing six magnetically inequivalent Dy ions. The local z axis is 
different for each of the six sites, with an equal number of moments 
pointing along the _+ a, _+ b, and _+ c axes. As a consequence, the ordered 
antiferromagnetie state must involve at  least six different sublattices. 
However, in a magnetic field along a (111) axis, the a, b, and c axes 
become equivalent in threes, so that  the substance can be described within 
a two-sublattice Ising model. 

The extensive literature on this material includes specific heat, magnetic 
resonance, magnetization, susceptibility, optical and neutron scattering 
experiments, and one may safely say tha t  it is one of the most extensively 
investigated antiferromagnetic materials. Recently, Wolf, Landau, 
Keen and Schneider have started a series of papers which aim to give a 
complete picture of the magnetic and thermal properties (Landau et al. 
1971, Wolf et al. 1972). Since there is no use in reproducing all the in- 
formation, we refer the reader to these publications for the full details as 
well as references to the earlier papers. 

What  is of interest to us in the present context is how closely DAG 
resembles a particular 3-d Ising model. Although calculations for the 
garnet structure arc absent, we may make a comparison with lattices of 
a similar coordination number. In DAG about 80% of the total interac- 
tion is between the nearest neighbours. The dipolar contribution to this 
nearest-neighbour interaction is about twice as large as the exchange part  
(see, e.g., Norvell et al. 1969 for a table of the various interaction energies). 
Since there are four nearest neighbours one would expect the critical 
parameters to agree with an Ising model with coordination number 4, 
such as the diamond lattice. This is indeed observed from table 11. 
That  the sum of the interactions with further neighbours is only 20°/0 of 
the total interaction energy arises because the individual interactions have 
a tendency to cancel. The estimate 0-- 3.7 _+ 0.2 K used in table 11 was 
obtained by Ball et al. (1963), who deduced the effective interaction 
constant from both the heat capacity in the low-temperature region and 
the total magnetic energy. 

The observed value of the critical exponent for the magnetization 
fl=0.26_+ 0-02 (Norvell et al. 1969) is lower than the accepted Ising 
prediction, fi=0.312 (see § 4.4). An accurate value for the amplitude 
was not reported. The critical exponents associated with the staggered 
susceptibility and the correlation length, also determined by these authors, 
will likewise be discussed in § 4.4. Moreover, in tha t  section the results 
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of the measurement of the specific heat singularity are compared with 
Ising model predictions. 

Lastly we note that  DAG is a suitable material for a s tudy of the field 
dependence of the thermodynamic properties, since the fields needed to 
bring the system into the paramagnetic phase (for T < To) are lower than 
10 kOe. Elaborate measurements have been reported by Landau et al. 
(1971), from which some very interesting features have emerged (see 
§ 4.5). 

DyPO4 

This compound has the tetragonal zircon structure in which the magnetic 
ions form a diamond-like lattice. The extensive study of this compound 
by Wright et al. (197 l) includes magnetic susceptibility, heat capacity and 
optical measurements. In addition the temperature dependence of the 
sublattice magnetization has been obtained by Rado (1969) from the 
magnetoelectric susceptibility. The nature of the magnetic structure 
(antiferromagnetic alignment along the c axis) was confirmed by the 
neutron diffraction studies of Scharenberg and Will (1971), and of Fuess 
et al. (1971). 

The excellent agreement between the experimental data and the theo- 
retical results of Essam and Sykes (1963) and Sykes et al. (1965) on the 
diamond S = ½ Ising lattice (nearest-neighbour interactions only ; z = 4) 
is illustrated in fig. 50 (a), (b), (c), where the plots of the heat capacity, 
the parallel susceptibility and the sublattice magnetization have been 
reproduced from the references cited. As mentioned above, the theo- 
retical information is obtained from high and low-temperature series 
expansions. An attractive point of the diamond lattice, in this respect, 
is that  the convergence of the low-temperature expansions appears to be 
much faster than for other 3-d lattices. Discussion of the critical be- 
haviour of the specific heat will again be postponed to § 4.4. 

I t  must be stipulated that  in the case of the specific heat and the sus- 
ceptibility the only adjustable parameter in the series expansions is the 
effective exchange J/k. In the present case J/k was determined by 
comparing the observed exponential decay of C m and X H below T o with 
the theoretical expressions for the limiting low-temperature forms of these 
quantities [ ~ e x p  ( - z[J I /kT)] .  The values obtained in this way are 
wholly consistent and in agreement with that  derived from the optical 
work. As a final check one may compare the experimentally obtained 
critical temperature To/0=0.678 _+ 0.01 (using T c=3.390 K and 
J / k = -  2.50 K) with the theoretical value 0.676. As concerns the sub- 
lattice magnetization, comparison with theory in fig. 50 (c) involves the 
low-temperature expansion for T / T  o < 0.8, and in the critical region a fit 
to the power law taking for the exponent fi = 0.314 and for the amplitude 
B = 1.661, values that  are within the uncertainty of theory (see also § 4.4). 

Before leaving DyPO 4 the question must be posed why in fact there is 
over the whole temperature range such a striking agreement with the 
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Magnetic and thermal data on I)yPO 4 compared with predictions for the S = ½ 
Ising model on the diamond lattice (z = 4). For the references see the 
text. (a) Magnetic specific heat. The solid curve is not a line drawn 
through the experimental data but is the theoretical prediction obtained 
from high and low-temperature series expansions! (b) Antiferro- 
magnetic parallel susceptibility. The solid curves are the predictions 
of the high and low-temperature expansions for xT/C. (c) Tempera- 
ture dependence of the spontaneous magnetization derived from the 
magnetoelectric susceptibility. The solid curves are the low-tempera- 
ture expansion and the power-law behaviour with fl = 0.314 and B = 1-661. 

nearest-neighbour only Ising model, in view of the substantial contribu- 
tions to the magnetic interaction from the long-ranged dipole interac- 
tions that  will exist in this material. Indeed, about 50% of the nearest- 
neighbour interaction constant J/k cited above is of dipolar origin. The 
only way out of the dilemma seems to be contained in the conclusion 
drawn by Wright et al. (1971) from their experiments, namely, that  the 
dipolar and exchange interaction of a given ion with neighbours other 
than first tend to cancel. They found that,  although the individual 
interactions with further neighbours are considerable, their sum amounts 
to only a few per cent of the nearest-neighbour J/k. By this fortunate 
coincidence DyPO 4 distinguishes itself from the other two dysprosium 
compounds, in which large further neighbour interactions have to be 
reckoned with. 
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In addition to the above-mentioned examples there are some other 
more or less anisotropic materials that  have been analysed in terms of 
the 3-d Ising model. For instance, the specific heat of CoF~, which has 
a ground doublet (effective spin ½) with fairly anisotropic g values, is in 
reasonable agreement with 3-d Ising predictions (Stout and Catalano 
1955, Wielinga 1971). A complication here is the fairly high T c value 
(37.70 K) and the presence of higher energy levels that  have a relatively 
small separation from the lowest doublet. In any case, we expect that  
table 11 comprises most of the clear-cut examples of the 3-d Ising anti- 
ferromagnet with S = ½ known at present. 

Turning now to Ising-like compounds of higher (effective) spin value, 
there exist some Ni 2+ compounds ( S =  l) and Fe 2+ compounds (S=2) ,  
that  receive consideration. However, we repeat here the warning given 
in § 2.2 that  in these materials with higher spin values the anisotropy is 
not as complete as in the Dy and Co compounds. As examples we 
mention Ni(CN)2NH3C6H 6, in which the single-ion anisotropy and the 
exchange were found to be about equal (Takayanagi and Watanabe 1970). 
Furthermore, a number of Fe e+ compounds with effective S = 2 typically 
have an anisotropy that  is about twice as large as the exchange. Such a 
value for the anisotropy is certainly large enough for the critical behaviour 
to be Ising-like. On the other hand, the spin-wave dispersion will still 
be of the anisotropic Heisenberg form, the energy not  being independent 
of the wave-vector as in the Ising limit. Moreover at temperatures 
T >> To the Ising S = 2 formalism will break down. 

As our last example we will therefore consider FeF2, which has also 
been the subject of much research during the past 20 years. FeF 2 has 
the rutile crystal structure and is isomorphous to MnF~ and CoF 2. In 
the body-centred tetragonal magnetic lattice the moments are aligned 
along the c axis, with the moments at the cell corners antiparallel to the 
central spin. The ao/c o ratio is about 1.4. In FeF 2 the splitting of the 
5D state by a cubic field results in an orbital triplet lying lowest. The 
orbital degeneracy of this level is removed by an orthorhombic distortion, 
leaving an orbital singlet as the lowest level, with five-fold spin degeneracy. 
Spin-orbit coupling (and spin-spin interactions) will further split this 
orbital state, but  since the first excited level is about  1600K away, 
whereas the spin-orbit coupling constant is only _~ 90 K, one may describe 
the ground state by an S = 2 spin Hamiltonian. The anisotropy is mainly 
uniaxial (DS~ ~) and the exchange term contains small contributions from 
next-nearest neighbours in addition to the (antiferromagnetic) nearest- 
neighbour interaction. Hutchings et al. (1970) have measured the spin- 
wave dispersion, finding the interactions other than between nearest 
neighbours to be only about 5% of the nearest-neighbour exchange. From 
their results one can calculate an effective exchange J / k = - 2 . 6 9  K, 
leading to a Curie-Weiss 8=86  K, which compares favourably with 
.~82 K as measured by Foner (1964). For the anisotropy constant 
Hutehings et al. obtained D / k  = - 4.65 K. 
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The transition temperatures vary slightly in the various publications, 
but  most agree to T~ = 78.3 _+ 0.2 K. Such a high value is a disadvantage 
in specific heat measurements, since it will be difficult to separate the 
magnetic specific heat from the lattice contribution. In spite of this, 
Stout and Catalano (1955) have succeeded in making a reliable subtraction 
of the lattice part, mainly because they were able to estimate the phonon 
contribution from the heat capacity of the isomorphous, non-magnetic 
zinc compound. According to their results, about 87% of the total 
magnetic entropy R In (2S + 1) is gained below To, which may be compared 
to the value of 92% predicted for the f.c.c. Ising lattice with S = 2 (Domb 
and Miedema 1964). For the b.c.c. Ising model there are no theoretical 
calculations available, but  one may obtain an estimate of about 88-5% 
by considering the difference between f.c.c, and b.c.c, for S =  ½. 

Another critical parameter that  can be compared with theory is the 
transition temperature Tc/O. With To= 78-3 K and 0--86 K we derive 
T~/O= 0-91. The value for Ising b.c.c, with S =  2 may be obtained in a 
similar manner as above from the f.c.c, result (0.864), giving Tc/O = 0.84. 
The rather large difference might be due to a temperature dependence of 
the exchange, since 0 was calculated from interaction energies measured 
at 4.2 K. Analyses of high-temperature data (X, Cm) by  Lines (1967 a) 
(see also Domb and Miedema 1964), although subject to large errors, have 
indeed yielded a higher (6%) estimate for the exchange, bringing down 
T~/O to 0.86. In particular the magnetic energy parameters are not in 
agreement with Ising model predictions (in contrast to the entropy para- 
meters), and point to a larger value for 0. This may be understood from 
the expected failure of the Ising S =  2 formalism at high temperature, 
mentioned above. 

On the whole, however, FeF 2 can be considered as being a fairly good 
example of a b.c.c. Ising model with S = 2. To illustrate the effect of a 
change in spin value, we have therefore compared in fig. 51 its magnetic 
specific heat with that  of CoCsaC15, which as we have seen above approxi- 
mates the S = ½ b.c.c. Ising model. One may observe that  the experiment 
neatly confirms the expected increase in C m with S. The effects of short- 
range order, reflected in the high-temperature tail, are predicted to become 
less important by increasing S and this is also apparent from fig. 51. 

The specific heat in the critical region has been studied by Salamon and 
Ikushima (1971). The critical behaviour was found to be similar to that  
observed in compounds with lower S (see § 4.4). Other experiments on 
FeF 2 include M6ssbauer (Wertheim and Buchanan 1967), ultrasonic 
(Shapira 1970), N.M.R. (Gottlieb and Heller 1971) and neutron diffraction 
studies (Hutchings et al. 1972 a). Some of these bear upon the critical 
behaviour and will also be mentioned in § 4.4. 

In concluding the discussion of highly anisotropic 3-d magnets we 
mention the only Ising-like ferromagnets that  to our knowledge have been 
found so far, namely the group of compounds lZ(OH)3 with I~ =Tb,  Dy 
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Comparison of the specific heats of two highly anisotropic materials with dif- 
ferent S. The (effective) number of nearest neighbours is eight in 
both cases. This figure illustrates the qualitative differences arising 
from a change in S. For references to the data see the text. 

and Ho (Wolf et al. 1968). Of these, Tb(OH)a seems to be the best 
approximation of the Ising model, the first excited level lying 170 K 
above the ground doublet (Scott et al. 1969). In the case of Dy and Ho, 
specific heat measurements indicated the existence of lower-lying excited 
levels (Meissner and Wolf 1969). The transition temperatures are all 
within the liquid helium region (To= 3-71 K for Tb(OH)3 ). 

From the evaluation of the dipolar and exchange interactions in 
Tb(OH)3 by Skjeltrop and Wolf (1971), it turns out that  the range de- 
pendence of the interactions is quite complex, due to cancellations between 
dipolar and non-dipolar contributions within the various shells of neigh- 
bours on the one hand and between the total contributions of these shells 
on the other. For instance, the dipolar part of the first neighbour inter- 
action (zl= 2) is nearly wholly cancelled by the exchange contribution. 
The second neighbour interactions (z2= 6) appear to be predominating, 
but further neighbour contributions are substantial, to say the least. 
Therefore, although the interactions are of the Ising type, one would not 
expect to find agreement with a nearest-neighbour only model, except 
perhaps very close to T c. Indeed, the critical behaviour of the ferro- 
magnetic susceptibility, which according to Wolf et al. (1968) obeys a 
power law with a critical index Y near to the 3-d Ising value of 1.25, 
seems to be confined to a rather narrow range above T c. The value of 
the Curie-Weiss constant obtained by Skjeltrop and Wolf is 0 = 4.47 K, 
in agreement with the results deduced from susceptibility, caloric and 
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optical measurements (Scott and Wolf 1969). This leads to To~O= 0-83, 
pointing to a fairly high effective coordination number. 

Next we turn to the representatives of the 3-d Heisenberg model. 
Evidently, since a large number of materials exist that  are fairly isotropic, 
one has to choose a certain maximum value for the anisotropy allowed for 
a compound in order to be considered a reasonable approximant of the 
tteisenberg model. Although there is a certain amount of arbitrariness 
in such a choice, we have confined ourselves to substances in which the 
ratio H a / H  E of anisotropy to exchange field is not larger than about 12/o. 
In some respects this is already too large a value, for instance, as far as 
the critical behaviour is concerned. In the preceding pages it has been 
mentioned that  the presence of anisotropy will cause a changeover from 
Heisenberg to Ising character if T c is approximated closely enough. 
The distance of the changeover point (or region) from To depends on 
HA/H E and theoretical work shows that  in the case of an anisotropy of 
1% the changeover already occurs outside the critical region, which for 
the magnetization and the susceptibility extends to 1 - Te /T  ~_ 10 -2 and 
10 -1, respectively. On the other hand, 1% will be low enough to justify 
comparisons of the general appearance of the specific heat curve with 
Heisenberg model predictions. 

The examples tha t  remain after applying this criterion have been 
compiled in table 12. I t  may be seen tha t  (thanks to the existence of 
the cubic perovskite structure) we have been provided with two extremely 
isotropic materials, KNiF a and RbMnF3, having S =  1 and S=~ ,  re- 
spectively. For S =  ½ we are not quite as fortunate, which originates 
for most part  from the fact that  Cu ~+ compounds are particularly notorious 
for their Jahn-Teller distortions (e.g. KCuF~). 

CuC12 . 2H~0 

This is the only example of a 3-d antiferromagnetic Cu compound tha t  
we could find (Cu compounds tend to be ferromagnetic). At the same 
time it is one of the earliest investigated antiferromagnets. Although by 
no means an ideal example, we shall argue that  its behaviour agrees 
qualitatively with what is expected for a S = ½, 3-d Heisenberg system. 
In this respect the present analysis is a bit different from earlier treat- 
ments (Marshall 1958, Nagai 1963, Oguehi 1955, and Hewson et al. 1965), 
in which the effects of short-range order as observed in the specific heat 
and susceptibility were ascribed mainly to a chain-like character. How- 
ever, it appears tha t  the relative importance of short-range order is 
certainly not larger than expected from the calculations for a 3-d S = ½ 
Heisenberg antiferromagnet. That  these effects are larger than commonly 
observed in 3-d systems, arises merely from the low spin value. There is 
thus no a priori reason to assume a chain model in order to explain the 
observed behaviour. 

For instance, the specific heat, reproduced in fig. 52 from data of Clay 
and Staveley (1966), shows no sign of a ' shoulder ' above the peak at To, 

A.P. K 



T
ab

le
 1

2.
 

C
ri

ti
ca

l 
en

er
g

y
 a

n
d

 e
n

tr
o

p
y

 p
ar

am
et

er
s 

of
 t

h
eo

re
ti

ca
l 

3-
d 

H
ei

se
nb

er
g 

m
od

el
s.

 
In

 a
d

d
it

io
n

 t
o

 t
h

e 
n

ea
re

st
-n

ei
g

h
b

o
u

r 
S 

=
 ½

 a
n

d
 S

 =
 ~

 
m

od
el

s 
(1

) 
th

e 
eq

u
iv

al
en

t 
se

co
nd

 (
1,

 2
) 

n
ei

g
h

b
o

u
r 

m
od

el
s 

w
it

h
 S

 =
 ½

 h
av

e 
be

en
 l

is
te

d.
 

T
h

e 
va

lu
es

 r
ef

er
 t

o
 

fe
rr

om
ag

ne
ts

. 
In

 c
as

e 
of

 T
~/

O
, 

th
e 

va
lu

es
 f

or
 a

n
ti

fe
rr

o
m

ag
n

et
s 

(S
=

½
) 

h
av

e 
be

en
 a

d
d

ed
 

(p
lu

s 
an

d
 m

in
u

s 
si

gn
s)

. 
T

h
e 

~
. 

ad
d

it
io

n
al

 n
u

m
b

er
s 

in
 p

ar
en

th
es

es
 

gi
ve

 t
h

e 
n

u
m

b
er

 
of

 e
q

u
iv

al
en

tl
y

 i
n

te
ra

ct
in

g
 

m
ag

n
et

ic
 n

ei
gh

bo
ur

s.
 

T
h

e 
th

eo
re

ti
ca

l 
va

lu
es

 m
ay

 b
e 

fo
u

n
d

 i
n 

R
u

sh
b

ro
o

k
e 

et
 a

l. 
(1

97
3)

. 
F

o
r 

re
fe

re
nc

es
 t

o
 t

h
e 

ex
p

er
im

en
ta

l 
d

at
a 

se
e 

th
e 

te
x

t.
 

o 

M
od

el
 o

r 
co

m
p

o
u

n
d

 

H
ei

se
nb

er
g,

 s
.c

. 
(1

) 
(z

=
6

) 
H

ei
se

nb
er

g,
 b

.c
.c

. 
(1

) 
(z

=8
) 

H
ei

se
nb

er
g,

 f
.c

.c
. 

(1
) 

(z
= 

12
) 

H
ei

se
nb

er
g,

 s
.c

. 
(1

, 2
) 

(z
 = 

18
) 

H
ei

se
nb

er
g,

 b
.c

.c
. 

(1
, 2

) 
(z

= 
14

) 
H

ei
se

nb
er

g,
 f

.c
.e

. 
(1

, 2
) 

(z
 =

 1
8)

 

S 
T

 o
 (K

) 

½
 

1 2 1 2 2 2 

J/
k 

(K
) 

To
/O

 

0.
56

 
(+

) 
0.

64
 (

 --
 ) 

0.
63

 
(+

) 
0-

70
 (

--
) 

0.
67

 (
+)

 
0.

72
 (

 --
 ) 

0.
76

 (
+

) 

0.
71

 (
+

) 

0-
76

 (
+

) 

So
/R

 

0.
43

 

0"
45

 

0-
46

 

0-
50

 

0"
48

 

0"
50

 

(s
~

-s
o

) 
(s

~
-s

o
) 

R
 

So
 

0.
26

 
0-

60
 

0.
24

 
0.

53
 

0.
23

 
0-

50
 

0-
19

 
0.

38
 

0.
21

 
0-

44
 

0.
19

 
0.

38
 

--
 

E
 

o 

R
T

o
 

0"
89

 

0"
79

 

0"
75

 

0"
66

 

0"
72

 

0"
66

 

-E
 

c 
R

T
 c

 

0"
60

 

0"
46

 

0'
43

 

0"
31

 

0"
36

 

0"
31

 

(E
c-

 E
o)

 
- 

E
o 

R
T

o
 

(E
 e

- 
E

o)
 

0"
30

 
2"

03
 

0"
33

 
1"

39
 

0"
31

 
1"

38
 

O
'3

5 
0"

88
 

0"
36

 
1"

00
 

O
'3

5 
0"

88
 

9~
 7V
 



Experiments on simple magnetic model systems 147 

6 

+ + ÷ 

p,. 

u ' o l ~  
• ° 

• ° 

d~d~ 

I I ~  I I 

o 6 

c~ 

o o  0 6  

d d 
d ~. d 

v c & ~ @  

@ 

o 

~ 2  



148 L . J .  de Jongh and A. 1~. Miedema on 

Fig. 52 
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Specific heats of CuCI~. 2tt~O and neodymium gallium garnet (NdGaG). 
Both materials have S--½ and are fairly isotropic, in particular the 
Cu compound. For references to the data see the text. 

which would be indicative of a pronounced chain character. The entropy 
change above T c is about 33% of R In 2 (Friedberg 1952), which is of the 
same order as (but even less than) expected for the Heisenberg s.c. 
ferromagnet (38%). The difference be tween  T c and the temperature 
Tma x of the maximum in )~ was reported to be about 15°/0 of Tma x 
(Van der Marel et al. 1955). De Jongh (unpublished) has used the high- 
temperature series expansion for the S=½, s.c., Heisenberg antiferro- 
magnet (Baker et al. 1967 b) to locate the susceptibility maximum. In 
combination with the prediction for the transition temperature given by 
Rushbrooke and Wood (1963), the difference is found to be 20% of Tn,~ 
(see also below). Again the agreement is satisfactory. 

Nevertheless the exchange will likely be a bit smaller in one crystallo- 
graphic direction. Indication of a chain character may be deduced from 
the orthorhombic crystal structure, in which chains of octahedra linked 
by  edges are found along the c axis. The copper ions are in the centres 
of the octahedra and each ion has its two nearest neighbours along the 
c axis, being connected with these via two Cu-CI-Cu paths. The super- 
exchange paths connecting it with the four next-nearest neighbours, 
which are in the a-b  plane, involve at least two ligands (C1 or O). The 
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nearest-neighbour interaction is antiferromagnetic, the (net) coupling 
within the a-b plane is ferromagnetic. This leads to the picture of anti- 
ferromagnetic chains coupled by a weaker (ferromagnetic) coupling. 
Alternatively one may conceive the structure as consisting of ferro- 
magnetic layers, with an antiferromagnetic coupling J ~  between them tha t  
is stronger than the intralayer interaction J~. Evidence for a slight 
canting of the moments out of the a-b plane (which is favoured by the 
dipolar coupling) into the direction of the c axis has been given by 
Umebayashi etal. (1968). This effect has been predicted by Moriya and 
later by Joshua (1970). 

The net antiferromagnetic interaction may best be estimated from the 
field needed to saturate the system at temperatures T ~ To. From the 
measurements of Van der Sluys et al. (1967) one deduces 
He=(150+  10)kOe. Considering that  the experiment was performed 
on a powdered sample and tha t  the orthorhombic anisotropy does not 
exceed 1%, one may safely put Ho= 2HEal , so that  HEal= (75_ 5)kOe. 
The g values have been measured by Gerritsen et al. (1955), who obtained 
g~ = 2.19 ; gb = 2.04 and gc = 2.25 (see also Rao and Narasinhamurty 1963). 
With the g value for a powder, g= 2.16, we then calculate the antiferro- 
magnetic exchange to be ZafJaf/k=-(11 + 1)K. Assuming two anti- 
ferromagnetic neighbours this leads to an antiferromagnetic exchange 
along the e axis of strength J~f/k ~_-  5.5 K. The ferromagnetic inter- 
action in the a-b plane cannot be deduced from the existing data. One 
may only estimate it to be about five times smaller than J ~  in the follow- 
ing way. From the theoretical value To/O ~_ 0.6 for  a s.c., S = ½, ferro or 
antiferromagnet and the measured To= 4-36, one obtains a mean value 
for the interaction per magnetic neighbour of about 7/3 K. With six 
neighbours and zaf ]Ja~ ]/k ~ 11 K, z~f = 2, this leaves a ferromagnetic 
interaction of about 1 K. 

Evidence for zero-point spin deviations is found from the perpendi- 
cular susceptibility extrapolated to T = 0, in a similar way as discussed in 
preceding sections. Using the value z~fJ~f/k = -11  K derived from Ho, 
we calculate the X± in the b direction at 0 K to be X.b(0) = 3.5 × 10 -2 ema/ 
mole from the MF formula:  x±(O)=Nog2t, B2/4z[J]. This may be com- 
pared to the experimental value X±b(0)= 2-56 × 10 -2 cma/mole found by 
Van der Mare1 et al. (1955) for this direction. Since the anisotropy fields 
are not larger than 1 ~o of the exchange field, one is apt to explain this 
large reduction of (27 + 5)% of X±(0) as being nearly wholly due to zero- 
point motions. Spin-wave theory (see, e.g., Keffer 1966) predicts a 25% 
reduction of X±(0) in the case of a s.c. isotropic antiferromagnet, so that  
once again the order of magnitude is correct. 

The orthorhombic anisotropy may be estimated in the following way. 
From the spin-flop field H s F _ 6 . 5 k O e  (Hardeman and Poulis 1955, 
Butterworth and Zidell 1969), the anisotropy within the a-b plane is 
calculated as H~ I ~ 280 Oe from the relations Hs~ 2 ~ 2HE~fHAI ~_ HoHA I. 
From AFMR results Joenk (1962) has found the out-of-plane anisotropy 
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HA II to be about three times as large as HA I. Thus we have HA I/ 
H E ~_ 4 x 10 -3 and HAII/HE ~_ 1.2 x 10 -2. 

Summing up we may say that  CuCl~. 2H~O has a fairly small anisotropy 
and behaves grosso modo as expected for a 3-d S = 1 Heisenberg anti- 
ferromagnet. In spite of its imperfections it remains the best example 
of this particular model available at  present. 

NdGaG 

In a recent paper, Onn et al. (1967) have reported specific heat measure- 
ments on a number of gallium garnets, some of which appear to approxi- 
mate the ant]ferromagnetic, S = ½, Heisenberg model. We have therefore 
included Nd and Sm gallium garnet in table 12. From the total entropy 
changes, which are near to R In 2, one concludes that  only the lowest 
doublet is populated. The critical parameters derived from the specific 
heat are in reasonable agreement with the predictions for a Heisenberg 
model with low coordination number (which is likely to be z = 4 in these 
garnets), l~ote tha t  the theoretical values apply to ferromagnets. Esti- 
mates of the dipolar contributions to the exchange yield rather small values. 

However, it is very likely that,  although the g values are not quite as 
anisotropic as in DAG (Wolf et al. 1962), the anisotropy in these garnets 
will still be far larger than in CuCl~. 2H20 (quantitative values have not 
yet  been obtained). This will be the explanation for the fact tha t  the 
specific heat curve of l~dGaG, also plotted in fig. 52, lies above the result 
for the Cu compound. The latter is therefore most probably a better 
approximation. 

KNiF~ 

This cubic perovskite is an extremely close approximation of a 3-d 
nearest-neighbour only Heisenberg system. Although not yet  known 
quantitatively, the anisotropy will be very small. Dipolar contributions 
cancel because of the cubic symmetry, which is retained also at  low 
temperatures (Okazaki and Suemune 1961 b, Scatturin et al. 1961). As 
concerns the crystal-field anisotropy, we may compare KNiF 3 with 
K2NiF4, since in both cases the Ni 2+ ions are surrounded by an octahedron 
of F -  ions. In K2NiF 4 this octahedron has a small tetragonal distortion 
of about 1-5%, which, as we have seen in the above pages, gives rise to 
a uniaxial anisotropy of the order of 10 -3. Since for KNiF 3 there is 
no indication of such an effect, one expects the anisotropy to be at least 
one or two orders of magnitude smaller. Furthermore, there exists 
evidence tha t  next-nearest neighbour interactions are a mere 5 × 10 -3 of 
the nearest-neighbour exchange (Yamaguchi and Sakamoto ]969). The 
only setback is the high position of the transition point, Tc=246 K 
(Nouet et al. 1972) which greatly hampers an accurate determination of 
the magnetic specific heat. 

Lines (1967 b) has given an extensive discussion of KNiF 3 and has been 
able to obtain a fairly accurate estimate of the exchange by analysing the 
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measured powder susceptibility (Hirakawa et al. 1960) in terms of the high- 
temperature series expansion. From the fit of the paramagnetic suscepti- 
bility to this expansion he obtains J /k  = 43 _+ 2 K. The series expansion 
also indicated the position of the maximum in the susceptibility. Relat- 
ing this to the experimentally observed T(Xm~x)=275 K, Lines finds 
J /k  ~_ 45 K. Furthermore, with J /k  = 43 K, the experimental T~/O = 0.716 
is in good agreement with the prediction To/O = 0.721 for an s.c. Iteisenberg 
antiferromagnet with S = I  (Rushbrooke and Wood 1963, Rushbrooke 
et al. 1973), also derived from analyses of series expansions. Although 
Chinn et al. (1971) obtained J/lc= -50.8  + 0.6 K from the analysis of 
their two-magnon Raman scattering experiments, we will adhere to the 
value J /k  = - 44 K, since also in the case of K~NiF~ the J/k  determined 
by these authors was more than 10% higher than the other results (see 
above). 

Also in the case of KNiF a, having S = 1, one should expect a substantial 
reduction of the )/±(0) arising from zero-point motions. For S = I ,  
spin-wave theory predicts a 13~o reduction. Unfortunately there is 
only a powder susceptibility measurement available, but one may put  
X~(0)=~X±(0)+)G.v. and calculate the experimental X±(0) from the 
measured xp(O)=9 .0x lO-~em3/g  and the temperature independent 
Van Vleck term Xv.v. = 2.4 x 10 G ema/g, as determined by Lines (this will 
include the diamagnetic contribution). The result X±(0) = 1.53 x 10 .3 cm3/ 
mole may be compared with the value X±(0)= Nog21XB~/4z]Jl= 1.80 x 10 -a 
cm3/mole calculated with g=  2.25 and J/]c= 44 K, yielding an apparent 
reduction of _~ 15~/o, in reasonable agreement with expectation, considering 
the uncertainties involved. 

Another test of zero-point spin deviation in this material has been 
accomplished by Hutchings and Guggenheim (1970) who, from neutron 
diffraction measurements, deduced the effective moment to be (S,} = 0-851 
(_+ 0.050). In this experiment the reduction of the observed moment 
arises from the combination of zero-point effects (prediction : 
( S ~ } = S - 0 . 0 7 8  for zero anisotropy) and of eovaleney (prediction still 
rather uncertain). As regards the order of magnitude, the observed 
reduction ( _~ 15%) of the magnetic moment is in accord with theoretical 
calculations that  take into account both eovaleney and zero-point effects. 
The experimental accuracy, however, was too limited to enable a choice 
between the different theoretical estimates of both effects. 

gbMnF~ 

This isomorphous compound is at least as ideal as KNiF 8. Its aniso- 
tropy has been measured and is a minute HA/HE~_5 x 10-6! From 
X-ray studies Teaney et al. (1966) concluded tha t  departures from cubic 
symmetry larger than a few parts in 105 were not present. Hardly any 
thermal expansion effect is seen at T o (=83.0 K). Seeond-neighbour 
interactions will be of the same order as in KNiF 8. In short : KNiF 3 
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and RbMnF~ are most certainly the best approximations of the nearest- 
neighbour only Heisenberg model known at present. 

The spin-wave dispersion relation in RbMnF 3 has been measured by 
Windsor and Stevenson (1966) with neutron diffraction. I t  has been 
reproduced in fig. 58 of § 4.2 as being the best example available of the 
isotropic antifcrromagnetic dispersion relation. The anisotropy gap is 
so small (0-4 K) that  it is not discernible, so that  all the data essentiMly 
fall on a sine curve, representing the behaviour in the absence of anisotropy. 
The authors found no detectable next-nearest ncighbour interactions, 
and determined the nearest-neighbour exchange as J / k = -  3.4 _+ 0.3 K, 
in agreement with earlier determinations. From AFMI~ experiments, 
Teaney et al. (1962) and Freiser et al. (1963) calculated the anisotropy, 
which corresponds to a field of 4 . 5 0 e  only (four-fold symmetry). 

A more accurate value for J /k  may be deduced from the susceptibility 
data (single crystal) of Breed (1969). Due to the small value of H A, the 
critical field is only about 3 k0e.  Accordingly, for fields exceeding this 
value measurements in any direction will yield the perpendicular suscepti- 
bility, since also with the field parallel to the easy axis the moments will 
have swung to the perpendicular orientation. This of course mimics the 
behaviour of an ideally isotropic Heisenberg antiferromagnet, which does 
not  differentiate between parallel and perpendicular, since the )/~ is 
only defined for H A ¢ 0. Evidently this is the reason why one expects 
the X of the ideal isotropic model to be identical (at least at T = 0) to the 
X± as given by  the spin-wave theory in the limit H A-->0. 

Breed's experimental results in fields H > HsF are shown in fig. 53 (a), 
where they have been fitted to the series expansion in the high-temperature 
region. The tt.T.S, curves for S = ~  and S - ½  shown here have been 
calculated (De Jongh, unpublished) using the coefficients of the s.c. 
lattice (7 and 10, for S = ~ and ½, respectively) given by  Rushbrooke and 
Wood (1958), Stephenson et al. (1968) and Baker et al. (1967 b). Most 
gratifyingly, the maximum in X is indicated by  the series (Tmax/0= 0.80 
and 0.77 for S=½ and ~, respectively). Below the maximum the in- 
accuracy of the predictions (obtained by  extrapolation to an infinite 
number of terms) increases very rapidly, so that  the apparent agreement 
between theory and experiment for To< T < Tma X for RbMnF a may be 
fortuitous. The Tc's indicated in the figure (T0/0=0"64 and 0.72 for 
S = ½ and ~-, respectively) are theoretical values for the s.c. lattice obtained 
by  Rushbrooke and Wood (1963), that  should be accurate within a few 
per cent. The experimental value for RbMnF 3 is T¢/0~0.70, using 
To=  83.0 K (Teaney et al. 1966, Golding 1971) and J/]c= 3.40 +_ 0.05 K 
derived from the fit of the X data for T < 1 2 0 K t .  The horizontal 
arrows labelled a and b in fig. 53 indicate the values for X~(0) predicted 
by  the spin-wave theory (see Keller 1966) for the s.c. lattice with S = ~  
and S =  ½, respectively. One may  see that  good agreement is obtained 

For T > 100 K a systematic decrease of J with T was found, that can be 
correlated to the observed thermal expansion (Teuney et al. 1966). 
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(a) Measurements  of the (perpendicular) susceptibi l i ty of R b M n F  3 by  Breed 
(1969), f i t ted to the h igh- tempera ture  series expansion (H.T.S.) for the  
s.c., S =  4, t te isenberg ant i ferromagnct .  The  molecular  field predict ion 
(MF) and the  H.T.S.  result  for S = ½  are also shown. The horizontal  
arrows a and  b indicate the  spin-wave predictions for X±(0). The  
ver t ical  arrows indicate the  predicted posit ions of the  m a x i m a  in the  
susceptibi l i ty (Tm~x) and of the  t ransi t ion t empera tu res  (Tc). Both  
follow from H.T.S.  expansions, the la t ter  having been repor ted  by  
l~ushbrooke and  Wood (1963). (b) The  perpendicular  and parallel  
susceptibilities of MnF~, which is a typica l  example  of a fair ly isotropie 
3-d ant i fcrromagnet .  
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for RbM_nF3, and that  the predicted reduction of Xx(0) with respect to 
the M F  theory (about 5% for S = ~-) is verified, the experimental error in 
X being of the order of 1%. As outlined in the preceding pages, this 
reduction is the consequence of zero-point spin deviations. Another 
test of the spin-wave theory is provided by the work of Montgomery 
(1966) who found clear evidence for a T 3 dependence of the magnetic 
specific heat at low temperatures, in accordance with simple spin-wave 
theory (see fig. 66, § 4.2). 

Critical indices for the staggered susceptibility, sublattice magnetiza- 
tion and inverse correlation range have been deduced by Lau et al.  (1969) 
from inelastic neutron scattering near T c. Together with the indices 
for the specific heat reported by Teaney (1966) and Golding (1971) they 
form a more or less complete set of critical parameters that  is of great 
value in testing Heisenberg model and scaling law predictions (§ 4.4). 

MnF 2 

Similarly extensive information regarding the critical indices is avail- 
able for MnF 2 (Schulhof et al. 1970, 1972, Heller 1966, Tcaney 1965). By  
comparing the results for the two manganese compounds one may s tudy 
the influence of anisotropy, since this is much larger in MnF 2 
( H A / H  E ~_ 1-6 x 10-2). This matter will be taken up in § 4.4. 

The (rutile) structure of MnF 2 is body centred tetragonal, the direction 
of the moments being along the c axis. (a 0= 4.87 A ; c 0= 3.31 A). The 
main interactions are a weak ferromagnetic interaction along [001] and 
an antiferromagnetic interaction along [111] of magnitude J/lc = - 1.76 K. 
Apparently the exchange paths are such as to make the coupling between 
nearest neighbours (along the c axis) much weaker than that between the 
central spin and those at the cell corners (next-nearest neighbours). The 
accurate value for J/]c has been calculated by Trapp and Stout (1963)from 
their measurements of the perpendicular susceptibility (taking into 
account zero-point spin deviation). The estimate 0-3 _+0.1 K for the 
exchange along the c axis (and _~ 0 K for the exchange along [100] and 
[010]) follows from the work of Brown et al. (1961) and Okazaki et al. 

(1964), who used paramagnetic resonance and neutron diffraction tech- 
niques, respectively. 

The (uniaxial) anisotropy may be calculated from the spin-wave gap 
as measured by  zero-field, zero-temperature AFMR by Johnson and 
Nethercot (1959). They found w / y =  (9.33 _+ 0.05) × 104 Oe, in excellent 
agreement with the value 9.3 _+ 0.2 × 104 Oe obtained by  Jacobs (1961) for 
the spin-flop field. With the aid of the formula (O)/~) 2= 2 H E H A - - H A 2  

and the above-mentioned value for the antiferromagnetic exchange, one 
deduces H A-- 8220 Oe ( H A / H  E ~ 1.6 × 10-2), which should be accurate 
within 2~o. I t  turns out that  the anisotropy is for the most part  of 
dipolar origin. Xeffer (1952) calculated the dipolar contribution to be 
8300 Oc. Correction for zero-point reduction (2.4°//0) reduces this to 
81000e.  The remaining part  of about  100 Oe, due to crystal-field 
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effects, is considerably smaller than Keffer's estimate of 500 Oe, yet  it 
is about twice as large as that  reported for K~MnF a (Folen 1972). 

The critical temperature is To = 67.34 K (Heller 1966), although values 
differing slightly from sample to sample have been reported (Teaney 
1965). With the exchange constants given above one calculates 
To/0~0-79, which may be compared with the prediction 0.75 for the 
b.c.c. Heisenberg antiferromagnet with S--~ (l%ushbrooke and Wood 
1963). The entropy gained at T c is 85-4% of R ln 6 (Stout and 
Catalano 1955), whereas for the b.c.c. /erromagnetic S = ~  Heisenberg 
model the value is 81% (Rushbrooke et al. 1973). I t  is not likely that  
these discrepancies may be attributed to the anisotropy. Dalton and 
Wood (1967) have studied the influence of anisotropy on the critical para- 
meters of S =  ½ Heisenberg ferromagnets. From their results one can 
conclude tha t  an anisotropy of 1-2% is too small to produce shifts of this 
magnitude from the pure Heisenberg values. More probably the origin 
will be a somewhat higher effective coordination number than z = 8, due to 
the various interactions present. 

The susceptibility of MnF~ is shown in fig. 53 (b). The perpendicular 
susceptibility is quite similar to tha t  of RbMnF a. Since the spin-flop 
field is about 105 Oe, the parallel susceptibility can be easily measured in 
fairly high fields. The behaviour shown in fig. 53 (b) is typical for fairly 
isotropic 3-d antiferromagnets. We also mention the spin-wave analysis 
of the susceptibility by Kanamori and Itoh (1968) (experimental data of 
Trapp and Stout 1963). 

Next we turn our attention to the known examples of the isotropic 3-d 
ferromagnet. These are also very few in number, in fact there are only 
two magnetic systems that  receive consideration ; the series of compounds 
M~CuX 4. 2H20, where M = K ,  l~b, Cs or NH 4 and X=C1 or Br, and 
EuO and EuS. As we shall see, these materials are still far from ideal, 
at  least when one wants to make a comparison with nearest-neighbour 
only tIeisenberg models. To the above list one may add CrBr3, but 
with the proviso tha t  only the critical behaviour is considered, since farther 
away from To the layered character of this compound will have its 
influence on the thermodynamic behaviour. For this reason we have 
not included CrBr 3 in this section, but we will mention the results obtained 
in the critical region in § 4.4. 

M2CuX4.2H20(M=K , l~b, Cs or NH 4 ; X=C1 or Br) 

The salts of this general formula have a body-centred tetragonM unit 
cell. Each Cu ~+ ion is surrounded by an approximate octahedron of 
four chlorine or bromine ions and two water molecules, the latter lying 
along the e axis, whereas the halogen ions are within the a-a  plane. 
Since the Co/a o ratios are of the order of 1.05, the magnetic structure may 
be considered as being approximately b.c.c. 

The earlier measurements were caloric and magnetic experiments on 
K~CuC14 . 2H20 and (NH4)2CuC14 . 2H20 by Miedema et aL (1963), 
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subsequently extended to Rb2CuC1 ~ . 2H~O and (NH~)sCuBr4 • 2H~O 
(Miedema et al. 1965). The main results of these investigations are the heat 
capacity data shown in fig. 54 and the spin-wave specific heat, to be discussed 
in § 4.2. Later publications of various authors have been concerned mainly 
with (NH4)~CuBr 4 . 2H20, in particular with the critical behaviour. 
This is another magnetic substance of which there is a more or less a 
complete set of critical indices available (see § 4.4). Lastly, the com- 
pound Rb2CuBr 4 . 2H20 may be added to the above list of isomorphous 
salts. 

T 
J c M ( ~ )  

Fig. 54 

l O Cu K2C14.2 H20 Tc =0.88 °K 
A Cu(NH4)2C[4.2H20 Tc=0.70°K 
[3 Cu Rb2Ct4.2H20 To= 1.02°K 
V Cu(NH4)2Br4.2H20 Tc=l.74OK 

, 
0.5 1.0 1.5 ZO 

Heat capacities of four isomorphous ferromagnetic copper salts (S=½), the 
magnetic structure of which is approximately b.c.c., although with 
substantial next-nearest neighbour interactions. (After lV[iedema et al. 
1965.) 

One may observe tha t  the specific heat data  of the four isomorphous 
salts in fig. 54 seem to fall on a single curve, in spite of the expected 
differences in anisotropy and other deviations tha t  may exist. This led 
Miedema et al. to conclude that  the common curve in fig. 54 will be a 
good approximation of the b.c.c. Heisenberg ferromagnet with mainly 
nearest-neighbour interactions. However, although qualitatively the 
curve is indeed representative for the S =  ½ Heisenberg ferromagnet, a 
closer comparison of the critical parameters of the specific heat with 
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I-Ieisenberg model predictions points to the presence of substantial 
further neighbour interactions (cf. table 12). This was already recog- 
nized by Wood and ])alton in 1966, who analysed the experimental data 
on (NH4)2CuC14 . 2H20 and KeCuC14 . 2HeO and concluded the relative 
strength of the next-nearest neighbour interaction to be about 250/o of 
the nearest-neighbour exchange. They did not mention the anisotropy 
as a possible mechanism to explain the observed shifts in the critical 
parameters with respect to the nearest-neighbour model. I t  turns out 
indeed that  the anisotropy is too small to have an appreciable effect. 
For the bromine compounds the anisotropy is HA/H E ~ 7 x 10 -3 (Velu 
et al. 1972, Suzuki and Watanabe 1967, 1971), for the chlorine compounds 
it will be probably even less. In fact Ford and Jeffries (1966) have 
produced the estimate H a < 1 0 O e  for K~CuC14. 2H20, leading to 
HA/H ~ < 6 × 10 -4. One may estimate the effect of an anisotropy of 1~o 
on Tc/O and on - E c / R T  o with the aid of the calculations of Dalton and 
Wood (1967) on the anisotropic Heisenberg model. Interpolating between 
their values one obtains an upward shift of 1°/o in Tc/O and a downward 
shift of 3~o in - E o / R T c ,  both with respect to the values of the fully 
isotropic b.c.c, ferromagnet (0.63 and 0.46 respectively). Clearly the 
effect is much to small too account for the experimentally found deviations 
from the nearest-neighbour model (table 12). 

l~eeently, Van Amstel et al. (1974) have measured the (effective) 
exchange constants of Cu(NH4)2Br 4 . 2H20 and CuRb2Br 4 . 2H20 and 
also re-examined the earlier data on J/lc of the other compounds. Their 
results for J/lc and To/O are listed in table 12. Comparing these Tc/0 
values with those of the equivalent neighbour tteisenberg models also 
given in table 12, one is apt to conclude that  the further neighbour 
interactions are even more substantial than as estimated by  Wood and 
Dalton. These results, combined with the critical parameters of the 
specific heat, point to an effective number of equivalent neighbours of 
at least 17. Van Amstel et al. point out that  such a high number is quite 
possible in view of the crystal structure, since an examination of the 
superexchange paths connecting the various neighbours shows that  the 
interactions between first, second and third neighbours may very well be 
comparable in strength. Summing up one may say that  these materials 
are fairly isotropic but  certainly not good examples of the nearest- 
neighbour only, b.e.c., tteisenberg ferromagnet. Instead the properties 
resemble those of the equivalent neighbour model with first and second 
neighbours. 

The other experimental work that  is not  mentioned here is mostly 
concerned with measurements of the susceptibility and magnetization. 
The discussion of these papers is postponed to § 4.4. 

EuO and EuS 

These magnetic semiconductors have the rock-salt structure, in which 
En 2+ ions form a f.c.c, lattice. The large spin S = ~  and the very small 
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anisotropy, which amounts to HA/H E _~ 2 × 10 -4 for EuS (Franzblau et al. 
1967) and HA/H E _  7 × 10 -a for EuO (Miyata and Argyle 1967), make a 
comparison with the classical Heisenberg model appropriate. A dis- 
advantage of EuO is that  the magnetic properties are rather strongly 
dependent on stoichiometry. McGuire et al. (1972) have reported evidence 
of considerable contributions to the exchange from excess Eu. With 
increasing Eu concentration the Curie-Weiss 0 was found to vary from 
76 K to 84 K (the O's were determined from data above 200 K). More- 
over, both EuO and EuS have the same complication as the Cu com- 
pounds discussed above, namely, the existence of substantial next- 
nearest neighbour interactions. 

The reported values for the exchange constants vary somewhat accord- 
ing to the method of measurement. For EuO, Boyd (1966) has obtained 
J1/k = (0.75 + 0.025) K and J2/k = ( -  0.098 +_ 0.004) K from a spin-wave 
theoretical analysis of the magnetization. Henderson et al. (1970) 
applied a similar analysis to the low-temperature specific heat, find- 
ing J1/k = (0.75 _+ 0.02) K and J2/lc = ( - 0.084 _+ 0.02) K. Contrastingly, 
Passell et al. (1971) deduced J~/lc= (0.602 +_ 0-008) K and J2/k= (0.155 
_+ 0.014) K from the spin-wave dispersion curve, as measured with neutron 

diffraction. Since Passell et al. seem to be quite sure about the positive 
sign of J~, there is a clear disagreement between their result and the 
specific heat and N.M.R. analyses. An even larger positive value for 
J2 was reported by Menyuk et al. (1971), who obtained J1/k=(0.53 
_+ 0.005) K and J2/k= (0.26 _+ 0.1) K. The discrepancies between these 

various J /k  values could be caused by the effect of an excess of europium, 
described above (for EuS there is a reasonable agreement between the 
J /k  values of Passell et al. and those derived from N.M.R. and specific 
heat measurements, so that  the methods of analysis do not seem to be 
at fault). Since the authors give no information about the chemical 
analyses of their samples it is not possible to decide which determination 
is best. Also the resulting To/O values give no clear indication. The 
nearest-neighbour only f.c.c, ferromagnet with S = ~ is predicted to have 
Tc/0=0.78 (Rushbrooke and Wood 1958), for the equivalent next- 
nearest neighbour model the value is 0.85 (l~ushbrooke et al. 1973). The 
combinations of Boyd and of Henderson et al. both yield To/~=0.78, 
whereas Passell's gives 0.81 and tha t  of Menyuk et al. 0.83 (in all these 
calculations T~=69 K has been adopted). Although one expects the 
value to lie in between 0.78 and 0.85, probably near 0.80 in view of the 
ratio ]JJJ1], there is certainly no clear choice possible. We would 
conclude therefore that  J~/lc~0.6 K and IJ2/Jll_~0.2 with evidence in 
favour of J2 to be positive. The critical energy parameters listed in 
table 12 are taken from the work of Argyle et al. (1967). 

Fortunately the situation is better in EuS. Callaway and McCollum 
(1963) obtained J~/lc = (0-17 _+ 0.02) K and J2/Ic = ( - 0-013 _+ 0.032) K from 
the specific heat ; Charap and Boyd (1964), J~/k = (0.20 + 0.01) K and Je//c = 
( - 0.08 ~- 0-02) K from the magnetization. The values of Passell et al. ( 197 ! ) 
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are J1/k = (0.234 +_ 0.016) K and J2/]c = ( - 0.098 _+ 0.014) K. We conclude 
therefore to J1/lc= (0.21 _+ 0.03) K and J2/k  ~ _ - 0 . 0 9  K, yielding with 
T° = 16.4 K a value Tc/O = 0.81. 

Of the many interesting experiments we mention further the work of 
Matthi~s et al. (1961), who discovered the ferromagnetism in EuO, the 
N.M.R. measurements of Heller und Benedek (1965) on EuS, the thermal 
expansion experiment of Argyle et al. (1967) on EuO (critical energy para- 
meters), the specific heat measurements of Teaney et al. (1968) on EuS, 
and the neutron diffraction work of Als-Nielsen et al. (1971) that  produced 
values for the critical indices fi, $ and v. We will discuss the results of 
some of the above papers in the next section, in the sections on spin-wave 
theory (4.2) and on critical behaviour (4.4). 

3.3.3. Concluding remarlcs 

The above discussion concludes the list of interesting examples of 
simple magnetic model systems given in this section and in the preceding 
ones. Within the outline of the present review, 3-d systems play their 
role in tha t  they are the closest approximation of the molecular field 
model, in accordance with the general picture given in the introduction 
that  explains the qualitative behaviour in terms of correlation functions. 
I t  is gratifying to observe how close the agreement between theory and 
experiment is on this point. Thus we have seen how in 3-d antiferro- 
magnets the difference between To and the temperature at which the 
maximum in X occurs is typically of the order of 10% of T(Xm~x) , whereas 
it is a huge 50% in the 2-d cases. Likewise, the changes in entropy and 
energy above To are very much smaller in three than in two dimensions, 
as expected. Moreover, also in quantitative respect the experiments 
satisfactorily confirm the theoretical results. 

Lastly we have observed the importance of quantum-mechanical effects 
from the influence of the spin value on the specific heat or the quantity 
To/0. The experimental results do corroborate the theoretical predic- 
tions in tha t  within a given magnetic lattice the differences between the 
observed behaviour and MF theory are enhanced by decreasing S, becom- 
ing especially apparent for S = ½. 

Since the critical behaviour found in 3-d systems will be treated in a 
§ 4.4, we will now proceed to the last section. 

§ 4. SPECIAL TOPICS. ~ U R T H E ~  CO1VIPA~ISON OF THEORY AND 

EXPEI~IMENT 

In the preceding sections we have had occasion many times to fit 
experimental results to existing theories. In most cases specific heat or 
susceptibility measurements were concerned. 

The present section will be devoted to a closer examination of to which 
extent various existing theoretical approaches have been or can be 
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checked by the experimental work. Evidently we shall rely heavily on 
the examples already presented above. 

The main topics that  we shall consider are spin-wave theory, series 
expansions, critical behaviour, and the field-dependent properties of 
magnetic substances. In the first section, moreover, some of the new 
developments in the application of neutron scattering to the s tudy of 
magnetic substances will be discussed. This clearly is appropriate, 
since this technique has played a very important  role recently in the 
research on 1-d and 2-d systems, as well as in testing spin-wave theory 
and in the determination of critical exponents. 

4.1. Neutron di//raction 

In this section we will briefly mention some of the principles of this 
technique, in particular in connection with the s tudy of spin waves and 
its important contribution to the field of 1-d and 2-d magnetism. An 
extensive review of the theory of magnetic neutron scattering has been 
given by Marshall and Lowde (1968). The interested reader may also 
consult the recent book of Marshall and Lovesey (1971). 

Besides the nuclear scattering common to all solids, arising from the 
diffraction of the incident neutron beam by  the nuclei of the atoms in 
magnetic crystals, there is an additional magnetic scattering, due to the 
interaction between the magnetic moment of the neutron and that  of the 
electrons. One may distinguish between elastic scattering, that  may be 
used for the determination of the magnetic structure, and inelastic scatter- 
ing which supplies a means of studying the magnetic excitations by  
measuring the changes in energy on collision, caused by the creation or 
annihilation of a magnon. In this way the spin-wave dispersion at low 
temperature or the evolution of a spin wave of a particular wave-vector 
with temperature may be studied. 

Since the intensity of the magnetic Bragg scattering at zero field is 
proportional to the square of the spontaneous magnetization, the tempera- 
ture dependence of the Bragg peaks yields the behaviour of the magnetiza- 
tion or sublattiee magnetization and thus the critical exponent ft. In  
addition to the coherent Bragg scattering, which evidently vanishes at 
To, an important  contribution to the elastic scattering at small vMues of 
wave-vector/c arises from the critical or diffuse scattering. This eriticM 
scattering becomes predominant as T c is approached and since it is due 
to fluctuations of regions of short-range order it is also present above T c. 
Although it is therefore of dynamic origin and thus partly inelastic, the 
critical scattering near to T o and for small angles of scattering is for most 
part elastic, the conditions being that the transit time of a neutron through 
a region of correlated spins is short compared with the fluctuations in 
the magnetization, and that the inelasticity of the scattering is small as 
compared to /cT. It may be shown that in this so-called quasi-elastic 
approximation the critical scattering is simply proportional to the 
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wave-vector dependent susceptibility so that  the peak in the critical 
scattering for k = 0 observed at T c reflects the susceptibility divergence. 

Neutron scattering therefore provides us with a method of not only 
measuring the ferromagnetic susceptibility but also the staggered suscepti- 
bility of an antiferromagnet, which at first sight sounds like a rather 
hypothetical quanti ty in view of the apparent difficulty in realizing a 
staggered field in the laboratory. Since an antiferromagnet in a staggered 
field is equivalent to a ferromagnet in a normal field, one may indeed 
directly compare the critical exponent 7 obtained from the staggered 
susceptibility of an antiferromagnet with that  of its ferromagnetic 
counterpart, or with theoretical predictions for the latter (§4.4). The 
sublattiee magnetization of an antiferromagnet is evidently also a staggered 
quantity, but, as we have seen, in this case other measuring techniques 
besides neutron diffraction are available (N.M.R., M6ssbauer effect, 
magnetoelectric effect). 

In addition to the static susceptibility X(0) the behaviour as a function 
of wave-vector is of interest. At T =  T c theory predicts the wave- 
vector dependent susceptibility to diverge as a function of k according to 
(Ritchie and Fisher 1972, Fisher and Burford 1967) 

2c(k)/x0(k)~l/k2-v (k-+0 ; T =  To). (4.1) 

In this expression the wave-vector dependent susceptibility is normalized 
by the susceptibility x0(k) of a paramagnetic system, and is defined by 

~(k)/xo(k ) = ~ exp (ik.  r)x(r ). (4.2) 
t" 

Moreover x(k) for T >~ T e is predicted to behave as (Fisher and Burford 
1967) 

2(k, T)/Xo(k ) ~ (K2+ ¢2]~2)1]2~1/(K2 -~- ¢]22) (4.3) 

where ¢(T) is a slowly varying function of order 0-05, ¢___ 1, and ~ has the 
dimension of a length and is called the effective inverse range of correla- 
tion. Instead of (4.3) the approximate formula 

~(k, T)/Xo(k) ~ 1/(K 2 +k~) 1-'12 (4.4) 

is often used. The inverse range of correlation is expected to vanish at 
To according to 

K(T)~(1-  To/T) ~ for T-+To+. (4.5) 

A similar formula applies for T < T~. Thus the wave-vector dependent 
scattering intensity involves the two critical exponents V and v in addition 
to the exponent 7 describing the (static) susceptibility divergence 

~(0)/X0 ~ (1 - To/T)-v. (4.6) 

Theory predicts these three exponents to be related by (2-~)v  = 7. In 
the classical Ornstein-Zernike theory V = 0 and v= 0.5 so that  7=  2v= 1, 

A.P.  L 
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the mean-field value. According to the Ornstein-Zernike theory (4.4) 
thus reduces to 

~(l~)lxo ~ 1 t(K~ + k~). (4.7) 

For the 2-d Ising model , = 1 and V---}, whereas for the 3-d Ising model 
v _ 0.64 and V ___ 0.06. The Lorentzian form (4.7) of the scattering will 
therefore give a reasonable description of the scattering in 3-d crystals, 
bu t  will be wholly inadequate in the 2-d case. 

The parameter K(T), which is defined more formally as the reciprocal 
of the k 2 term in the expansion of 1/)~(k) in powers of k (Fisher and Burford 
1967), should be distinguished from the true inverse range of correlation 
K t that  appears in the exponential factor exp ( -Kt r ) ,  through which 
according to general theoretical expectations the decay of the correlations 
F(r) is thought to be predominated. In the critical region K and K~ are 
expected to be approximately equal, at least proportional, but  away from 
T O they will differ considerably (Fisher and Burford 1967). 

Apart from the difference in the values for the critical exponents, 
there are other marked differences between the elastic scattering in 
systems of magnetic dimensionality one, two or three. This was pointed 
out  by Birgeneau et al. (1969, 1970 b) in the work on 2-d K~NiF 4 and by 
Skalyo et al. (1970) in their s tudy of the linear chain CsMnC1 a . 2H20. 
The argument is exemplified in fig. 55, taken from the latter paper. In 
the usual 3-d situation, Bragg scattering will be observed at the reciprocal 
lattice points. However, if the long-range order extends only in two or 
in one dimensions, the Bragg condition will occur with respect to lines 
and planes in reciprocal space, respectively. Thus in 2-d systems, 
for instance, instead of Bragg peaks one will observe Bragg ridges. A 
similar argument also applies for the diffusive part  of the scattering 
which should thus take the form of a ridge or a plane in 2-d and 1-d 
systems, respectively. Accordingly, the k dependence of the suscepti- 
bility will be such that  k is measured from the reciprocal lattice line or 
plane, respectively. 

Reversing the argument, the observation of such 1-d or 2-d magnetic 
scattering provides convincing proof for the apparent lower dimensionality 
of the magnetic system. In the preceding sections we have already 
mentioned how the measurements of the spin-wave dispersion curves by 
inelastic scattering give evidence for the nature of the magnetic ordering 
by  showing the lack of dispersion in the directions perpendicular to the 
magnetic reciprocal lattice planes or lines in 1-d or 2-d systems, re- 
spectively (figs. 24 and 37). Additional proof is supplied by the elastic 
measurements, and as an example we have reproduced in fig. 56 (a), (b), (c), 
the pioneering work of Birgeneau et al. (1969, 1970 b) on KeNiF a. The 
existence of a ridge may be readily established from scans of the type  A 
and B shown in fig. 56 (a). In fig. 56 (b) it is seen from the data  taken at 
99 K and 95 K (the transition point is at 97.23 K) that  such 2-d behaviour 
is indeed present as far as the critical scattering is concerned. Scan B 
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Illustration of the type of magnetic Bragg scattering that may be expected 
from various types of magnetic ordering in a 3-d crystal. From top to 
bottom we have 3, 2, and 1-d magnetic ordering, giving rise to magnetic 
Bragg peaks, lines and planes, respectively. (After Skalyo et al. 1970.) 

along (1, 0, l) (along the top of the ridge) gives a fairly constant value 
far above the background, the decrease in intensity at large 1 being 
caused by geometrical factors. On the other hand, scan A along (h, 0, 
0.25), perpendicular to the ridge, shows a sharp peak with a linewidth 
determined by the instrumental resolution. In  cooling through the 
transition, sharp Bragg peaks appear on top of the ridge at the magnetic 
reciprocal lattice points, as is observed from the data taken at 95 K. 
Approximate integration indicated that  the intensity in the Bragg peak 
is just tha t  lost by the ridge. As shown in fig. 56 (c) the Bragg peak 
intensity increases very rapidly as the temperature is lowered, at the same 
time the ridge intensity decreases. I t  may be seen that  the ridge reaches 
its limiting intensity and linewidth at T~, and that  the behaviour in the 
paramagnetic region is analogous to the critical scattering in a 3-d system, 
the difference being that  the temperature scale is greatly expanded. 
From the measured linewidth one may obtain the length over which the 

L2 
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Fig. 56 
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Fig. 56 (continued) 
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(a) Chemical and magnetic structure of K2NiFa, showing the antiferromagnetic 
arrangement of the nickel spins. There are two magnetic domains; 
inversion of the central spin exchanges the a and b axes. The open and 
filled circles in the reciprocal lattice refer to these different domains, 
the double circles correspond to the nuclear Bragg peaks. The thick 
lines indicate the magnetic reciprocal-lattice rods. Two types of scans 
have been indicated by A and B. (b) The upper set of curves corresponds 
to scans of the type B along the top of the ridge, the lower set to scans A 
across the ridge. (c) Top : scattering intensity at the (1, 0, 0) peak as a 
function of temperature. Bot tom:  scattering intensity of the (1, 0, 
0.25) peal{ and linewidth for scan A as a function of temperature. (After 
Birgeneau et al. 1970 b.) 

spins are correlated. As Birgeneau et al. point  out,  in K2NiF4, even a t  
T =  2T0, the  es t imated  length is still 23 A (within the  planes), whereas 
Cooper and  Na thans  (1966) have  repor ted  t h a t  in K M n F  a at  T =  1.1 T O 
the  correlat ion length has a l ready decreased to 12 A. 

Since no evidence of 3-d critical scat ter ing is observed both  above and 
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below To, the conclusion is that  the diffuse scattering is indeed wholly 
2-d in form. This supports the picture, obtained by  various pieces of 
evidence, that  in this system the occurrence of a phase transition is really 
caused by  the 2-d properties and that  the 3-d correlations play a very 
minor role. The most probable explanation for the occurrence of long- 
range order (el. § 3.2.1) is that  as the temperature is lowered to the value 
at which the staggered susceptibility is predicted to diverge, the correla- 
tions become of such a long range that  the anisotropy may trigger the 
occurrence of long-range order within the layers;  and once long-range 
order is established in two dimensions it will of necessity occur also in the 
third, since even the smallest interplanar interaction is then amplified 
by  N, the number of spins within a plane. That  the long-range order is 
most probably established by  the anisotropy rather than by the (much 
smaller) interplanar coupling has already been discussed in § 3.2. I t  is 
also in accord with the results found by Birgeneau et al. (1971 b) for the 
behaviour of the parallel and the perpendicular susceptibility. 

In contrast to the diffuse scattering, the Bragg scattering is 3-d in 
form (fig. 56 (b)) and no evidence of 1-d or 2-d Bragg scattering has to 
our knowledge been found as yet. However, the temperature dependence 
of the sublattice magnetization, as deduced from the intensity of the 
Bragg peak, displays a 2-d character as close to T c as one part  in 104 
(fig. 47). Evidently the critical point must  be even more closely ap- 
proached before it becomes apparent also from this aspect that  the long- 
range order is in reality not confined to the layers but  extends to the 
third dimension too. 

In concluding this section we draw attention to the recent work of 
Birgeneau et al. (1971 a) and Hutchings etal .  (1972 b) on the linear chain 
antiferromagnet [(CDa)4N][MnCla]. As in the case of CsMnCI~. 2H~O, 
planes of critical scattering were observed from 40 K down to the lowest 
temperature reached (1.1 K, T c = 0 . 8 4 K  ). The high spin value S=-~ 
justifies a comparison of the data with the exact theory of Fisher (1964) 
for the classical linear Heisenberg chain, and in fact it was found that  the 
dependence of the scattering on both wave-vector and temperature could 
be accounted for by  this theory qualitatively as well as quantitatively. 
The interesting point is of course that  this is one of the few eases in which 
an exact theoretical result is available (one does not expect much difference 
in behaviour between S = ~ and S = Go). As an illustration we show in 
fig. 57 the behaviour of the zero-angle cross section da(q = O)/dw and the 
inverse correlation length K as a function of temperature. The fit to 
theory only involves the exchange constant, and the value obtained agrees 
favourably with those derived from other measurements. Since for the 
ideal chain the transition to long-range order occurs at  T =  O, both 
theoretical curves vanish at the origin. Due to the extremely small 
value of the interchain coupling in the experimental system, its actual 
transition temperature is so low that  no deviations from the ideal be- 
haviour can be observed in these plots. 
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length (bottom) of the linear chain antiferromagnet [(CD~)~N][MnC13] 
as a function of temperature. Solid curves are fits to Fisher's exact 
theory for the classical linear Heisenberg chain. (After Birgeneau et al. 
1971 a.) 

4.2. Spin wave theory 

Spin-wave theory has proven to be a most valuable tool in describing 
the low-temperature properties of magnetic substances, even in its most 
simple form, in which no account is taken of the interactions between 
the individually excited spin waves (unrenormalized spin-wave theory). 
We may cite from Dyson's (1956) well-known paper on the theory of 
spin-wave interactions: " The practical conclusion is simply this, that  
the linear Bloch theory with non-interacting spin waves is good enough 
for all practical purposes ", meaning tha t  in the temperature range 
0 < T <  2 c, ! T  in which spin-wave theory is expected to be applicable 
quantitatively as a low-temperature approximation, the effects of re- 
normalization are not likely to be observable. We shall not describe 
here the way in which spin-wave theory and its experimental verification 
have evolved historically, since there exists an extensive review paper by 
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Keffer (1966), covering both the theoretical and the experimental results 
obtained before 1965. Instead we shall confine ourselves to some promi- 
nent results that  have been obtained after the appearance of Keffer's work. 

Perhaps the most fundamental probe available to the experimentalist 
to study spin waves is neutron scattering. Quantities like the heat 
capacity and the magnetization, the observed behaviour of which may 
be compared with spin-wave predictions, involve an integral over the 
entire spin-wave spectrum. However, in a neutron scattering experiment 
one can select a spin wave of a particular wave-vector k and study its 
dependence on temperature. As mentioned above, the observation of 
these spin-wave modes is possible by measuring the energy changes 
involved in the inelastic scattering events in which magnons are created 
or annihilated. By combining measurements of different k at a particular 
temperature one obtains the quanti ty that  is of prime importance, the 
dispersion relation. Knowledge of this functional relationship between 
energy and wave-vector is a priority to all calculations of thermodynamic 
properties. In the absence of anisotropy the dispersion is of the form 
h~o = 4Js(l - cos ka) for ferromagnets, or, for small k, hco _~ (2JSae)k ~, 
a being the lattice constant. In the presence of anisotropy a term glxBHA 
is added to the (1 -  cos ka) term. In the case of antiferromagnets, the 
theory suffers from the fact that  the ground state is unknown, because 
the fully aligned N6el state is not an eigen-state of the Hamiltonian. 
However, one may take the N6el state as a starting point and afterwards 
apply corrections for the fact that  it is only an approximation of the true 
ground state. We shall come back to the effects of zero-point spin 
deviation at the end of this section. 

The dispersion for antiferromagnets thus obtained is of the form 
hw=21JIS  sin ka, which, for small k, reduces to the linear relationship 
h~o=21JISka , in contrast to the quadratic dispersion in ferromagnets. 
The effect of anisotropy is much more pronounced in antiferromagnets 
than in ferromagnets because in the former it is enhanced by interplay 
with the exchange field. This can be readily seen from the expression 
for the k=O mode, which becomes koJ=glxB(2HAHE+HA2) 1/2 when an 
anisotropy field H A is present. Consequently the ' anisotropy gap ' is 
usually quite large in antiferromagnets, since H E is of the order of 105- 
10 -60e.  But in the compound RbMnFa the anisotropy is so small tha t  
the presence of the gap could not be detected within the experimental 
limits. The dispersion relation, as reported by Windsor and Stevenson 
(1966), is shown in fig. 58. Since the gap is only about 0.4 K, all measur- 
ing points lie on the sine curve appropriate to the fully isotropic case. 

Other antiferromagnetic dispersion curve have already been shown in 
figs. 24 and 37. In those cases the lack of dispersion in one or two direc- 
tions in reciprocal space was used to demonstrate that  the magnetic 
character was 2-d or 1-d in form, respectively. An example of a 
ferromagnetic dispersion relation is given in fig. 59, showing data of 
Passell et al. (1971) on EuO. 
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The effects of interactions between magnons has been mentioned above. 
Dyson (1956) distinguishes two reasons why the picture of a linear super- 
position of spin waves is incorrect. Since each spin wave reduces the 
magnetization by  one unit of h, so that  it will be completely reversed if 
2NoS spin waves are excited, it is clear that  there must be some repulsive 
interaction between them in order to prevent the unlimited excitement of 
spin waves (kinematical interaction). Secondly there is an attractive 
interaction arising from the fact tha t  the energy required to excite a spin 
wave will be lower if the spins are already partially reversed (dynamical 
interaction). From Dyson's calculations it emerges that  the kinematical 
interaction will be negligible except when magnons of very short wave- 
length are excited, which is the ease when the critical point is closely 
approached. For practical purposes therefore the dynamical interaction 
will be predominating, so that  one expects the spin-wave energies to 
decrease when the temperature is raised. As cited above, in the tempera- 
ture region T < !T2 c, which is the range in which experimental results on 
the magnetization may be adequately fi t ted to the truncated series 
expansions in kT/]JIS  given by the spin-wave theory, the effect of the 
dynamical interaction term will be too small to be detected. A possible 
way of observing the effect, however, is to follow the evolution of the 
spin-wave modes with temperature, with the aid of neutron scattering. 
Such a s tudy has been accomplished by  Turberfield et al. (1965) in MnF~. 
Figure 60 (a) shows the spectra of neutrons of initial wavelength 3.0 A 
as a function of energy gain. At T~_O (T/To~O.06) a sharp magnon 
line is observed, whose shape is determined by  the experimental resolu- 
tion. As the temperature is raised the line broadens and the spin-wave 
energy decreases. As T o (=67.33 K) is approached the full width at 
half maximum becomes comparable with the energy itself. Finally the 
spin-wave peak is lost in critical scattering. 

These spin-wave peaks were used to obtain the dispersion at different 
temperatures, as shown in fig. 60 (b). The solid lines were calculated by  
Low (1965) taking into account the dynamical interactions. Since the 
observed differences with the experimental data are less than 10~/o, 
whereas the observed linewidths are of the same order or larger, these 
measurements constitute a clear verification of the renormalization of the 
spin-wave energies. 

In a similar experiment on RbMnF 8 (To= 83 K), Nathans et al. (1968) 
were able to show that  short wavelength magnon-like excitations may 
even persist to temperatures above To. The temperature dependence of 
a magnon with wave-vector k=0 .2  A -1 near T c is depicted in fig. 61. 
As the temperature is raised through T c one observes a broadening and 
an energy renormalization of the two spin-wave peaks on both sides of 
the narrow central peak (zero energy transfer). The latter is due to 
Bragg scattering and accordingly vanishes at To. Above T o the magnon 
peaks are still clearly in evidence and in addition a central diffusive peak 
is observed. 



Experiments on simple magnetic model systems 

Fig. 60 

171 

5O 

5O 

5o 

- 1.023 

. , 

5O 

Energy  (equiv.° K) 
(a) 

1.112 
E 

5O 

u 0.06 
;= 6 ,, 074 / z . " ~ "  i 

0 0 . 9 2  S ~ . - ~  

a: 4 
t.d 
Z 
W 

2 ~ ~ o  o [ool1 

0 f I i 
0 0.5 

~/'km a x 

(b) 
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persion curves for MnF~ at different temperatures. The experimental 
points have been obtained from spectra such as shown in fig. 60 (a). 
The solid curves have been calculated from spin-wave theory taking 
into account dynamical interactions between pairs of magnons. (After 
Turberfield et al. 1965.) 

The presence of magnons or magnon-type excitations in the para- 
magnetic regime needs some further consideration. A simple physical 
model explaining the possibility of such paramagnetic spin w~ves has 
been put  forward by  Marshall (1965). Even in the absence of long-range 
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order, above Tc, there will exist regions of correlated spins as a conse- 
quence of the short-range order. The extent of such a region is deter- 
mined by the correlation length. One may imagine that damped 
excitations, or quasi spin waves of wavelengths shorter than the correla- 
tion length may exist, propagating within these slowly varying correlated 
regions with lifetimes limited by the characteristic times associated with 
changes in the local order. As the temperature is raised the correlation 
length decreases so that one expects the paramagnetic magnons to broaden 
and finally disappear. 

Fig. 61 
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The usefulness of this concept is clearly demonstrated by the recent 
experiments on the 1-d and 2-d Heisenberg systems, in which the para- 
magnetic region extends to much lower temperatures relative to J/k, as 
compared with 3-d systems. It has been discussed in the preceding 
sections that these 1-d and 2-d systems would ideally have no long-range 
order except at T = 0, the fact that experimentally long-range order is 
found below finite transition temperatures To being the consequence of 
the existing deviations from the ideal model. We have also seen that 
for the 2-d Heisenberg antiferromagnets 2-d spin-wave theory is an 
excellent low-temperature approximation of the behaviour observed in 
the ordered region. From figs. 29, 37 and 38 and it may be seen how the 
magnon dispersion, the antiferromagnetic parallel and perpendicular 
susceptibilities and the sublattice magnetization may all be fitted to the 
predictions of 2-d spin-wave theory. 

But we are now particularly interested in the behaviour above T c, 
that is in the temperature range where there is indeed no long-range order, 
also experimentally. As a consequence of the low dimensionality the 
length over which the spins are correlated will be considerably larger than 
in 3-d systems at the same temperature relative to T e. Thus one expects 
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more pronounced magnon modes above T c. In fig. 62 the temperature 
dependence is shown of a magnon of wavelength _~ 110 A in the 2-d 
antiferromagnet Kg.NiF~, for which T c = 97.2 K. The surprising feature 
emerging from these measurements of Skalyo et al. (1969 a) is tha t  there is 
no appreciable difference between the magnon spectrum observed at  
T = 1.08 T c with that  at T = 0.8 To (in linewidth or in k value), even for 
such a relatively long wavelength. I t  is only at  T =  1.5 T c tha t  the 
1 l0 • magnon mode is lost in the diffusive mode. In the above we have 
already mentioned that  in K2NiF 4 the estimated correlation length at  
T = 2 T c is 23 A, whereas in KMnF 3 at T = 1.1 To the correlation length 
is down to 11 A already, explaining the difference in behaviour observed 
in comparing figs. 61 and 62. 

The impression left by the experiments shown in these figures is tha t  
as far as magnons with finite (not too small) /c are concerned, nothing 
special happens at T o itself, the prime quanti ty determining their gradual 
disappearance as the temperature is raised being the correlation length. 
Also for the rcnormalization, T o is not the important parameter. In 
fig. 60 (b) one observes that  at T/To= 0.92 the magnon energies in MnF 2 
have decreased by about 30-40°/o, whereas in K~NiF4, even at T/To = 1-1, 
there is still no measurable renormalization effect (fig. 62). The dif- 
ference may be brought back to the fact tha t  in 2-d systems To is much 
lowered with respect to J/]c. The predictions of spin-wave theory for the 
thermodynamic quantities, on the other hand, are in the form of series 
expansions in powers of kT/I J IS and the renormalization is taken into 
account by additional terms in the expansion. Therefore the appropriate 
parameter is not T/To but lcT/IJIS. At the transition temperature 
lcT/IJ IS equals about 15 in MnF 2 and 2 in K~NiF40 so that  in MnF~ the 
ratio of thermal to exchange energy at To is about eight times as large as 
in K2NiF 4, explaining the lack of renormalization in the latter as com- 
pared to the former. 

In the 1-d Heisenberg antiferromagnet [(CD3)4N][MnCI~] the picture 
just sketched is even more clearly confirmed. In this substance the 
interchain interaction is so weak that  the transition to long-range order 
is as low as 0.84 K, whereas the Curie-Weiss temperature is about 75 K ! 
In their recent study ttutchings et al. (1972 b)report  that  the magnon 
spectra, measured at T = 1-9 K, are fully accounted for by a simple two- 
sublattice spin-wave theory for the linear Heisenberg chain. The 
dispersion relation of these 1-d spin waves at 4.4 K is a perfect sine curve 
and the value for the intra-chain exchange calculated from the fit to the 
theoretical dispersion is in agreement with tha t  obtained from the suscepti- 
bility. Thus in spite of the fact that  there is no long-range order, spin 
wave-like excitations are observed over most of the Brillouin zone. This 
at first sight surprising result is corroborated by the recent theoretical 
work of McLean and Blume (1973) on the spin-wave excitations in linear 
Heisenberg chains, who were able to account for the observed spectra at 
least qualitatively, in particular for the temperature dependence of the 
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magnon lines. As our last example we have reproduced in fig. 63 the 
evolution of the ~ = 64 _~ excitation with temperature.  Clearly the fact 
tha t  T e is at 0.84 K is of no interest here, rather  one should note tha t  a t  
20 K the correlation length I is about 22 A, even smaller than the magnon 
wavelength. This suggests tha t  the condition for the existence of these 
excitations is k=27r/Z>~, where ~ is the inverse correlation length, 
rather  than ;~ < l. The results for other k values confirm this. The most 
recent measurements of Birgeneau et al. (1972 a) for values of wave-vector 
k* =k-~r/a < 0.015 7r/a likewise indicate tha t  the excitations are changed 
from magnon-like to overdamped behaviour as k is varied from greater 
to less than ~. Clearly, these exciting new developments have opened 
up new areas of theoretical and experimental research in the field of spin 
w a v e s .  

We now turn to a number of experimental verifications of spin-wave 
theoretical predictions for the behaviour of thermodynamic quantities, 
like the heat capacity and the magnetization. Let  us first consider the 
specific heat. The predicted limiting low-temperature behaviour for 
systems of different dimensionality d may be conveniently memorized 
by the mnemonic formula C ,,, T al'~, where d is the dimensionality and n is 
defined as the exponent in the dispersion relation ~o ~k ~. For phonons 
and antiferromagnetic magnons n =  1, for ferromagnetic magnons n =  2. 
Thus the lattice heat capacity of a 3-d system goes with T a, which is the 
well-known low-temperature Debye approximation, the spin-wave 
specific heat of a 3-d ferromagnet as T a/2, of a 2-d ferromagnet as T, 
etc . . . .  One should not forget tha t  these terms are only the first terms 
in series expansions in kT/[JIS.  For instance the specific heat of a 3-d 
ferromagnet is approximated to higher order by (Dyson 1956) 

Cm/R=ao(kT/JS)a12 +a1(kT/JS)SI2 +a2(kT/JS)TI2 +aa(lcT/JS)4. (4.8) 

In  fig. 64 (a) the low-temperature heat capacity of Cu(NHa)~Br 4 . 2H20 
as measured by Miedema et al. is plotted as Cm(T/Tc) a/2 versus T I T  e. 
In this way the first coefficient a o is obtained from the intercept at T = 0 
and the second coefficient a 1 from the derivative at T = 0. The value for 
J/kT¢ following from the comparison of the experimental and theoretical 
values for a 0 is in reasonable agreement with the experimentally deter- 
mined J/kTe=0.35. Also ao/a 1 agrees with theory. This may also be 
inferred from fig. 64 (b) where the data for T > 0.2 T~ are compared with 
the Dyson series (4.8) using J/lcTe=0.35. The agreement between 
experiment and theory may be extended to slightly higher temperatures 
(up to k T / J S  ~_ 3) if instead of the t runcated series (4.8) the full expression 
for C m involving an integral over the Brillouin zone is used. In the 
calculation renormalization was accounted for, the correction being about  
13~o at T = 0 - 6  T o. The fit is quite good, although it should be borne in 
mind tha t  the result is rather sensitive to the J/kTo value, and recent 
experiments suggest that  J/]cTo=0.34 would be more accurate for this 
salt (Van Amstel et al. 1974). 
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(a) The magnetic heat  capacity of Cu(NH4)2Br 4 . 2H20 in the spin-wave region. 
The data are plotted as Cm(T/Tc) -3/2 versus T/To in order to de- 
monstrate  the existence of the T a/2 and T 5/2 terms in the Dyson series 
for C m. (b) The same dat~ for T > 0-2To. The broken line is the pre- 
diction from the Dyson series (eqn. (4.8)), the solid curve was calculated 
using the full expression for the heat capacity, integrated over the 
Brillouin zone. In  both cases J/kT~=0.35 has been assumed, in 
accordance with other experimental determinations of this quantity. 
(After Miedema et al. 1965.) 

According to the  sp in-wave t heo ry  the  hea t  capac i ty  of a f e r romagne t  
will be reduced  on app ly ing  a magne t i c  field. This  has  been verif ied b y  
Passenhe im et al. (1966), whose d a t a  on EuS are shown in fig. 65. Also 
in this case the  sp in-wave predict ions were calcula ted by  in tegra t ing  
over  the  Bril louin zone, bu t  a correct ion for  renormal iza t ion  effects was  

A.P. M 
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unfortunately not  applied. The values for the first and second-neighbour 
exchange giving best fits are in agreement with those obtained by Passell 
et al. (1971) from the spin-wave dispersion curve. Note that  at T = 4 K, 
k T I J S  ~_ 5.5. 

4o I 
5 . 6  

Fig. 65 

• C EXP (HIN T = 0 OERSTEDS)  

C C/~LC (HiN T = O OERSTEDS)  

i A C EXP. (HIN T = 5 ,820  OERSTEDS)  
. . . .  C CALC. (HIN T = 5 , 8 2 0  OERSTEDS) 

o C EXP. (HIN T = 10 ,800  OERSTEDS) 

3 2  . . . . . . .  C CALC. (HIN T = 1 0 , 8 0 0  OERSTEDS) 

2 8  

1.2 

.8  

if- A 7 ° /  ~/?," 
fro, 

I 0 2 0  5 0  4 . 0  

T (°K)  

Magnetic heat capacity of EuS measured at two different field values and 
H=0 .  The solid curves have been calculated from spin-wave theory. 
(After Passenheim et al. 1966.) 

The T a spin-wave term in the magnetic specific heat of a 3-d antiferro- 
magnet is more difficult to demonstrate experimentally. This arises 
because of the above-mentioned large anisotropy gaps occurring in anti- 
ferromagnets even when the anisotropy is fairly small, as a consequence 
of the inter-play between H E and H A . Nevertheless, Montgomery (1966) 
has found evidence for the T a term in the extremely isotropie compounds 
RbMnF 3 and KMnF 3. His data on RbMnFs have been reproduced in 
fig. 66. In zero magnetic field the data could be accurately fitted to the 
equation C = 27.7 T -~ + 0.334 T a (C in m J/mole K). The first term is the 
hyperfine specific heat, the second is the sum of the lattice and spin-wave 
contributions that  both have the same temperature dependence. The 
slight increase observed on application of a field of 14.1 kOe is at t r ibuted 
to impurities. 
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Applications of spin-wave theory in describing the temperature de- 
pendence of the spontaneous magnetization may be found in Keller's 
review paper (e.g. MnF2). Of the recent results we mention the analysis 
of Charap and Boyd (1964) of their N .M.R data on EuS and Wielinga and 
Huiskamp's results (1969) on (NH4)~CuBr 4 . 2H20, that nicely fit the 
calculations of Loly (1968) (see also Velu et al. 1972). Although appreci- 
able next-nearest neighbour interactions are present in these ferromagnetic 
compounds, this discrepancy is not too serious in the case of the spon- 
taneous magnetization, since the results turn out to be rather insensitive 
to the presence of next-nearest neighbour interactions. Also one may 
incorporate a second-neighbour interaction within the theory. Never- 
theless it is a pity that a clear-cut, nearest-neighbour only ferromaguetic 
insulator is yet to be discovered. 

Turning next to systems of lower dimensionality we show in fig. 67 
the measurements of Colpa (1972 b) of the low-temperature specific heat of 
one of the 2-d ferromagnetic copper compounds. As expected, the heat 
capacity depends linearly on temperature. However, we have men- 
tioned in § 3.2.2 that the values for the exchange constants of these salts, 

M2 



180 

~ 1200 

pE 

c,-i 
b 80o 

T 

L. J. de Jongh and A. t{. Miedema o n  

Fig. 67 

400 ,,..~.-" 

0 0020 00/-,0 0,060 
T 3 {K 3) > 

The low-temperature specific heat of 

c,E 
4000 

/ 

I 2000 . , / /  / 
/ 

0 _ _  
0080 0 0120 040 

13 (K 3) ~ 

the 2-d Heisenberg ferromagnet 
(CH3NH~)2CuC14, as measured by Colpa (1972 b). 

calculated from the coefficients of the linear term, are systematically 
lower (10%) than those obtained from the high-temperature suscepti- 
bility. A possible temperature effect may not be excluded, although the 
exchange is in that  case mostly increasing with decreasing temperature. 
As explained in § 3.2.2 we suspect the discrepancy to be due to a failure of 
spin-wave theory to account quantitatively for the observed behaviour 
if both the dimensionality and the spin value are low. Quite generally, 
one may expect spin-wave theory to become a better approximation as 
the dimensionality and the spin value are increased. In particular, for 
magnetic chains, the inadequacy of the spin-wave approach is exposed. 
For an antiferromagnetic Heisenberg chain spin-wave theory predicts 
a linear temperature dependence of the specific heat. The calcula- 
tions of Bonner and Fisher (1964) on finite S=½ Heisenberg chains 
corroborate this qualitatively, but yield an amplitude of the linear term 
that  is a factor 3 times smaller than the spin-wave result. Weng (1969) 
has found this factor to be only 1.4 for the case S=1% For ferro- 
magnetic chains the heat capacity at low temperatures varies as the 
square root of the temperature. In this case the amplitude estimates 
from the calculations on closed finite rings differ a factor 1.3 from the 
spin-wave result for both S = ½ and S = 1. In § 3.1.2 we have seen (fig. 
20 (a), (b)) that  the experimental specific heat data for S=½ are in 
remarkably good agreement with the curve obtained by Bonner and 
Fisher, also near to the region where the dependence on temperature is 
approximately linear. 

t I t  has been suggested that the S=½ antiferromagnetic linear chain is 
actually not a boson but a fermion problem. For recent experimental indica- 
Lions to this end see Ehrenfreund et al.  (1973). 
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Concerning the antiferromagnetic susceptibility of Heisenberg chains, 
spin-wave theory erroneously predicts a diverging X~ as T->0, in contrast 
with the finite, spin-dependent values obtained in better treatments 
(Griffiths 1964 a, Bonner and Fisher 1964, Fisher 1964, Weng 1969). For 
this particular example the perturbational approach of Davis (1960) yields 
better results than spin-wave theory in that  it does give finite values for 
Xj_(T=O), although these are in poor agreement with the other calcula- 
tions. For S = ½ Davis obtains X±(0)/X± ° = 0-1 l, where X~ ° is the molecular 
field prediction for the perpendicular susceptibility. This may be com- 
pared to Griffiths' result X±(0)/X~0=0.405. For S=~ Davis's value is 
x±(O)/x±°= 0.83, whereas Weng finds 0.59. 

For the 2-d antiferromagnets with S > ½ the experimental values of 
x±(O)/x± ° are in close agreement with spin-wave theory, in any case 
much closer than with the predictions obtained by Davis (1960) and 
Walker (unpublished) from a perturbation theoretical approach (see 
De Jongh 1972 b, e and also below). For the only example with S=½ 
presently available (CuFf. 2H20), the reverse is the ease. This could 
indicate a similar discrepancy with spin-wave theory as found above for 
the specific heat of the 2-d Heisenberg ferromagnets with S=½. On 
the other hand, the value of [J'/JI of this compound is fairly high ( _~ 10-2), 
which could also be responsible for the fact that  x±(O)/x± ° is higher than 
predicted by 2-d spin-wave theory. 

For the 2-d antiferromagnets with S > 1, on the other hand, an extremely 
good agreement with spin-wave theory (including renormalization) has 
been found for a large variety of measurements, the only adjustable 
parameters being the exchange and the (small) anisotropy. Since the 
values for these parameters may be independently determined by methods 
not involving the magnon approach, a wholly consistent picture is 
obtained. As mentioned in § 3.2, in compounds such as K~NiF 4 and 
K2MnF 4 the spin-wave dispersion (Birgeneau et al. 1969, 1973), the sub- 
lattice magnetization (De Wijn et al. 1971, 1973 b) and the parallel and 
perpendicular susceptibility (Breed 1967, 1969) can all be fitted to the 
spin-wave theory for a 2-d Heisenberg antiferromagnet including a small 
anisotropy. The exchange constants obtained in these various experi- 
ments are in excellent accord, and are moreover equal within 1% to 
those obtained from fitting the high-temperature susceptibility to the 
exact series expansions (De Jongh 1972 e). From the good agreement 
in two dimensions one would expect an even better accordance in three 
dimensions. Indeed, we have already discussed many examples that  
support this conclusion. 

We will end this section by reviewing the experimental evidence found 
for the existence of zero-point spin deviations in antiferromagnetie 
substances, as predicted by Anderson (1952). As mentioned earlier, the 
fully aligned N6el state is not an eigen-state of the Hamiltonian, so that  
even at zero temperature the spins will be subject to deviations from this 
orientation. However, as a starting point spin-wave theory takes the 
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N6el state as the approximate ground state, correcting afterwards for the 
zero-point motions. These corrections include a shift of the ground-state 
energy. Since the presence of anisotropy stabilizes the two-sublattiee 
ground state, in the limit a = HA/H E-->oe the energy becomes equal to the 
Ising approximation E 1 = - 2 z  IJ I S2No . For finite ~ we have 

E(a) = EI(1 + e(a)/zS),  

where e(a) varies from e(0) _ 1/4z to zero for a - + ~ .  As a second effect, 
the magnetic moment per site is no longer given by g/XBS but  by  
g l x B ( S - A S ) ,  the anisotropy dependent spin reduction AS(a) likewise 
reducing to zero as a-->~. Values for e(a) and AS(a) may be calculated 
from spin-wave theory or other methods (e.g. Davis 1960, Keffer 1966, 
Breed 1969, Lines 1970, Colpa et al. 1971). The value of AS(0) is roughly 
given by 1/2z for the various lattices. 

The effects of zero-point spin deviation constitute yet another example 
of a phenomenon that  is considerably more easily studied in lower dimen- 
sional magnets, since they become the more pronounced the lower the 
dimensionality (and the lower the spin value). In addition to the approxi- 
mate expressions for e(0) and AS(0) given above, we may quote the explicit 
values of AS(0) for the s.c. and the quadratic lattice, which are 0.078 and 
0.197, respectively. During the past ten years substantial efforts have 
been made in finding experimental proof for the existence of the zero- 
point deviations, mainly by  detecting their influence on the expectation 
value of the magnetic moment. Initially the experiments were per- 
formed on 3-d antiferromagnets, the magnetic moment being either 
measured directly with neutron diffraction, or indirectly via the hyperfine 
field, i.e. the field exerted by  the magnetic moment on the nucleus of the 
magnetic atom. The results were rather disappointing in that  no definite 
proof for the existence of spin reduction could be obtained. This was 
partly due to the smallness of the effect in three dimensions, in particular 
for the manganese compounds on which most of the investigations were 
performed. These have S=~ ,  so that  AS is only about 3% of S (that 
nevertheless manganese was chosen arises because the Mn 2+ ion is in an 

state, so that  one is not troubled by  orbital contributions to the magnetic 
moment). Such a small effect is difficult to detect convincingly, more 
so since in both methods of measurement one is troubled by  additional 
mechanisms that  complicate the analysis. For instance, in determina- 
tions of (S> by neutron diffraction, where (S> denotes the expectation 
value of the magnetic moment in the preferential direction, one is hampered 
by  covalency effects. Covalency likewise reduces the magnetic moment 
since it delocalizes small parts of the moments of neighbouring magnetic 
ions onto the ligand in between them. A cancellation of these small parts 
will reduce the effective moment. Furthermore, covalency affects the 
form factor of the magnetic ion for neutron diffraction, accurate knowledge 
of which is indispensable in order to obtain <S>. 
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In deducing <S> from the hyperfine structure interaction (h.f.s.) 
AS . I, one measures the hyperfine field, which is proportional to A<S},  
from specific heat or N.M.R. experiments. Consequently the value of the 
h.f.s, constant A has to be known to a sufficiently high accuracy to enable 
a reliable determination of <S}. Earlier estimates of A from E.S.R. 
experiments in magnetically diluted diamagnetic isomorphs led to contra- 
dictory results, even to negative values of AS in 3-d antiferromagnets. 
As an explanation for this unphysical result, Owen and Taylor (1966, 1968) 
and Huang et al. (1966, 1967) suggested that  the h.f.s, constant will be 
larger in the antiferromagnetic salts than in the diamagnetic isomorphs. 
This would be the consequence of a transfer of unpaired electron spin 
from one magnetic ion to its nearest magnetic neighbours via the inter- 
vening ligand (super-transferred hyperfine interaction). Such a process 
will affect the splitting of the nuclear energy levels and thus the value of 
A. In 3-d, S =  9, antiferromagnets the two effects are expected to be of 
comparable magnitude, accounting for the observed behaviour. 

In spite of this possible explanation one could still doubt the experi- 
mental evidence for zero-point effects. Recently, however, various groups 
of workers have together provided convincing experimental proof by 
exploiting the newly discovered 2-d antiferromagnetie materials, in 
particular K2MnF 4 and Rb2~nF  4. Values for <S> of the same order of 
magnitude as predicted by 2-d spin-wave theory were obtained in K~MnF4 
by Loopstra et al. (1968) and by Rubinstein and Folen (1968), using neutron 
diffraction and magnetic resonance, respectively. In 1970 Walstedt et al. 
reported on N.M.R. measurements in the two Mn compounds, finding 
values for AS in seemingly complete agreement with theory. At about  
the same time Colpa et al. (1971) evidenced the much larger spin reduction 
in two as in three dimensions, by comparing the h.f.s, contributions to 
the heat capacity of Rb2MnF 4 and RbMnF a. The various results for AS 
in these manganese compounds have been gathered and reviewed by  
Schrama (1973a, b). From his experiments on X2MF 4 ( X = K ,  R b ;  
M = Mg, Zn, Cd) and XMF 3 diluted with manganese, he concludes to an 
A value slightly different from that  adopted by Walstedt et al. (1970) 
on the basis of fewer experimental results for A. Nevertheless, in 
calculating the spin reductions from the h.f.s, fields measured by Walstedt 
et al. using the new A values, Schrama ultimately obtained quite similar 
results for AS as Walstedt et al. because he also had to introduce a value 
for the predicted effect AAs.h.i. upon the hyperfine constant due to the 
super-transferred hyperfine interaction, which differs from that calculated 
by Owen and Taylor and Huang et al. This point is clarified in table 13. 
In the first and the second row values for the spin reduction in the listed 
compounds are given as predicted by spin-wave and perturbation-theory, 
respectively. The predictions have been corrected for the anisotropy, the 
correction being only substantial (+ 15%) for the spin-wave predictions 
for the 2-d salts. In the third row the experimental values are given, 
uncorrected for the super-transferred hyperfine interaction, in the fourth 
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Table 14. Values of a=HA/H ~ and X±(0) of quasi 2-d Heisenberg compounds. 
Using these, the experimental ratios x±(O)/x±°(a) are obtained, where 
X±°(a) is the anisotropy dependent MF prediction for the perpendicular 
susceptibility X±°(a) = Nog2tZB2/4z I J I(1 + a/2). The J//c values used are 
listed in table 6. The experimental ratios are compared with those 
predicted by spin-wave theory for the 2-d quadratic antiferromagnet. 

Compound 

CsFeF 4 
RbFeF 4 
Rb2MnF 4 
K2MnF4 
BaMnF 4 
BaNiF 4 
Rb2NiF a 
K2NiF4 
CuF 2 . 2H20 

c~ = HA/H E 

7 x 10 -8 
6.5 × 10 -8 
4-7 × 10 3 
3.9 × 10 a 
3.1 × 10 -4 
2 × 10 -2 
1 × 1 0  2 
2 × l0 -3 
3"7 × l0 -3 

X±(0)ex,. 
(cm3/mole) 

6.06 × 10 -8 
7.31 × 10 -3 
2.32 x 10 2 
2.01 × 10 2 
3.05 × 10 -2 
2.98 × 10 -8 
2.2 × 10 -8 
1.83 × 10 -8 
5-26 × 10 -8 

xAO)/x±°(~) 

(Exp.) (Theor.) 

0-92 0-90 
0.94 0"90 
0-92 0"90 
0-90 0'90 
0.89 0.89 
0-80 0.78 
0.77 0-77 
0.76 0.74 
0-63 0"50 

row the same bu t  now corrected for the  AAs.h.i. per  magne t ic  ne ighbour  as 
calculated b y  Owen and  Tay lo r  and  H u a n g  et al. Final ly  in the  last  row a 
correct ion AAs.h.i. has  been appl ied t h a t  is 2.25 t imes as large as the  
theoret ical  value.  No te  t h a t  for AAs .h . i .=0  nega t ive  values  for AS 
result  in th ree  dimensions,  as men t ioned  above.  Note  also t h a t  by  using 
the  theoret ical  AAs.h.i. the  ag reement  wi th  sp in-wave  theo ry  is still 
unsa t i s fac tory ,  especial ly in three  dimensions where the  exper iment  is 
moreove r  fa r  outside bo th  spin-wave and  p e r t u r b a t i o n  theoret ica l  predic-  
tions. W i t h  the  ' c o r r e c t e d '  AAs.h.i. per  magne t i c  neighbour ,  on the  
other  hand,  the  ag reemen t  wi th  sp in-wave t heo ry  is per fec t  in two as well 
as in three  dimensions (z = 4 and  6, respect ively) .  Tak ing  also into account  
the  success of sp in-wave theory  in describing the  proper t ies  of 2-d (S > 1) 
and  3-d an t i fe r romagnets ,  as witnessed above,  one would conclude t h a t  
the  sp in-wave predict ions for AS are mos t  p r o b a b l y  correct  and  t h a t  the  
expe r imen ta l  resul ts  indicate  the  calculated effect  on A due to the  super-  
t ransfer red  hyperf ine  in terac t ion  to be  quan t i t a t i ve ly  in error. 

Other  expe r imen ta l  values  for AS, encountered  in the  preceding pages, 
arc 0.20_+0.03 for K2NiF 4 ( S = I )  (De Wi jn  et al. 1971) and  0.24 for 
C u ( H C O O ) 2 . 4 H 2 0  ( S=  1) (Dupas  and  R e n a r d  1970 b). I n  bo th  cases 
the  theoret ica l  va lue  is 0.18, t ak ing  into account  the  anisot ropy.  Also 
for K N i F  a a considerable reduct ion  has been  observed  (Hutchings  and  
Guggenhe im 1970) bu t  in this case the zero-point  effect  could not  be 
deduced unambiguous ly ,  due to the  covalency effects. I n  addit ion,  in 
some of the  chain compounds  considerable reduct ions  of AS have  been 
observed.  F o r  these systems,  however ,  sp in-wave  theo ry  is appa ren t l y  
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in error since it predicts a reduction that  diverges in the limit of zero 
anisotropy (Kubo 1952), in disagreement with the calculations of Griffiths 
(1964 a, b, c) and Bonner and Fisher (1964). 

In a different approach De Jongh (1972 b, c) has shown how the exis- 
tence of zero-point deviations can also be deduced experimentally from 
their effects upon the perpendicular susceptibility. This has already 
been mentioned in § 3.2.1 (cf. fig. 28). In this case both the spin reduc- 
tion and the shift in the ground-state energy come into play, since both 
have the effect of lowering X~(0) from the MF value X± ° (eft eqn. (3.6)). 
Using the known values of J/k and ~, theoretical and experimental results 
for the quanti ty Xz(0)/X± ° have been calculated for a number of 2-d 
antiferromagnets with different spin value (De Jongh 1972 c), as listed 
in table 14. Note the good agreement for S = 1 and S = ~. In the case 
of S =  ½ the experimental reduction is too small, as discussed above. A 
similar agreement for the perpendicular susceptibility is also found for the 
3-d salts l~bMnF 3 and KNiF a (see § 3.3.2). I t  is remarked tha t  these 
findings for X~(0) show that  covalency does not affect the perpendicular 
susceptibility. 

Summing up we may state that  in the past five years quite convincing 
experimental evidence for the existence of zero-point spin deviations has 
been obtained, thanks mainly to the discovery of the quasi 2-d Heisenberg 
antiferromagnets. As concerns the XY antiferromagnet, some evidence 
for the presence of zero-point effects in this model has been encountered 

Fig. 68 

r h--. Z "-h 
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REDUCED WAVEVECTOR 

Magnon and phonon dispersion curves as measured in FeCOa by Wrcge et al. 
(1971). The interesting features are firstly the independence of the 
wave vector of the magnon dispersion (solid curve: calculated), as 
expected for an Ising system, and secondly the apparent magnon- 
phonon coupling (note that the coupling only occurs with selected 
phonon modes). 
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in the 2-d compounds CoC12 . 6H~O and CoBr 2 . 6H~O. Lastly we mention 
that  in some types of antiferromagnets zero-point effects will be entirely 
negligible, as for instance in the case of ferromagnetic layers with a very 
weak antiferromagnetic interlayer coupling. This is due to the fact 
that  the antiferromagnetic intersublattice (=interlayer) interaction is 
so much smaller than the ferromagnetic intrasublattice (=intralayer) 
interaction (De Jongh 1972 a). 

We would like to end this section with the remark that  in many analyses 
of experiments the magnon and phonon effects are taken to be simply 
independent. That this will not always be a valid assumption is evi- 
denced by the calculations of Kittel (1958) on the magnon-phonon 
interaction (see also Rives et al. 1969 for more recent references). This 
interaction is best illustrated by the fact that  the magnon and phonon 
dispersion curves will intersect at some point in the w-It frame. As an 
experimental verification we show in fig. 68 the dispersion relations of 
FeC03, as reported by Wrege et al. (1971). Note tha t  the magnetic 
excitations interact selectively with a particular type of phonon mode. 
A second reason for reproducing the measurements on this Ising-like 
substance (with effective spin S =  ½) is that  the magnon dispersion curve 
forms a clear example of the wave-vector independent magnon dispersion 
appropriate for an Ising system. Another good example of magnon- 
phonon coupling is provided by the recent neutron diffraction study of 
Rainford et al. (1972) on FeF~. A theoretical treatment has been given 
by Lovesey (1972). In the two examples cited the coupling arises pre- 
dominantly from the phonon modulation of the crystal field, so that  the 
interaction between spins and lattice is via the orbital moment by means 
of the spin-orbit coupling. As another mechanism for the magnon- 
phonon interaction we mention the phonon modulation of the exchange 
integral. 

4.3. Series expansions 

In this section we want to stipulate the important role of series expan- 
sions in the field of phase transitions. We have already witnessed in the 
preceding pages how this approximate method of obtaining information 
about the thermodynamic behaviour has been quite successful, in par- 
ticular in the many cases where exact closed-form solutions are lacking. 

The series for the various thermodynamic quantities are mostly expan- 
sions in a high or low-temperature parameter. They are exact in the 
sense that  the calculated coefficients are exact results, but at the same 
time they are approximations valid only in a certain temperature range, 
since the number of terms that  can be obtained is limited. At first sight 
this might limit their applicability rather severely. However, the tech- 
nique of analysing the truncated series has been highly developed and one 
has managed to derive predictions from them in ranges of temperatures 
widely outside their apparent validity, for instance even in the critical 
region. 
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This being no place to review the existing methods of analysis, we 
only mention that  at the root of many lies the assumption that  the critical 
behaviour of thermodynamic functions is in the form of simple power laws, 
as we have already encountered above for the magnetization. In the 
next  section the reader will find a list of the most frequently used critical 
exponents associated with these power laws. In many cases the pre- 
dicted values for the exponents have been obtained from the analyses of 
series expansions. The assumption of a power-law behaviour in the 
critical region is not an arbitrary choice, but  is based upon the fact that  in 
the exactly soluble models like the 2-d Ising model the critical behaviour 
is of this form. The soluble models also present a testing ground for the 
methods of analysis of the series, since one may compare the exactly known 
behaviour of a thermodynamic function with that  derived from a series 
expansion analysis. 

We will now briefly mention some of the successful results obtained with 
the series expansion technique. Besides values for the critical exponents 
they yield fairly accurate estimates of the critical temperature, as has for 
instance been done by gushbrooke and Wood (1958, 1963) for the 3-d 
Heisenberg model. This is mostly accomplished by locating the tempera- 
ture at which the (staggered) susceptibility diverges, since the series for 
the susceptibility are usually rapidly converging. As we have seen, 
such an analysis for the 2-d geisenberg models has led to the postulate 
of a new magnetic phase with an infinite susceptibility but  without a 
spontaneous magnetization. 

Apart  from the critical behaviour, predictions for the temperature 
dependence of thermodynamic functions over quite a wide temperature 
range have been obtained. Thus the analysis of Baker et al. (1964) of 
the series for the specific heat of the ferro and antiferromagnetie Heisenberg 
chain nicely confirms the calculations of Bonner and Fisher (1964) down 
to kT/]J]_~ 0.4. Sykes and Fisher (1962) deduced the behaviour of the 
antiferromagnetic susceptibility for the 2-d and 3-d Ising model for all 
temperatures. For the 3-d Ising and Heisenberg models and for the 2-d 
Heisenberg model all the quantitative knowledge about the thermodynamic 
behaviour is based upon series expansion analyses (in the case of the 
isotropie models spin-wave theory, of course, provides an additional 
source of information). 

Iu summing up, series expansions have yielded important contribu- 
tions to our knowledge of phase transitions. The many examples of 
excellent fits of experimental results to the predictions obtained from 
their analyses, as given in the preceding pages (cf. figs. 28, 34 (b), 40, 
49, 50, 53), may serve as convincing proof of the usefulness and applic- 
ability of this approach. 

4.4. Critical behaviour 

If the transition point is approached closely enough one finally enters 
the critical region, i.e. the temperature range around Tc in which the 
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behaviour of the thermodynamic functions is governed by  the asymptotic 
power-law expressions (although more complex expressions have been 
proposed and may not be excluded a priori). For a discussion of these 
matters and definitions of critical exponents see, e.g., Fisher (1967) or 
Stanley (1971). As to the extent of the critical region around To one 
may say that- -depending on the particular thermodynamic function--i t  
is confined to at most ]T-Tol/Tc<IO-~-IO-1. By this we mean that  
in this temperature range the behaviour of a function will not differ 
perceivably from the asymptotic power-law form, so that  the usual log-log 
plot will result in a straight line with a slope equal to the value of the 
critical exponent. I t  is very important to realize the finite extent of 
the critical region and to know beforehand how close one has to come 
near T o in order to expect the power-law behaviour. For instance, in 
the case of the specific heat of 3-d Ising models, which have only a weak 
singularity at To, one has to come closer than 10 -2° of T~ in order to have 
a difference smaller than about 1~o between the power-law behaviour 
and the full expression for the specific heat (Sykes et al. 1967, Wielinga 
1971). Quite generally, in comparing experimental heat capacities with 
theory, one should adhere to the full theoretical expression (Domb and 
Bowers 1969). I t  is evident that  the method of plotting experimental 
data on a double logarithmic scale and drawing a ' straight ' line through 
them without any further consideration will yield incorrect values for the 
critical exponents, also in cases where the singularities are stronger. 

We now give the asymptotic expressions for the thermodynamic func- 
tions that  we will consider. The theoretical predictions for the critical 
exponents are listed in table 15. 

Specific heat : 
Cm/R,,~A (1-To/T)-~ (T->Tc+ ; H=O), (4.9) 

Cm/R~A'(1 - T/T~)-~' (T~T~-  ; H=O). (4.10) 

Spontaneous magnetization : 

Ms(T)/Ms(O)~B(]- T/To)Z (T->To- ; H=O). (4.11) 

Initial susceptibility : 

xT/C~Co (1-To/T)-~ (T-~Tc+ ; H = 0 ) ,  (4.12) 

)IT~C~ C o' (1 - T/Tc)-~' (T->Tc- ; H= 0). (4.13) 

Critical isotherm : 

H ~  D[M(H)I~ ( H ~ 0 ;  T= To). (4.14) 

Inverse correlation length: 

K~N (1-  Tc/T)~ (T->To+; H=O). (4.15) 

~¢~N'(1- T/T~)~' (T~T~-  ; H = 0 ) .  (4.16) 

Wave-vector dependent susceptibility : 

f(([c) ~k,  -~ (lc->O ; T= To). (4.17) 
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As usual  the  p r imed  exponents  refer  to the  region below T c. I t  is fu r the r  
no ted  t h a t  the  power  law for the  suscept ibi l i ty  is dif ferent  f rom the of ten 
used f o r m  x ~ t T - T o I - v .  We believe t h a t  the  expression (4.12) is 
more  correct  in compar ing  expe r imen t  wi th  theory ,  since in theoret ical  
calculat ions one does not  consider X itself, bu t  the  ' energet ic  ' suscepti-  
bil i ty xT/C. As po in ted  out  by  Wiel inga (1971), in pract ica l  cases the  
value der ived f rom a x/C versus (T  - T~)/T e plot  will t e n d  to be a few per  
cent  larger t h a n  t h a t  ob ta ined  f rom a xT/C versus  ( T - T e ) / T  plot.  

Equa t ions  (4.9) and  (4.10) also contain  the  possibi l i ty  of a loga- 
r i thmica l ly  diverging specific heat ,  since this  is included in the case 

= 0, which can be shown b y  considering t h a t  

x : -  1 
lira = l n  x. (4.18) 
~-->0 

The case ~ = 0 fu r the r  comprises a finite d i scont inui ty  a t  To, as is pre-  
dicted for  the  specific hea t  b y  the  MF theory .  

Of considerable interest ,  t hough  p robab ly  no t  open to direct  experi-  
men ta l  inves t igat ion,  are the  so-called gap  exponen t s  A n (Essam and  
Fisher  1963). Below To we m a y  consider the  successive field der iva t ives  
of the  free energy  F (in the  l imit  H->0)  : 

(~F/~H)T = F(1), ,., (1 - T/Te)-~I 'F (°), 
: (T  < To). 

(~nF/~Hn)T =- F(n)N (1 -- T/Tc)-An'F (n-l), 

Above  T c all odd field der iva t ives  of F(H, T) are zero for  H = O, so t h a t  
one m a y  define s imilar ly  

(~2nF/~H2n)T =_ _~(2n)~,~ ( 1  - -  Tc/T)-2A2nF (2n-2) (T  > Te). 

Now since the  specific hea t  C(H = O) ~- (1 - T/T~)-~' is the  second t empera -  
ture  der iva t ive  of F ,  i t  follows t h a t  F(° ) , - , ( 1 -T /Tc )  2 ~', and since 
F( 1~ ~ Ms (T  ) ~ (1 - T / T c)P , one obta ins  the  re la t ionship 

A 1' = 2 - e '  - ft. (4.19) 

Fu r the rmore ,  F (~) ~ xT/C,,~ (1 - T/T~)-v'  and  hence 

A 2' = ~ + ¢ .  (4.20) 

Above  T¢ we have  likewise 

2A e = 2 - e + ~, (4.21) 

W h a t  is of impor t ance  is t h a t  in the  case where  the  critical exponen ts  
are known exact ly ,  as for the  2-d Is ing model  and  the  MF model ,  i t  is 
found  t h a t  all gap  exponen ts  are equal. Thus  in the  MF theory  ~ = ~' = 0, 
fl = ½ and ~ = ~ ' =  1, so t h a t  A I ' =  A2 '=  A 2 = ~. Fo r  the  2-d, S = ½, Is ing  
model  a ' =  e -  0, fl = ½ and, mos t  likely, y = ~'=-~, yielding 

A 1' = A 2 ' = A~ = ~ .  
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Numerical studies for the 2-d Ising model (Essam and Hunter  1968) are 
indeed consistent with A ' - A  _ ~5 for all n. For the 3-d Ising model 

n - -  ~ 2 n  - -  8 

= A _ ~-v _ 1-56, although the possi- (S= ½) the same authors obtained A' ~ 25_ 
bility A'=A~_½-3=l-625 could not be excluded. For instance eqns. 
(4.19) to (4.21) are satisfied with ~ = ~ ' = ~ ,  8 = ~ ¢ ;  7 = ~ ' = ~  and 
A--~A'--1,. ~-a These values for ~, ~', 8, 7 and ~' are consistent with the 
best numerical estimates (ef. table 15). For the 3-d, S=½, Heisenberg 
model, Baker et al. (1967 b) found 2A= 3.63 + 0.03, whereas Stephenson 
and Wood (1968) concluded to 2A ~3.45 for the S =  ¢0 case. There is 
therefore strong evidence in favour of the general assumption that  the 
gap exponents are equal for all n. 

This assumption is also related to the scaling hypothesis. For instance, 
the relationship ~' + 28+ ~' = 2, obtained through equating A 1' and A2' , 
is one of the scaling laws, and in fact scaling theory predicts An'= A2= 
for all n. Originally put forward by Widom (1965), Domb and Hunter  
(1965) and Kadanoff (1966), the scaling hypothesis has proven to be a 
successful approach, to which many authors have contributed. For a 
recent review see, e.g., Hankey and Stanley (1972). Though not giving 
numerical values for the critical indices, scaling theory predicts relation- 
ships between them, the scaling laws. Accordingly, the number of 
independent critical exponents is restricted, so that  from a knowledge 
of two all others can be derived. In addition, the hypothesis yields 
predictions concerning the form of the equation of state. 

I t  can be argued (see, e.g., Stanley 1971) that  the scaling hypothesis 
comes down to the assumption tha t  the free energy F(T, H) is a generalized 
homogeneous function, meaning that  there exist two parameters a T and 
aR, such that  

F(,~aTT, ~taHH)= 2tF( T ,  H)  (4.22) 

for any value of the number )t. I t  then transpires that  the critical 
exponents can all be expressed in terms of the two parameters a H and a T. 
I t  is intriguing that  such a unification of many various items can be 
brought about by the introduction of a fairly simple mathematical 
concept. We mention some of the scaling relations that  are useful in 
the present context (primed and unprimed exponents are equal) : 

~ + 2 8 + r = 2 ,  (4.23) 

c¢+ 8(~ + 1)=2, (4.24) 

~ = 8 ( ~ -  1), (4.25) 

A'= A = 8 + ~ = ~ =  1 + ½ ( 7 - ~ ) = 2 - ~ - 8 ,  (4.26) 

~= ,42-v),  (4.27) 

rd = 2 - ~, (4.2S) 

2-~7 = d ( 3 -  1)/(3+ 1). (4.29) 
Here d, as before, denotes the lattice dimensionality. 
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In view of the remark made in connection with the equalities between 
the gap exponents, it will come as no surprise that  most of the above 
scaling relations are obeyed in the case of model systems for which the 
exponents are known exactly, or to high accuracy (2-d Ising, M~, and 
spherical model). In the case of the 3-d Ising and Heisenberg models 
the possible errors in the exponent values are larger, but  within the un- 
certainties a set of critical exponents can be chosen that  satisfy the scaling 
relations. Experimental results also seem to be in agreement; in any 
case no set of critical indices has yet  been obtained on a magnetic substance 
that  invalidates them, as we shall see below. I t  is also remarked tha t  
many of the scaling relations can be derived as inequalities on the basis 
of thermodynamic arguments (see, e.g., Fisher 1967, Stanley 1971) under 
certain assumptions. For instance, a + 2fl + ~, >~ 2 is the well-known 
Rushbrooke inequality, whereas the inequality a+ f l (8+  1)~>2 has been 
derived by Griffiths (1965). Evidently, the scaling relations are useful 
in the case of a model for which only two exponents have been determined 
from series expansions. In that  way Betts (1973) has deduced a set of 
exponents for the 3-d XY model from the estimated a and ~. 

Another interesting recent development is the bilinear form hypothesis 
(Betts et al. 1971, Stanley and Betts 1972). As a starting point this 
theory takes the universality hypothesis (Griffiths 1970 b, Kadanoff 1970), 
already quoted in the preceding sections, assuming the critical exponents 
to depend only on the lattice dimensionality d and the spin dimensionality 
D. The latter gives the dimensionality of the interacting spin vectors, 
thus D = 1, 2, and 3 corresponds to the Ising, the XY and the Heisenberg 
model, respectively, the order parameter being a 1, 2 and 3-d vector. As 
shown by Stanley (1968 c) the limit D--*~ (also S = ~ )  yields the so-called 
spherical model. The critical indices should be independent of spin value 
S, and, at least close enough to T c, also of lattice anisotropy and spin- 
space anisotropy, by which are meant the dependence of the exchange on 
the direction in the crystal and on the spin components, respectively. 
Current theoretical evidence indeed supports the spin independence and 
seems to indicate that  the exponents change discontinuously in going 
from a 3-d to a 2-d lattice or from an Ising to a Heisenberg Hamiltonian 
(retaining their 3-d or Ising values until the interaction in the third 
dimension or the anisotropy have indeed become zero). Lastly, in the 
case of short-range forces, the exponents are generally accepted to be 
independent of the range of the interaction (as long as this remains 
finite). 

Taking then for a given dimension d a variation with D to be the only 
possibility, Stanley and Betts propose a dependence of each exponent 
on D of the form A(D) = ~(oo)Ra(D), where the factor Ra(D ) is the bilinear 

form b a + D 
Ra(D ) = - -  (4.30) 

ca+ D" 

For instance, the ~, values for the Ising, the XY and the tteisenberg 

A.P. N 
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model (1.25, 1.33 and 1.38) are closely reproduced by the expression 
~,= 2(4 +/))/(7 + D), or likewise by ~ = 2(21 + 4D)/(36 + 4D). As pointed 
out by Rushbrooke et al. (1973), for the Heisenberg model one may take 
either of the so-obtained ~'s and, if in addition 8 = 5 is assumed, calculate 
all other exponents from the scaling laws with ~ and ~. For the spherical 
model 8 = 5, whereas numerical work on the Ising and Heisenberg 3-d 
models strongly suggests that  8 is close to 5. On the other hand, the 
assumption 8 = 5 invariably leads to the result V = 0 in three dimensions, 
in view of the scaling relation 2 - ~ = d ( 8 - 1 ) / ( 8 +  1). Numerical studies 
seem to exclude the possibility tha t  V = 0. Indeed, from V = 0.056 _+ 0.008 
for the Ising model (Fisher and Burford 1967) and V = 0.043 + 0.014 for 
the tteisenberg model (Ritchie and Fisher 1972), one calculates 
8=4.68T0-08 and 8=4-75T0.08 for Ising and Heisenberg models 
respectively. Contrastingly, the numerical estimates favour a 8 value 
slightly higher than 5. Similar discrepancies have been encountered by 
Essam and Hunter  (1968) in testing the relation 2A=y+dv  and by 
Fisher and Burford (1967) and Ritchie and Fisher (1972) in the case of 
the equation d v = 2 - a .  In some cases the discrepancies are clearly 
outside the quoted errors in the numerical estimates. I t  is not quite 
clear whether the deficiency lies in the numerical calculations or whether 
the (dimension-dependent) scaling laws involving the correlation expo- 
n e n t s ,  and V are only approximately correct. Indications of the latter 
possibility have been found by Stell (1968) and Domb (1968). 

In turning now to the experimental results, we shall first confine our 
attention to the 3-d compounds) and start with the specific heats. We 
shall thereto rely heavily on the recent review of Wielinga (1971). I t  is 
first remarked that  in particular for specific heat measurements it is 
useless to compare the experimental data with theoretical predictions of 
the power-law form, since the asymptotic behaviour (eqn. (4.9)) is only 
followed in a region so close to T c that  it is widely outside experimental 
reach. Even in high quality magnetic single crystals a considerable 
rounding of the specific heat singularity (over a range of 10 3-10-~ of To) 
is the rule rather than the exception and this limits meaningful analyses to 
the region I T - T e l / T o >  10 ~-10 -8, since the position of T c becomes an 
additional unknown parameter. 

The only way out is therefore to derive a closed-form theoretical predic- 
tion, valid over the whole temperature range. In the case of series 
expansions with only positive terms, a useful method has been introduced 
by Sykes et al. (1967) that  was subsequently applied by Domb and Bowers 
(1969) and by Wielinga (1968, 1971). Starting from the series expansion 
of a thermodynamic function F(T) 

N 

F(T)= ~ an(J/leT)n, (4.31) 
~ = 0 

of which only the first N coefficients a n are known, one assumes the 
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asymptotic behaviour to be given by 

_F(T) _~ R(1 - Tc/T)-p , (4.32) 

where p is some appropriate critical index. With the aid of the usual 
extrapolation methods (ratio method or Padg approximant values) values 
for p and T c are derived from the iV known coefficients a s. In the next 
step one forms the binomial expansion 

R ( 1 -  To/T)-P = ~ Rb~(g/kT) n, (4.33) 
n = 0  

using the values obtained for p and T o in calculating the coefficients b~ 
(for any n). The constant R is determined as the limiting value of the 
ratio's R~-an/b ~ for large n. The behaviour of F(T) over the whole 
temperature range 0< l - T o ~ T <  1 can now be calculated from the 
expression 

2V 

F(T) = R(1 - To/T)-p + ~, (a s -  Rb~)(J/IcT)~. (4.34) 
n = 0  

On substituting eqn. (4.33) into eqn. (4.34), one observes that  the first 
AN terms of the right-hand side of (4.34) are identical with the iV known 
terms of the expansion (4.31). Thus expression (4.34) reduces to the 
truncated series (4.31) in the high-temperature region. In the neighbour- 
hood of T c the function F(T) is very well approximated by the asymptotic 
term R ( 1 - T c / T ) - p  plus a constant P(To), which is the value of the 
correction polynomial in (4.34) : 

N 

P(T) = ~, (a n -  Rb~)(J/kT) n, (4.35) 
n = 0  

evaluated at  T c. I t  is also clear that  the relative magnitude of the 
constants R and P(Tc) will determine the extent of the critical region, 
that  is the temperature range around Tc in which the asymptotic power- 
law term is expected to account within 1~o for the behaviour of F(T).  
The amplitudes R are of the order of uni ty  for the specific heat, the 
susceptibility and the magnetization. For the susceptibility the value 
of P(To) is typically an order of magnitude smaller, but for the specific 
heat P(To) is about equal to R, explaining the very narrow extent of the 
critical region in the latter case. For further details and numerical results 
for these parameters one is referred to the review of Wielinga (1971) and 
the papers cited therein. 

In figs. 69 and 70 are plotted the specific heat data on the 3-d Ising 
compounds, treated above, for T > T~ and T < To, respectively, together 
with theoretical predictions for 3-d Ising lattices obtained in the just 
described manner. Again we stipulate that  only for relative temperatures 
exceeding 10 -a (in some cases even l0 -2) do the experimental results have 
a real meaning, in view of the uncertainties in To. For comparison the 

N2 
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Fig. 69 
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The magnetic specific heat of a number of 3-d Ising compounds for T > T~. 
The dashed curve gives the asymptotic power law behaviour of the s.c. 
Ising model, assuming a = ~. The other curves are predictions for the 
s.c., b.c.c, and tetrahedral Ising lattices, calculated from series expan- 
sions by Wielinga (1971) and B15te (private communication) in the 
manner described in the text.  

dashed curve in fig. 69 displays the  a sympto t i c  power-law behaviour  for 
the  s.c. lattice, calculated with A = 1 . 0 9 1  and a = ~  (Wielinga 1971). 
The  exper imenta l  da t a  are f rom Blote  and I-Iuiskamp (1969 ; Col~baC15) , 
Wielinga et al. (1967 ; CoCsaCl~), Keen  et al. (1967 ; DAG), Cashion et al. 

(1968 ; DyA1Oa) and Wright  et al. (1971 ; DyP04) .  In  agreement  wi th  
the  discussion given in § 3.3.2, the  da ta  for  CoRbaC15 and CoCsaC15 fi t  
the  s.c. and the  f.c.c, curve, respect ively,  whereas the  dyspros ium com- 
pounds  DAG and D y P O  4 are well described b y  the d iamond Ising model.  
DyAIO 3 also shows a t endency  expec ted  for a low coordinat ion number .  

The theoret ical  curves in fig. 70 need some explanat ion.  In  the l imit  
T -~0  the  s.c. and d iamond  curve coincide, which is explained b y  the  
exponent ia l  behaviour  (exp ( - z J / k T ) )  a t  the  lowest tempera tures .  Since 
the energy content  below To increases wi th  the  coordinat ion n u mb e r  (cf. 
table 11), one expects  tile s.c. curve  to lie above  the  d iamond curve, as is 
indeed the  case for 1 - T / T o >  10 -1. At  abou t  10 -1 there  is a crossing 
point ,  bu t  since obviously most  of the  energy  content  comes f rom the  
region 1 - T I T  o > 10 -1, the  net  resul t  for ( E o  - E o ) / R T  o is still a bi t  higher  
for the s.c. t han  for the d iamond lattice. 
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Fig. 70 
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The magnetic specific heat of a number of 3-d Ising compounds for T < T o. 
The drawn curves are predictions for the tetragonal and the s.c. lattice, 
calculated from series expansions by Wielinga (1971) and B15te (private 
communication). 

Theoret ical  results on the Heisenberg model  have only  been obta ined  
for T > T c and spin values S= ½ and  S = ~ .  As ment ioned  in the pre- 
ceding pages, current  expecta t ions  are t h a t  the  Heisenberg specific heat  
does no t  diverge b u t  displays a cusp at  To, so t h a t  the hea t  capaci ty  has a 
finite max imum,  a l though the  t empera tu re  der ivat ives  still diverge on 
bo th  sides of T o. Ins tead  of 

Cm/R = A(1 - To/T)-~+ P(T) (4.36) 

the h igh- tempera ture  expression for the specific hea t  t hen  becomes 

Cm/R = A o -  Ai(]  - To/T)-~ + Pc(T), (4.37) 

where A o and A 1 are constants,  ~<  0, and Pc(T) is again a correction 
polynomial .  The  expression (4.37) yields a finite m a x i m u m  equal  to  
A0 + P0(T) at  the critical tempera ture .  Fo r  the  t ic .c ,  S -- ~ ,  fer romagnet ,  
Domb and  Bowers (1969) obta ined ~=  - ~-~ and  Ao+Po(To)= 10.00, 
taking Tc/8=0.794. However ,  wi th  the same To/8 value, the choice 
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~ = -  ~ and Ao+ Po(To)= 5.7 leads to essentially the same specific heat 
values (within 1%) in the range (1 -To~T)>  10 -2. Moreover, Wielinga 
(1971) has shown that  the same applies to the combination To~O= 0.792 
(Stanley 1967), with ~ varying from -0-02 to -0.06.  With ~ = -0 .04  
the value of A o + Po(To) becomes 15.59. 

Evidently it is difficult to differentiate experimentally between these 
various possible combinations. Domb and Bowers (1969) and Wielinga 
(1971) both compared their calculations with data of Van der Hocven 
et al. (1968) on EuS. With its high spin (S=~) and its low anisotropy 
(HA/H E _~ 2 x 10 -4) this salt is the nearest approximation of the classical 
f.c.c. Heisenberg ferromagnet available. EuO would also qualify but  

• unfortunately in this case the sample on which s ~ecifie heat measurements 

Fig. 71 
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The magnetic specific heat of EuS (Van der Hoeven st al., 1968), compared 
with the calculations of Wielinga (1971 ; curve a) and Domb and Bowers 
(1969 ; curve b) from the series expansion for the specific heat of the 
classical, f.c.c., geisenberg ferromagnet (T > Tc). 
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were performed (Teaney et al. 1966) contained a substantial amount of im- 
purity, tha t  apparently influences the heat capacity considerably (Wielinga 
1971). In fig. 71 the EuS data have been reproduced, together with the 
predictions of Wielinga (curve a : a = -0.04,  To~O= 0.792) and of Domb 
and Bowers (curve b : a =  -1-~, To/8=0.794). Since the data seem to 
favour the former calculation, one would think that  Domb and Bowers' 
estimate of 10 R for the finite Heisenberg limit is too low. In this respect 
the following considerations are of importance. Firstly, the presence of 
substantial further neighbour interactions in EuS will tend to increase 
the asymmetry of the specific heat curve (cf. table 12), so that  the experi- 
mental data  on the high-temperature side will be lower than for the ideal 
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The magnetic heat capacity of RbM~n_F a (Teancy et al., 1966) and MnF 2 (Teaney 
1965) in the neighbourhood of T o. 
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model. Secondly, the experimental specific heats are seen to decrease 
with decreasing spin value (cf. figs. 72 and 73 below), also implying tha t  
data taken on an S = ~ compound should be somewhat below the S = 
prediction. Thus one could conclude to an ~ of the order of -0 .04  or 
even to a logarithmic divergence (o~=0, see Van der Hoeven et al. 1968) 
on the basis of the data above T c. However, the experimental uncer- 
tainties and the sensitivity of the theoretical predictions to the exact 
value of To/O do not warrant a firm conclusion, although a value ~ = - s  1 
does seem to be outside the limits. 

In any case it is clear that  the Heisenberg limit is, by far, not reached 
experimentally, since the rounded maximum reaches a height of about 
3.6 R only. The mechanisms responsible for the experimentally observed 
rounding are not yet clear. Finite size effects are not expected to play 
a role for IT-Tol/To>IO-6 (see, e.g., Fisher ]967). Various authors 
have suggested a distribution of transition temperatures throughout the 
sample as a possible explanation. This seems to be a plausible assump- 
tion and, indeed, calculations taking into account such a spread in T~ 
have produced specific heat curves that  mimic quite well the observed 
behaviour (see, e.g., Wielinga et al. 1967). The fact that  the experi- 
mental lattices are not rigid but compressible also has an effect, but it is 
generally accepted tha t  this will sharpen the transition. For instance 
Domb and Wyles (1969), in comparing specific heat data on GdVO 4 and 
MnCle. 4I-I20 with model calculations, have discussed this possibility to 

I 

Io 

2 
I I 

Fig. 73 
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The magnetic specific heat of CuK2C]4.2H20 in the neighbourhood of T o 
(Miedema et al. ]965). The solid curve is the prediction obtained by 
Baker et al. (1967 b) from the series expansion of the S=½, b.e.e. 
Heisenberg ferromagnet (T > To). 
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explain the sharp uprise in the high-temperature specific heat of these 
salts, observed between 10 -a < 1 - Tc/T  < l0 -8. I t  is remarked tha t  
such an increase will lead to a high apparent value for the exponent a 
(in expression (4.9)), in accordance with Fisher's scheme for a renormaliza- 
tion of the critical exponents by hidden variables (Fisher 1968), such as 
impurity concentrations or extra degrees of freedom. 

Returning to the EuS data of fig. 71, it is observed that  the low- 
temperature results strongly indicate a negative value for the exponent a'. 
Thus Van der Hoeven et al. (1968) deduced ~ '=  -0-25 + 0.03 from their 
analysis, which Mso corroborates the theoretical expectation of a finite 
cusp in C m a t  T c. 

A quite similar pattern is followed by the data on RbMnF 3 (Teaney 
et al. 1966) displayed in fig. 72. Notice the decrease in specific heat in 
going from S = {  to S = {  and the fact tha t  the anomaly is becoming 
more symmetric around To. Also in this ease the heat capacity is 
apparently diverging logarithmically above To in the region accessible to 
experiment, whereas for T <  T c the downward curvature indicates a 
negative ~'. In  summing up the experimental and theoretical evidence 
just presented, we would therefore conclude tha t  the indications for a 
negative ~', with ~' of the order of ~, are rather strong, while the possi- 
bility of a negative ~, with 0 < l a] < ~0 is also consistent with the results 
obtained. 

For comparison we have included in fig. 72 the heat capacity data 
of MnF~ (Teancy 1965). In view of the fairly large anisotropy 
(HA/H E ~ 1.6 x 10 -3 compared to 5 × 10 -8 in gbMnFa) one may expect 
the critical behaviour to be Ising-like. Accordingly the specific heat 
should have a higher asymmetry around T c. Moreover since the 3-d 
Ising specific heat most probably diverges logarithmically or with a 
small positive value for the exponent, the anomaly should be much 
sharper than in RbMnF 3 and in the experimental region the heat capacity 
should behave as if it were diverging logarithmically (note that  in the 
region 10-3< 1 -  T c / T <  10 -1 the theoretical curves in fig. 70 may very 
well be approximated by straight lines). All these features are indeed 
confirmed by the MnF~ data. Besides the anisotropy other effects will 
play a role, for instance, the higher coordination number (z = 8 compared 
to z = 6) and the considerable next-nearest neighbour interaction in MnFs 
will also increase the asymmetry of the specific heat. But  we expect tha t  
the differences between the two manganese compounds are mainly due 
to the anisotropy (cf. the small effect of z in figs. 69 and 70), although the 
substantial thermal expansion observed in MnFe near T¢ (Gibbons 1959) 
may also have an effect (Domb and Wyles 1969). 

As our last example we show in fig. 73 heat capacity data on 
CuK2C1 ~ . 2H~O (Miedema et al. 1965). Although of less quality than 
the previous experiments (e.g. the value of To is known with less accuracy) 
they fit into the same pattern. Also in this case the anisotropy is con- 
siderable (~_ 1%) whereas the next-nearest neighbour interactions are 
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such as to make an equivalent neighbour model with first and second 
neighbours applicable. This may explain the large deviation of the 
high-temperature specific heat from the prediction of Baker et al. (1967 b) 
for the S =  ½, b.c.c., Heisenberg lattice, which can be represented by the 
expression 

Cm/ R = ( Tc/T)2[0.971 - 0.668(1 - To~T) °'~°] (4.38) 

for temperatures 0.70< Tc /T<0.95 ,  indicating a value 0.971 for the 
finite tteisenberg maximum for the case S=½. This value is most 
probably an underestimate in view of the large value adopted for lal. 
The decrease in specific heat with decreasing S is, however, confirmed by  
the experiment and again the behaviour is apparently logarithmic in the 
relative temperature range 10-3-10 -1 . 

Turning next to the spontaneous magnetization we firstly remark that  
for this quanti ty the critical region extends appreciably farther away from 
T c, due to the fact that  the singularity is stronger than for the heat 
capacity. This is exemplified by  fig. 74 where the predictions of various 
models are displayed (Wielinga 1971). I t  is seen that  for most models 
the region in which the power-law behaviour is expected to hold with a 
high accuracy, say better than 1%, starts at about  l - T / T o = 4 ×  10 -2. 
One can therefore safely conclude that  log-log plots of experimental 
magnetization curves for 1 - T / T o < 4 × I O  -2 will yield meaningful fi 
and B values to compare with theory. Apart  from the (exact) calculated 
results for the MF model and the quadratic Ising lattice, the curves for 
two cubic Ising models are shown, derived from series expansions in the 
manner described above. For the Heisenberg model series predictions 
are less conclusive (Baker et al. 1970), although for 1 - T / T o >  10 -1 the 
series analysis was in good accord with the curve obtained by  Cooke and 
Gersch (1967), using second-order Green function theory. The results 
are represented by the solid curve in fig. 74. As a continuation in the 
critical region, we have drawn the broken curve, which has a slope 0.36 
in agreement with most of the available predictions for the exponent ft. 
In drawing this curve we have further assumed that  the transition to the 
power-law behaviour occurs in a similar fashion as in the case of the 3-d 
Ising models. 

In table 16 we have collected the values for fi and B that  have been 
found for the 3-d compounds considered in this paper. As mentioned 
before, the exponents are expected to be independent of spin value or, 
for a given dimensionality, of the precise lattice structure. The ampli- 
tude B, on the other hand, decreases with increasing S and coordination 
number (Fisher 1967) and, furthermore, both fl and B will be affected by  
the anisotropy. This general pat tern is followed by the results for B 
in table 16, moreover the fi values for the anisotropic and the isotropic 
compounds tend to be closer to the Ising and to the Heisenberg predic- 
tion, respectively. In this respect it is surprising that just  for RbMnF 3 
the observed fi value is within the uncertainty equal to the Ising result, 
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Fig. 74 +.~ 11:[~s~ 
/'/" //. ~ 1.242 

i . o  - .r: ~'" I 
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/ /  / / 
M.IT)/ " - / /  " A /Ms(O) - ~ /  / / /  ~-M.F. 
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Theoretical predictions for the critical behaviour of the spontaneous magnetiza- 
tion of various model systems. Solid curves : closed-form expression, 
valid over the whole temperature range. Dot-dashed curves : asymp- 
totic power-law behaviour. (After Wielinga 1971.) 

being even lower t han  t ha t  obta ined  for MnF2, which is considerably 
more  anisotropic.  Unfor tuna te ly ,  the  R b M n F  3 vMue is only available in 
the  l i tera ture  as a resul t  quoted  in the abs t rac t  of a conference paper  
(Corliss et al. 1969), so t ha t  a check on the magnet iza t ion  curve itself is no t  
possible. All we can say is t ha t  according to the  authors  the result  was 
ob ta ined  over  one decade in relat ive t empera tu re  only, so t h a t  i t  might  be 
changed b y  more ex tended  measurements ,  such as the  v e ry  careful 
N.M.R. s t udy  of MnF 2 by  Heller (1966). I n  this work he was able to  
app ly  a correct ion for the thermal  expansion of the  lattice, whereby  the  
exponen t  value changed f rom 0.333 _+ 0.003 to the resul t  0.335 _+ 0.005, 
l isted in table  16. 

Other  appa ren t  discrepancies are the  fi's of DAG and FeC12, which are 
too low as compared  wi th  the Ising prediction.  In  the  case of FeC12 
this m a y  be due to the  range in 1 - T / T  e in which the  da ta  were analysed. 
Below ]0 -3 there  is only one measuring point  near  1.2 x 10 -4. I f  this is 
disregarded,  the remaining da ta  between 10 -3 and 10 -2 m a y  be equally 
well f i t ted  wi th  a fi of 0.31. In  the case of DAG such an a rgument  cannot  
be applied bu t  there  m a y  be other  explanat ions,  as for instance the non- 
r ig idi ty  of the magnet ic  lattice. In  fact,  considering all the  deviations 
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from ideality that  may interfere with the critical behaviour under experi- 
mental conditions, it is surprising tha t  the experimental findings are often 
so close to the theoretical predictions. 

Only few 8's have been measured until now. The available values 
have been included in table 16. I t  may be seen tha t  these are closer to a 
value of about 4.3 than to the theoretical prediction 8 =5 for the 3-d 
magnets. In a recent analysis of experimental data on fluids and magnets, 
Vicentini-Missoni et al. (1970) also obtained 8 _~ 4.4 for both. Admittedly, 
the value of 8 is very sensitive to the uncertainty in To. For instance, 
Ho and Litstcr (1970) have observed that  the value of 8 changed from 4.1 
to 4.4 in going from ( T -  T c ) / T  o = + 6 x 10 -4 to - 3 x 10 -4 ! This may 
also provide an explanation for the widely different 8 values found for 
Cu(NHa)eBr 4 . 2H20. In any case, the scarce experimental information 
obtained thus far indicates that  the theoretical prediction 8 = 5 is probably 
too large. I t  is of importance to remark tha t  if the scaling relations are 
valid, the exponent 8 will not be affected by the above mentioned re- 
normalization by hidden variables (Fisher 1968). 

In table 17 we have compiled the susceptibility parameters obtained 
on the same materials. Since the susceptibility singularity is again 
stronger than that  of the spontaneous magnetization, the critical region 
extends still further away from T c. Calculations (see, e.g., Wielinga 1971) 
show tha t  the power-law behaviour may be expected to set in at 
1 -  T o / T  ~_ 0.2 already. The susceptibility exponent is thus the easiest 
attainable critical index, since it may be obtained from measurements 
over the widest possible range of temperatures. 

Most of the ? values in table 17 are seen to lie in between the Ising 
result 1.25 and the Heisenberg prediction 1.40, adopted in this paper. 
The latter is based upon the S =  oo series (Bowers and Woolf 1969, 
Ferer et al. 1971). For S = 1 indications for a higher ? ( = 1.43) have been 
found (Baker et al. 1967 a, b). Bearing in mind the principle of uni- 
versality (independence of N of the critical indices) and the fact that  the 
estimates of 7 for S =  ½ have ranged from 1.33 to 1.43 as more terms in 
the susceptibility series came available, we have adhered to a ' universal ' 
value of 1.40. For a discussion see Rushbrooke et al. (1973). 

The fact that  in many of the more or less isotropic salts the observed 
y's are considerably lower than the Heisenberg value has been attributed 
by De Jongh et al. (1970) to the effect of anisotropy. Current theoretical 
research supports the hypothesis tha t  further neighbour interactions will 
not change the exponent values. Moreover in the existing work on the 
Heisenberg model with anisotropic exchange (Dalton and Wood 1967, 
Obokata et al. 1967, Jasnow and Wortis 1968), indications are found tha t  
the exponent 7 changes discontinuously from a Heisenberg to an Ising 
value upon the introduction of anisotropy, in agreement with the uni- 
versality hypothesis. Coming back to the discussion of cross-over 
behaviour in the preceding pages, one may expect in the case of anisotropy 
to find a cross-over temperature or region in which the behaviour changes 
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its character from a Heisenberg to an Ising value. With a typical experi- 
mental anisotropy HA~HE= 10-a-10 -2 the cross-over may well occur in 
the region 10-a-10 -1, accessible to the experiment. In tha t  case log- 
log plots of experimental results will yield intermediate ~ values, or, in 
case the anisotropy is large enough, the Ising value itself, since then the 
cross-over would occur outside the critical region. Indications for such 
a behaviour have already been met above in the discussion of the heat 
capacities and the fi values. The same trend is observed in table 17, at  
least that  is the explanation we offer for the variation in ~. Thus the 
highly isotropic compounds (EuO, EuS, RbMnFa) have a ~ near 1.40 
(cross-over temperature too close to T e to have an effect in the experi- 
mental region), whereas the fairly anisotropic compounds MnF 2 and 
CrBr a (HA/HE~ 1-6 × 10 -2) have a y nearly equal to 1.25 (cross-over 
temperature outside the critical region already). The Cu salts are some- 
where in between since they have a smaller anisotropy. 

There remains then to discuss the high y value in the anisotropic 
compound FeF 2. Re-examining the data of Hutchings et al. (1972 a), one 
finds that  they arc equally well represented by ~,= 1-34, in accordance 
with the high error margin of 0.08. Correcting for the fact that  )/is plotted 
versus T - T ~ ,  instead of )/T versus 1-To~T,  brings ~ down to 1-32. 
A y value lower than about 1.30 however does not seem to be consistent 
with the data, so tha t  there remains a considerable discrepancy that  is 
not readily explained. 

The source of the low ~'s reported by Wielinga and Huiskamp (1969) 
for Cu(NH4)2Br4.2H20 and by Menyuk et al. (1971) for EuO is more 
easily traced. In these experiments the initial susceptibility was obtained 
from the isothermal magnetization as a function of field, by plotting the 
results in the form of M 2 versus H / M  curves (Belov and Goryaga 1956, 
Kouvel and Fisher 1964), deducing the susceptibility by extrapolating the 
isotherms to M2= 0. This method is inadequate to obtain the initial 
susceptibility in the critical region and leads to too low values of ~, as 
witnessed by the other results for these compounds in table 17, found 
with better techniques. The same argument may explain why the 
value for CrBr a is lower than the Ising prediction, since also in this case the 
initial susceptibility was deduced from the magnetization. 

Concerning the susceptibility index ~', on the low-temperature side, 
few results are as yet  available. The values in table 17 for FeF 2 and 
MnF 2 do not seem to favour the scaling result ~=  ~', although this 
relationship is still fulfilled within the error margins. The ratios of the 
amplitudes Co/C o ' may be compared with the predicted 5-5.5 for the cubic 
Ising magnets (e.g. Fisher 1967), the MF prediction of 2 and the value 5.5 
found in beta-brass by Als-Nielsen (1969). For the 2-d Ising magnets 
the ratio is about 37. 

Finally in table 18 are listed the results obtained so far for the exponents 
v, v' and 7. Comparing these with the predicted Ising and Heisenberg 
values (table 15), there seems to be an agreement in that  for the isotropic 
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salts EuO, EuS and RbMnF~, the index , is near to 0.71, whereas for the 
fairly anisotropic compound MnF 2 it is about equal to the Ising value 
0.65. Again FeF~ is the exception, since despite its high anisotropy the 
v value is more Heisenberg-like. The reported uncertainty is fairly large, 
however. The experiments do not seem to favour the scaling relationship 
v= v', although, in this ease too, agreement can still be reached within 
the experimental uncertainties. 

The results for ~ are even fewer in number and a comparison with theory 
is as yet  not meaningful, taking also into account the large possible errors 
in the theoretical predictions. One may state, however, that  indications 
for an ~ > 0 have indeed been found in the experiments. 

With the aid of tables ]6-18 sets of critical indices are derived for a 
number of compounds, with which some of the scaling relations may be 
tested. This has been done in table 19. Admittedly, an accurate test 
of these relations is as yet  prohibited by the uncertainties in the listed 
numbers, caused by the possible errors in the individual exponent values, 
but a tentative comparison is certainly justified. Interestingly enough, 
one observes that  within the experimental uncertainties the scaling rela- 
tions can indeed be satisfied. Concerning the gap exponents, it is seen 
that  the values for the highly isotropie Eu compounds and RbMnF 3 on 
the one hand, and for the less isotropie materials MnF~, CrBr 3 and 
Cu(NH4)2Br 4 . 2H20 on the other, are systematically closer to the 
Heisenberg and Ising predictions, respectively. Evidently, FeF~ again 
forms the exception through its unexpectedly high ~ value. 

Another way of testing the scaling predictions is via the magnetic 
equation of state, i.e. the functional relationship among the variables 
M, H and T (Domb and Hunter  1965, Widom 1965, Kadanoff 1966, 
Griffiths 1967). Introducing the scaled variables 

m= l l-P, (4.39) 
h=Hlel-Z ~, (4.40) 

where a = M / M ( T = O )  and ~= ( T - T o ) I T  c, the scaling relations predict 
tha t  h is a function of m only, so tha t  the equation of state reads simply 

h = h(m). (4.41) 

I t  remains, of course, to establish the mathematical form of the function 
h(m). However, eqn. (4.41) implies tha t  if, instead of the usual magnetiza- 
tion versus field isotherms, we plot m versus h, the different isotherms in 
the critical region should fall on a single curve, one for T > Tc (E > 0) and 
one for T < To (~ < 0). Such analyses have recently been performed on 
a variety of materials (magnetic substances and fluids) with remarkable 
success. As an example that  fits into the present context, we show in 
fig. 75 the h-m plot of CrBr z, as reported by Ho and Litster (1969). 

Obviously, two different approaches to the problem can be taken. 
Determining the critical parameters in the usual way from log-log plots, 
one may compute h and m and thus obtain an experimental prediction 

A.P. O 
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Fig. 75 
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" i. [ I I ~ I I i I 
0 0.2 0 4 0.6 0"8 1.0 1.2 1.4 1.6 1.8 2 '0  2 '2  

,~=o/IT/T~- II~ 
Scaled plot of the magnetizatioa isotherms of CrBr 3. (Ho and Litster 1969.) 

for the form of the equation of state that  may be compared with theory. 
The analysis of Ho and Litster was performed in this spirit and the solid 
and dashed curves in fig. 75 represent, in fact, different assumed forms 
of the equation of state. Alternatively, a particular form may be assumed 
a priori and a set of critical parameters is derived in fitting the experi- 
mental isotherms to such a function. I t  would go too far to mention all 
the various forms of the equation of state tha t  have been proposed, all 
the more since there exist review papers in which the interested reader 
can find extensive information on the subject (Vicentini-Missoni et al. 
1969, 1970). We merely mention a recent development in this field, 
namely, the calculation of the equation of state from series expansions 
(Gaunt and Domb 1970, Milo~evi5 and Stanley 1972). Likewise we have 
refrained from going into the topic of dynamic scaling, a rapidly developing 

o2 
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new trend that  constitutes a generalization of the static scaling 
hypothesis to dynamic phenomena. The theory for isotropie magnetic 
systems has been discussed by Hohenberg and HMperin (1970), in which 
paper references to earlier work may be found, and has been extended to 
anisotropie systems by Riedel and Wegner (see, e.g., Riedel, 1971). 
Experimentally, neutron investigations have been performed on MnF2, 
RbMnF 3 and FeF~, which seem to be in good agreement with theory (see, 
e.g., Lau et al. 1970, Schulhof et al. 1970, 1971, Hutchings et al. 1972 a). 

In this section we have thus far confined ourselves to the 3-d systems. 
In the remainder the critical behaviour observed in the lower-dimensionM 
magnets, as discussed in § § 3.1 and 3.2, will be briefly reviewed. 

Concerning the 1-d systems we have seen tha t  since the ideal 1-d system 
does not possess a finite transition point, any critical behaviour tha t  is 
observed experimentally is of a 3-d character, the argument being tha t  
no matter  how small the interchain interaction J '  is in an assembly of 
magnetic chains, any finite J '  will make such an assembly of a 3-d nature. 
According to the universality hypothesis the critical behaviour is therefore 
the same for all values of J ' .  This is nicely confirmed by the experiments 
since, e.g., the spontaneous magnetization tha t  is observed experimentally 
below the (J'-induced) transition points, in all the investigated eases 
shows a 3-d behaviour (fi _~ ½). 

For the quasi 2-d systems the above argument must be slightly modified. 
Evidently, since an assembly of weakly coupled magnetic layers is like- 
wise essentially a 3-d system, one expects, according to the same reasoning, 
that  the critical behaviour will be 3-d if the transition point is approached 
olosely enough. However, the fact tha t  the ideal 2-d Ising model itself 
also possesses a transition to long-range order at a T c differing from zero, 
alters the situation, in that  for small enough J '  there can be an inter- 
mediate critical region in which the 2-d character can manifest itself. 
Closer to To there occurs then a cross-over from 2-d to 3-d behaviour, 
through the effect of the finite J ' .  If the inter-layer coupling is not too 
small for the cross-over point to be reached experimentally, the cross-over 
may be spread out over a considerable portion of the critical region, so 
tha t  log-log plots of the magnetization will appear to be rounded and fi 
values derived from measurements in one or two decades in relative 
temperature may be in between the 3-d and the 2-d values. 

This has been discussed at the end of § 3.2.3, where we have also pointed 
out tha t  any quasi 2-d spontaneous magnetization observed experi- 
mentally must be anisotropy-induced, since in the isotropic tteisenberg 
limit there is no transition to long-range order. Quite convincingly the 
fi values obtained on the more or less isotropic layer-type antiferro- 
magnets with [J' /JI  ~- 10-6, are close to the 2-d Ising prediction f i = l .  
This culminates in the results found for the anisotropic salts K2CoF 4 and 
l~b2CoF4, which have f i=½ within the experimental uncertainties! 
Thus below To a cross-over effect in the quasi 2-d salts can only be caused 
by the influence of J ' .  Until now no clear evidence for the expected kink 
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in the log-log plot of the magnetization has been observed, presumably 
because either J '  is too small or else because of the mentioned spreading 
of the cross-over temperature. 

In the case of the susceptibility, above To, the situation is different 
because for the 2-d Heisenberg model there is likely also to be a transition 
point at which the susceptibility diverges. Therefore two cross-overs 
would in principle be found in the susceptibility of a quasi 2-d ferro- 
magnet with small anisotropy (but with HA~HE> IJ'/JI) , namely, a 
first cross-over from 2-d isotropic to 2-d anisotropic behaviour, and, closer 
to To, a second from 2-d anisotropic to 3-d anisotropic behaviour. Such 
an argument could explain the features of the susceptibility behaviour 
found in the layer-type ferromagnets (C~H~n+INH3)ACuX 4 (X = C1 or Br ; 
n=O, 1, 2 . . . .  10). The properties of these salts have been discussed 
in § 3.2. Referring to that  section for details, we mention that  at the 
temperatures where the small A-type anomalies are found in the heat 
capacity (cf. fig. 43), apparently the susceptibility is found to diverge, 
tha t  is it reaches the limiting value expected for a ferromagnetic sample 
as estimated on the basis of the sample shape. The compound 
(CAHhNHs)ACuC14 forms the exception, since in that  case the antiferro- 
magnetic interlayer coupling is strong enough to lower the susceptibility 
from the diverging ferromagnetic curve long before the ferromagnetic 
limit is reached (cf. the discussion in § 3.2 and fig. 42). As examples the 
susceptibilities of (CH3NHa)ACuC14 and (C10H21NH~)ACuC14 have been 
plotted in fig. 76 on a double logarithmic scale (De Jongh to be published) 
as xT/C versus 1 - T c / T  , where To is the experimentally observed 
transition point. For comparison the susceptibility of the 3-d ferro- 
magnet Cu(NHa)~Br 4 . 2H20 (De Jongh et al. 1970) has been included in 
the figure as the dashed line. Note that  the 2-d susceptibilities tend to be 
one or two orders of magnitude larger than tha t  of the 3-d salt over most 
of the critical region. 

I t  is seen tha t  in the high-temperature limit the susceptibility of both 
2-d salts coincides with the high-temperature series expansion prediction 
(It.T.S.) for the S= 1 Heisenberg quadratic ferromagnet (Baker et al. 
1967 a, b). As To is approached they begin to differ, which is ascribed 
to a different degree of ideality. On the basis of the Tc/O value (cf. 
table 7) one may conclude that  (CH3NH~)CuC14 is a less ideal 2-d 
Heisenberg ferromagnet than (C10H21NH3)ACuC14, the latter having the 
lowest To/O. I t  can further be seen from fig. 76 that  we may interpret 
the data of both salts in such a way as to distinguish three different regions. 
Far away from T o straight lines may be drawn through the data that  have 
a slope 7--2.7. In the intermediate region the apparent slope is about 
7 = 1-75, which is the 2-d Ising value~, whereas nearest to To the points 

It is not obvious that the cross-over should be to 2-d Ising behaviour, 
since the planar part of the anisotropy (HAII) is larger than the Ising part 
(Hx I) (cf. table 7). The behaviour in the intermediate region may thus be due 
to a mixture of the effects of both anisotropies. 
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Fig. 76 

, ~ ,  r x ~ [  . . . .  [ . . . .  [ , 

1.2 

'y = L 2 7  

1.75 

1o c° . . . , .2  . , ,  i 

10 2 = 2.7 

l [] • [CH3NH3)2CuCl/, 

O • (CloH21NH3)2CuCl/, I~_~ 
1 H ~  ~ " ' ~  

10-~' 10 .3 10 -2 10 "1 1 
r : >  1 _ T o / r  

The susceptibilities of the ferromagnetic layer-type compounds (CH~NH3)2CuC14 
and (C10H~INH3)2CuC14. For comparison the results obtained in the 
3-d copper compound Cu(IqH4)2Br ~ . 2H20 have been indicated by the 
solid curve. The susceptibilities are plotted as xT/C versus 1 -  To~T, 
where To is the experimentally observed transition temperature. 

agree with a y of roughly 1.2, close to the 3-d Ising value of 1.25. All 
susceptibilities have been corrected for demagnetizing effects to an in- 
finitely long cylindrical sample shape. Note that  the cross-over to 3-d 
behaviour in the less ideal (CH3NH3)2CuC14 occurs farther away from T~, 
as is to be expected. 

Another way of interpreting the cross-over phenomenon is the following. 
We may conceive of an ideal transition temperature To id. at which the 
susceptibility of the 2-d Heisenberg ferromagnet diverges. The devia- 
tions from ideality in the experimental compounds will cause a shift of 
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the experimental T c with respect to Tcid" in the direction of higher 
temperature. For temperatures far away from T c (large compared to 
the difference T o -  To id-) the susceptibility will then behave two-dimen- 
sionally, as if it was going to diverge at To ~d.. But as To ~d. is approached, 
the system ' remembers ' its actual transition temperature and diverges 
at T o, due to the fact that  close enough to To the deviations from ideality 
start to have their influence. Accordingly if we would know the value of 
Tc ia., and plot the susceptibility of the Cu compounds not as xT/C 
versus 1 - Tc/T , but as xT/C versus 1 - Teid./T, the curves of the various 
compounds should coincide at high temperatures. As To id. is approached 
the curves of the individual compounds would start to diverge from this 
common curve, one by one, according to the degree of ideality reached in 
each compound. 

In fig. 77 the susceptibilities of four of the Cu compounds have been 
plotted as xT/C versus 1 -  Toia./T in order to demonstrate that  such a 
picture can indeed be realized. Here Tc id. has been chosen such that  the 
curves coincide over the largest possible region, since a theoretical predic- 
tion for To id. is not available. The percentage shifts (T o- Toia')/Tc of 
the individual compounds have been indicated. The resulting value for 
kTcia./J is 0.435, leading to Tcid./O= 0.22, which gratifyingly is exactly 
the same prediction for the ideal transition temperature as obtained by 
Bloembergen from the extrapolation procedure in which he made use of 
the energy contents of the small A-anomalies in the specific heat (cf. 
§ 3.2.3 and table 9) ! Accordingly, the fractional shifts (T o- Toid')/To 
of the four compounds correspond quite well to the differences of their 
measured Tc/O values (cf. table 7) from Tcid./O. We add, lastly, tha t  a 
similar coincidence of the susceptibility curves of the various salts at  
high temperatures arises naturally by plotting xT/C versus lcT/J (cf. fig. 
42). I t  is also remarked that  here again the Toid'/O obtained may still be 
affected slightly by the planar anisotropy (HAII), since the latter has 
about the same value (_~ 10 -a) for all the compounds. Accordingly, 
possible shifts of the experimental To/O values due to HA H (into the 
direction of the 2-d XY value Tc/O~ 0.45, Betts et al. 1973) are probably 
not eliminated by the above extrapolation procedure. 

Thus the picture sketched above is nicely confirmed. The least ideal 
salt (CaHTNHa)2CuBr a is the first to diverge from the common curve, at  
the point where its susceptibility diverges at the actual T o. Last of 
course comes the nearest to the ideal salt (C10H21NHa)2CuCla. One 
could therefore regard this common curve, together with the extrapolation 
provided by the straight line drawn through the data, as being representa- 
tive of the susceptibility of the ideal, S = ½, 2-d Heisenberg ferromagnet. 
This straight line yields a slope ~--2.7 _+ 0.3 and an amplitude C -  3.3. 
The y value obtained agrees quite well with the estimate ~=  3.0 +_ 0.5 
obtained by Ritchie and Fisher (1973) from their analysis of the high- 
temperature susceptibility series of quadratic Heisenberg ferromagnets 
with different S (S = 1 - ~) .  
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Fig. 77 
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The susceptibilities of four ferromagnetic layer-type copper compounds plotted 
as xT/C versus 1-Toid./T, where To id- is the assumed transition 
temperature  of the ideal 2-d Heisenberg ferromagnet, tha t  is in the 
absence of anisotropy and interlayer coupling. Since a theoretical 
prediction for T¢ id. for the case S =  ½ is lacking we have determined 
T¢ id. from the condition tha t  the susceptibilities of the different com- 
pounds not only coincide in the high-temperature region but also on the 
same straight line over the largest possible temperature range. The 
fractional shifts (Tc-Toid.)/To, where To is the observed transition 
temperature,  are indicated by  the vertical lines in the top of the figure, to 
which the susceptibilities of the individual compounds diverge. They 
are 3, 6, 10 and 18% for (C10HelNHs)2CuCla, (CH~NHa)2CuC14, 
(C~HTNI-Ia)~CuC1 a and (CsH~NH3)2CuBr4, respectively. 
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For the quadratic antiferromagnets few results for the critical behaviour 
above To have been reported thus far. Rather surprisingly, Birgeneau 
et al. (1971 b) found y ~ 1.0 and , ~ 0.57 in K~NiF4, values that  are closer 
to the MF predictions than to the 2-d Ising results 7=  1.75 and r =  1. 
However, the data were obtained in one decade of relative temperature 
only (10-~-10 -;) and in particular the susceptibility curve appears to be 
rounded. We point out that  a similar analysis as given above, assuming 
a shifted experimental T c with respect to Tc id., can firstly straighten 
the log-log plots of X and K, and secondly bring the 7 and , values near 
to the 2-d Ising prediction. For instance, this could already be ac- 
complished by taking a shift (To-Toid.)/To of a few per cent only. 
Since in K2NiF 4 the value of IJ'/J[ is extremely small ( _ 10-~), the shift 
would be for the most part  due to the anisotropy (Ha/H E-- 2 × 10-3). 

4.5. _Field-dependent behaviour 

In recent years there has been a renewed interest in the study of 
magnetic systems as a function of field. This arises, amongst other things, 
from the analogues between the phase diagrams (H-T diagram) of certain 
antiferromagnetie systems and those of a quantum lattice gas (4He), 
3He-4He mixtures and systems undergoing structural phase transitions 
(NH4C1). Furthermore, one is interested to know whether or not the 
critical behaviour (exponents) is affected by the presence of a field and, 
if so, in what manner. 

I t  is of importance in this respect to distinguish between an ' ordering ' 
field (applied field for a ferromagnet, staggered field for an antiferro- 
magnet) and a ' disordering ' field, which is an applied or a staggered field 
in the case of an anti or a ferromagnet, respectively (Griffiths 1970 a). 
For instance, a finite external field applied to a ferromagnet will destroy 
the phase transition, whereas for an antiferromagnet the transition will 
remain sharp, although the transition point will (in general) be shifted to 
a lower temperature. 

In this section we will be mainly concerned with the behaviour of 
antiferromagnets in an applied (disordering) field. Some results on 
~erromagnets will be mentioned too, but so far these have been scarce. 

In the case of antiferromagnets, then, the behaviour in external fields 
depends strongly on the particular type of antifcrromagnetie system 
considered. The degree and the type of anisotropy (exchange or single- 
ion) plays an important role. Moreover the presence of ferromagnetic 
interactions, in addition to the antiferromagnetic ones, may change the 
character of the field-dependent transitions in a fundamental way. 
This will become clear from the examples tha t  we shall give below. 

Let us first confine our attention to the Ising model, tha t  is the case of 
fully anisotropie exchange, and assume only nearest-neighbour anti- 
ferromagnetic interactions to be present. In that  case the antiferro- 
magnetic phase diagram has the simple form already displayed in fig. 32 
for the square lattice. At T=O the spins become ferromagnetically 



218 L . J .  de Jongh and A. R. Miedema on 

aligned at a critical field H o = H ~ ,  where Ha~ denotes the antiferro- 
magnetic exchange field (gl~BH~ = 2z IJ IS). By raising the temperature, 
the critical field Ho(T ) decreases continuously until it vanishes at the 
critical point. Alternatively, one may say tha t  the critical temperature 
To(H ) is decreasing with increasing field. The variation of To(H ) with H 
has been studied by Bienenstoek (1966), locating To(H) from the singu- 
larity of the staggered susceptibility. He found that  his results could be 
summarized by the (empirical) formula 

To(H)/To(O ) = [1 - (H/Ho)~]g, (4.42) 

with ~= 0.87, 0.35 and 0.36 for the square, s.c. and b.c.c. Ising lattices, 
respectively. For H ~ H  o, this expression reduces to a quadratic de- 
pendence of To(H ) on H. The latter variation has also been found by 
Fisher (1960 b) from his (exactly soluble) model of a decorated quadratic 
lattice, already mentioned in § 3.2.1. He obtained the equation 

sinh 4 [JI/IcTo(H) = (2 + 2~/2) 1/2 cosh gI~BH//cTc(H), (4.43) 

which for small fields yields To(H)/Tc(O)~-l-co(H/Ho) ~, with c o a 
constant. At low temperatures (H ~ Ho), on the other hand, eqn. (4.43) 
gives a linear dependence of He(T ) on temperature : 

Ho( T)/Ho(O ) ~_ 1 - cl( T/Tc),  

where c 1 is another constant. The Bienenstock formula (4.42) only 
yields a linear variation for ~ _~ 1, but unfortunately his results for H _~ Ho 
were not conclusive, due to a decreasing rate of convergence with increas- 
ing H of the susceptibility series. From fig. 32 it is seen that  the data on 
the quasi 2-d Ising antiferromagnet CoCsaBr 5 agree rather well with 
Bienenstock's results. 

Among the other relevant features of Fisher's decorated 2-d lattice 
model is the fact that  the locus of transition points in the H - T  diagram 
is a second-order transition curve, except at T = 0, where the transition 
becomes of first order. Thus the magnetization (first derivative of the 
free energy) versus field isotherm for T = 0 rises discontinuously to its 
saturation value at H = H  o, whereas for T > 0  the behaviour of the 
magnetization is continuous, although for T < To anomalies of the form 
[ H e ( T ) - H  ] In I H e ( T ) - H I  occur at the transition fields He(T ). This 
implies tha t  the susceptibility (second derivative) as a function of field 
for fixed T <  T e will display a logarithmic singularity at  He(T ). Like- 
wise, if instead of a vertical path in the H - T  diagram a horizontal path 
is followed, the susceptibility at  fixed magnetic field as a function of 
temperature possesses a logarithmic singularity at To(H ). I t  is worth 
while to note that  these susceptibility anomalies at the boundary separat- 
ing the antiferromagnetic from the paramagnetie phase in fact reflect the 
specific heat singularity. 

Next we will consider the field dependence of the Heisenberg anti- 
ferromagnet with small anisotropy, which is the most extensively studied 
example of field-dependent behaviour. In addition to a transition from 
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an antiferromagnetic to the paramagnetic phase, this system displays the 
phenomenon of spin-flopping over a certain range of temperatures below 
To. This type of phase transition was predicted by Ndel as far back as 
1936, but was not discovered experimentally until 1952 (in CuC12.2H20 ) 
by the Leiden group. For references to the earlier theoretical and experi- 
mental papers see, e.g., Ndel (1957) and Gorter (1957). 

The spin-flop transition is most easily explained by considering a 
simple uniaxial two-sublattice MF model at T = 0. If  an external field 
is applied parallel to the preferred axis of antiferromagnetic alignment, 
the moments will have the tendency to orient themselves perpendicular 
to the field, since in so doing they gain a magnetic energy of ½(X±- X ~t ) H2- 
In small fields the anisotropy, that  establishes the preferential direction, 
will exceed the field term, but at a certain critical field the spins will flip 
over to the perpendicular orientation. A further increase of H will 
gradually rotate the sublattice moments, until at the critical field Ho 
their mean direction is parallel to the easy axis and the paramagnetie 
phase is entered. At this point the antiferromagnetie interaction is 
balanced by the applied field and the anisotropy field. 

The behaviour of the magnetization and the initial (differential) sus- 
ceptibility as a function of field expected on basis of this model is sketched 

Fig. 78 
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The behaviour as a function of field of the isothermal magnetization and differen- 
tial susceptibihty of a weakly anisotropic antiferromagnet, according 
to the MF theory for a temperature near T=0.  The critical fields 
H 1 and H~ correspond to the spin-flop transition field Hss and the 
transition from the flopped to the paramagnetie phase (Ho), respectively, 
that are discussed in the text. 
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in fig. 78. In the MF treatment the spin-flop transition is of first order 
(discontinuity in M), whereas the transition from the spin-flopped to the 
paramagnetic phase ( S . F - P  transition) is of second order (M continuous 
but  X discontinuous). In between the two transition fields the magnetiza- 
tion increases linearly with H according to 

M / M  s = H / ( 2 H ~  - HA).  (4.44) 

For fields applied perpendicular to the easy axis the spin-flop transition 
obviously does not occur and the magnetization is given by 

M / M  s = H/ (2H~,  + HA) , (4.45) 

until for H = Ho the saturation value M s is reached. The formulae for 
the critical fields are 

H s  ~ = ( 2HafH A _ HA~)I/2, (4.46) 

H e = 2Ha~ - H  A. (4.47) 

for fields parallel to the preferred direction and 

H e' = 2Hal + H x (4.48) 

if the field is applied perpendicular to the easy axis. These critical fields 
are, of course, dependent on temperature and a theoretical phase diagram 
is shown in fig. 79. In this diagram the first-order antiferromagnetic to 
spin-flop transition ( A F - S F )  and the second-order S F - P  transition 
curves are seen to meet in a triple point, together with the boundary 
separating the antiferromagnetic and the paramagnetic phase ( A F - P ) ,  

which is also thought to be of second order. A theoretical t reatment  of 
the antiferromagnetic phase diagram within the M F  approximation can 
be found in the papers of Gorter and Van Peski-Tinbergen (1956) and of 
Van Wier et al. (1959). The analogy with the phase diagram of the 
quantum lattice gas has been pointed out  by Fisher (see, e.g., Liu and 
Fisher ]973). Recently, spin-wave theoretical calculations on the 
Heisenberg antiferromagnet have been performed by Anderson and Callen 
(1964) and by Feder and Py t te  (1968) (see also Keller 1966). Since the 
spin-flop transition is of first order, hysteresis effects may be expected 
to occur and in fact spin-wave theory yields expressions for upper and 
lower spin-flop fields, quite similar to the case of supercooling and super- 
heating in the liquid-gas transition (Anderson and Callen 1964). How- 
ever, clear experimental evidence for this effect has not yet  been obtained 
in the fairly isotropic antiferromagnets. 

From eqns. (4.46) and (4.47) one observes that  an increase in anisotropy 
increases HsF while it lowers Ho. For H A = H ~  the two critical fields 
become equal. I t  is then no longer energetically favourable to have an 
intermediate flopped phase ; since the anisotropy is so large, the moments 
go over directly from an antiferromagnetic alignment (parallel to H) to a 
ferromagnetic alignment, at a field value H c =Ha~. Thus the situation 
resembles that  of the Ising antiferromagnet in that  the energy involved is 
just  that  needed to turn over one of the antiferromagnetically coupled 
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Theoretical magnetic phase diagram of a weakly anisotropic antiferromagnet. 

moments. A subclass of substances that  falls into this category are the 
so-called metamagnets that  we will discuss next. 

Originally this term was introduced for systems like FeC12, that  consist 
of antiferromagnetically coupled ferromagnetic layers with J~ >~J~v Due  
to the large anisotropy, the transition from the antiferromagnetic to the 
paramagnetic phase indeed occurs in the above fashion, with for T ~ T o 
a discontinuous rise of the magnetization at the transition field to a value 
near to saturation. However, there also exist ferromagnetic layer-type 
systems with an antiferromagnetic inter-layer coupling which has a 
smaller anisotropy, like e.g. (C2H~NHs)2CuC14, that  shows a behaviour 
similar to the ' n o r m a l '  antiferromagnets with small anisotropy. A 
metamagnet is therefore best defined as an array of antiferromagnetically 
coupled ferromagnetic layers with an anisotropy that  exceeds the anti- 
ferromagnetic exchange field. 

The A_F-P boundary of a metamagnet is, however, only of first order 
up to a certain temperature T t < 7'o, above which the transition changes 
into second order. The point (/art, Tt) in the phase diagram is a tri- 
critical point, i.e. a point where three critical lines meet. This is best ex- 
plained by  considering the metamagnetic phase diagram in ~,  H, T space, 
as sketched in fig. 80, where H is the (staggered) ordering field (Griffiths 
1970a). The form of the phase diagram shown follows from MF 
calculations and the Landau phenomenological theory (Griffiths 1970 a). 
I t  is seen that  there exist three surfaces that  intersect along the dashed 
line in the H - T  plane, which is the experimentally observed line of first- 
order transitions. The boundaries of these three surfaces a t  the high- 
temperature side meet in the tri-critical point. 
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Fig. 8O 
Ftl~ 
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Tc 

The theoretical phase diagram of a metamagnetic substance. H is the constant 
(non-ordering) field, /~ the staggered (ordering) field. The dashed line 
is the intersection of three co-existence surfaces and is the experimentally 
observed line of first order transitions terminating in the tri-criticM 
point (Ht, Tt). The phase boundary extending from the tri-eriticM 
point towards the temperature axis is presumably of second order. 

From both MF theory and calculations on Ising chains (Nagle and 
Bonner 1971) it can be inferred that  the ratio T t / T  o depends on the ratio 
[ J J J t [  of antiferromagnetic inter-layer coupling and ferromagnetic 
intra-layer exchange. If J i  becomes large with respect to IJ~t], the tri- 
critical point approaches the critical point T o (H = 0). If there are only 
antiferromagnetic interactions, the tri-critical point recedes to T = 0  
( H =  H~) and the H - T  diagram becomes that of an ordinary anisotropie 
antiferromagnet, as shown in fig. 81 (a). The same effects are found for 
the more general case of an antiferromagnet with both antiferro and 
ferromagnetic interactions (e.g. nearest and next-nearest neighbour inter- 
actions). The / / - T  diagram of the metamagnet is given in fig. 81 (b). 
For completeness the phase diagram of a ferromagnet in a normal field 
(or an antiferromagnet in a staggered field) is shown in fig. 81 (c). In 
that  case the phase boundary is the H =  0 axis up to T =  To, where for 
T < To this is a line of first-order transitions ending in the second-order 
transition point T = To. 

One of the interesting features of the metamagnetic phase diagram is the 
field dependence of the critical exponents (fi, ~, ~). Recent theoretical 
investigations (Harbus and Stanley 1972, Riedel 1972, Arora and Landau 
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A comparison of the magnetic phase diagrams of (a) a 'normal '  antiferro- 
magnet, (b) a metamagnet, (c) a ferromagnet. 

1972) suggests that  the exponents should retain their H =  0 values up to 
the tri-critical point, where they change discontinuously into tri-critical 
values. I t  should be remarked that  the particular path followed in the 
H - T  plane may be of importance. Until now no experimental investiga- 
tions into this matter  have, to our knowledge, been performed. 

After having reviewed some of the principal aspects of the various 
magnetic phase diagrams, we discuss a few experimental examples. This 
will also give the opportunity to go a little deeper into the detailed features, 
some of which remain as yet unsolved. Since the only clear-cut example 
of a fully mapped phase diagram of an Ising antiferromagnet is that  of the 
2-d antiferromagnet CoCs~B%, already treated above, we will first turn 
to the Heisenberg antiferromagnet with small anisotropy, which is at the 
same time the most extensively investigated category. 
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Experimental magnetization isotherm as observed by Van den Handel et al. 
(1952) in CuC12 . 2I-I20. The applied field is parallel to the easy axis. 
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The classical example of a spin-flop transition is that  observed in 
CuCle. 2H20 by Van den Handel et al. (1952), shown in fig. 82. Since in 
this salt the exchange field and the anisotropy are both fairly small, the 
spin-flop transition occurs in a moderate field of a few kOe. More generally 
2H~ will be of the order of 106 Oe, so that  with an anisotropy of 1%, 
HsF will be about 104-105 Oe (eqn. (4.46)). To observe the S F - P  
transition one would then need fields near to 106 Oe (eqn. (4.47)), which 
is clearly outside the limits of normal laboratory equipment. In order to 
measure a complete phase diagram, one has therefore to take recourse to 
the (hydrated) salts with small exchange fields. As mentioned in § 3.3 
the S F - P  transition field in CuC12 . 2I-I20 is about 150 kOe. An example 
of a non-hydrated salt that  nevertheless has a low exchange field is 
GdA103. Magnetization curves obtained by Cashion et al. (1970) at 
T/To~_0.13 are shown in fig. 83. In this salt (as in CuC12 . 2H20 ) the 
anisotropy is of orthorhombic symmetry, but within the easy plane a 
similar treatment,  as in the uniaxial case, may be applied. The data 
shown are taken along the preferred and the next preferred axes and 
confirm the expectations based upon the MF approximations confined in 
eqns. (4.44)-(4.48). 

Fig. 83 
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Experimental magnetization isotherms as observed in GdAIO 3 by Cashion et al. 
(1970). The internal field, that is the applied field corrected for de- 
magnetizing effects, is parallel to the easy axis (M 1i) and to the next 
preferred axis (M±). 

I t  is of importance to note that  in fig. 83 the magnetization is plotted 
against the internal field, that  is the applied field corrected for de- 
magnetizing effects, contrary to the CuC12 . 2H20 curves of fig. 82, 
where M ( H )  is plotted versus the applied field. I t  is seen that  the de- 
magnetization correction is necessary in order to exhibit the first-order 
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character of the transition (discontinuous jump in M(H)). In this respect 
one may recall the analogy between the spin-flop transition and the ferro- 
magnetic transition, which is also of first order for T < To (Anderson and 
Callen 1964). In the latter the discontinuity in M(H), occurring at 
H=O, is likewise masked by demagnetizing effects; plots of M(H) 
versus the applied field yield a magnetization that  increases linearly up 
to saturation, with a slope given by the reciprocal of the demagnetizing 
factor, as a consequence of the establishment of a domain structure. A 
similar division in domains of flopped and non-flopped spins will occur in 
the case of the spin-flop transition, since the increase in magnetization 
as a consequence of spin-flopping will lower the internal field, through the 
equation Hint. =Happ] ' - N M ,  to a value that  is below the critical field 
HSF needed to overcome the anisotropy energy. A quite similar state- 
ment applies to the first-order transition in the metamagnetic substances, 
as we will see below. 

As an example of a fully mapped antiferromagnetic phase diagram we 
show in fig. 84 the phase boundaries of MnCI~. 4H20 as obtained by  
Giauque et al. (1970). The phase boundaries plotted here have been 
determined from maxima in the specific heat, measured as a function of 
temperature at constant fields, from maxima in the isentropic suscepti- 
bility and, additionally, from minima in the isentropic (~T/~H)s curves 
(making use of the magnetocaloric effect). This illustrates at the same 
time the variety of techniques that  may be used in determining the phase 
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boundaries, in addition to the simple measurement of the M versus H 
curves already mentioned. I t  should be emphasized, however, tha t  it  
may not be taken for granted tha t  these different methods define 
exactly the same boundary (see, e.g., Giauque et al. 1970). For instance, 
the maximum in the susceptibility versus T curves need not coincide 
with the specific heat maximum, in case both remain finite at the transition 
point, as in any experiment. Still another method of locating the phase 
boundaries is from measurements of the ultrasonic attentuation, as has 
recently been applied by Shapira to a number of antiferromagnets (e.g. 
Shapira 1971). The phase transitions appear as anomalies in the ultra- 
sonic attenuation, that  have a different shape according to the order of 
the transition and to the mode of propagation. 

In our opinion the most reliable criterion in determining the field- 
dependent transition points will be the specific heat anomaly. As an 
example the data of Reichert and Giauque (1969) and Giauque et al.  

(1970) on MnCle. 4H20 are shown in fig. 85. Upon increasing the field 
the specific heat anomaly apparently remains as sharp as for the case 
H = 0, although its height decreases. This has also been found in experi- 
ments on other compounds. Since the heat capacity was measured as a 
function of T at various constant H values, the anomaly traces the A F - P  
and SF-P boundaries. One would expect tha t  a measurement of the 
specific heat as a function of field at constant temperatures below the 
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triple point will yield a sharp spike at the spin-flop transition, in addition 
to the A-type anomaly at the transition to the paramagnetic state. These 
spikes should reflect the latent heat of transition associated with the first- 
order spin-flop transition. 

At this point we would like to emphasize the advantage of the anti- 
ferromagnetic systems consisting of antiferromagnetically coupled ferro- 
magnetic layers in the study of field-dependent behaviour. Since the 
antiferromagnetic interaction is in this case the (often extremely) weak 
coupling between the layers, saturation can be reached in moderate fields 
of a few kOe already. The metamagnetie substances will be discussed 
below. Here we want to concentrate on the quite isotropic layer-type 
compound (C~HsNHa)2CuC1 ~ already discussed in the preceding pages, 
The phase diagram, as measured in the easy plane withthe aid of differential 
susceptibility measurements, is given in fig. 86 (de Jongh et al. 1972 b, 
de Jongh 1972 a). I t  may be seen that  the SF-P transition along the 
preferred and next-preferred axes are of the order of 1500 Oe, whereas 
the spin-flop transition is a mere 330 Oe. The critical field values are 
consistent with an antiferromagnetic exchange field Hal _~ 800 Oe and 
an in-plane anisotropy HAz_ ~ 80 Oe. Other interesting features are the 
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The antiferromagnetic phase diagram of (C2HsNHs)2CuCI 4 (De dongh 1972 a). 
The critical fields H 1 and H2a denote the spin-flop transition (HsF) 
and the transition from the flopped to the paramagnetic phase (He) , 
respectively, as obtained when the field is parallel to the easy axis. 
With H parallel to the next preferred direction, only the latter transition 
is observed (H2 b, corresponding to Ho' in eqn. (4.48)). The differences 
between. H2a and He ~ reflect the anisotropy within the easy phase (com- 
pare also with fig. 83). H is the internal field. 
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fact that  H s r  decreases with temperature (compare fig. 84) and tha t  the 
triple point is very close to To (at T / T  c = 0.997, H = 135 0e). 

The low values of the critical fields admit of a careful study of the critical 
behaviour near the field-dependent transition points. In fig. 87 are 
plotted a number of isotherms of the differential susceptibility versus the 
applied field, from which the phase diagram shown in fig. 86 has been 
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The isothermal differential susceptibility of (C2HsNHa)2CuC14 as a function of 
a field applied parallel to the easy axis (uncorrected for demagnetizing 
effects). The numbers indicate the values of the relative temperature 
T / T  c at which the isotherms were measured. Note that the suscepti- 
bility is plotted on a logarithmic scale. The indicated value 1 / D C  is 
the calculated limit for a ferromagnetic sample of the same dimensions 
(D is the demagnetizing factor and C is here the Curie constant per unit 
volume). 

derived. The field is applied parallel to the easy axis. The general 
behaviour is seen to be in agreement with the simple MF model discussed 
above. The intercepts at the ordinate reflect the increase of the parallel 
susceptibility in zero field as the critical temperature is approached. At 
the spin-flop transition the susceptibility apparently diverges, since it 
reaches values nearly equal to the ferromagnetic limit, calculated on the 
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basis of the sample shape. In between HSF and Ho the susceptibility 
attains values that  depend only weakly on temperature and are near to 
that  of the perpendicular susceptibility. Moreover, the behaviour near 
Ho suggests, indeed, a discontinuity in the susceptibility in the limit 
T->0. What  is plotted is the real part X' of the a.c. susceptibility. 
Although the imaginary part is zero for most of the field range, sharp 
peaks in X" were observed at the spin-flop transitions, which is consistent 
with the notion of a domain formation at HSF. 

The peaks in the susceptibility at HsF are seen to be very sharp, and 
correcting the applied field for demagnetizing effects would make them 
even sharper (this correction amounts to a few per cent of the applied 
field for H >HsF ). However, a diverging susceptibility merely implies 
an infinite derivative of the M versus H curve at H = HSF and not neces- 
sarily a discontinuity in M, in which case a plot of X versus the applied 
field should give a susceptibility that  retains the limiting (ferromagnetic) 
value over a certain finite field interval. Expanded plots of the experi- 
mental X versus the applied field curves indicate indeed that  X has its 
maximum value over an interval of a few Oe, but it is hard to draw firm 
conclusions from such a small field range. That the interval is so small 
may of course be explained by the fact tha t  the demagnetizing field just 
above the spin-flop transition is only about 9 Oe. Considering the other 
evidence obtained in, for example, GdA103 and MnCl~. 4H~O, however, 
where the magnetization jump can be made vertical within the uncertain- 
ties involved in correcting the applied field for demagnetizing effects, one 
would draw the conclusion that  the SF transition is indeed of first order, 
in the sense that  there occurs a discontinuity in the magnetization. The 
difference with the MF prediction is that  the susceptibility is not constant 
above and below the SF transition. In fact the divergences shown in 
fig. 87 can be fitted to a power-law behaviour of the form 

x/C ~ R o I (H-  HSF)/HsF I-P, (4.49) 

with p _  2.3 over several decades in x/C. This is exemplified in fig. 88 
for the data on the high-field side of the SF transition. In order to carry 
out such an analysis, the value of the perpendicular susceptibility attained 
in between HsF and Ho was subtracted from the measured X values, and 
furthermore the data were corrected to an infinitely long cylindrical sample 
shape. For H < HsF a similar though less impressive fit to a power law 
with the same p value could be obtained. 

Another difference with the MF theory that  is observed in fig. 87 is 
the fact tha t  in between HSF and Ho the susceptibility does not remain 
constant but rises with H and even displays an anomaly at the SF-P  
transition, rather than a discontinuous decrease. This was observed in 
the flopped phase, with H parallel to the easy axis, as well as with the 
field in the perpendicular orientation. The latter results are shown in 
fig. 89, where X is now plotted on a linear scale, so that  the peaks are seen 
more clearly. I t  is observed that  the amplitude of the singularity 
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Fig. 88 
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Critical behaviour of the susceptibility near to the spin-flop transition field 
(H1, corresponding to HsF in the text) in (C2HsNH3)2CuC14. The 
relative temperatures T/W e at which the isotherms were taken are:  
©:  0-127; A:  0.209; [ ] :  0.292; x : 0.394; V : 0.495; e :  

0.600; • :  0.691; [ ] :  0"788; + : 0.870; • : 0"955. The sus- 
ceptibilities have been corrected to an infinitely long cylindrical sample 
shape, but this correction is negligible for ( H - H 1 ) / H  1 > 2 x 10 -3. The 
straight line represents a power-law divergence with an exponent of 2.3. 
(eqn. (4.49)). 

depends on t empera tu re  ; for T ~ 0  the  MF predict ion is the more closely 
approximated .  

Deviat ions of the  perpendicular  magnet iza t ion curves f rom linear 
behaviour  (constant  Xa) have been found  in m a n y  other  materials.  As 
examples  we ment ion here E u T e  (Jacobs and Silverstein 1964, Oliveira 
et al. 1972), FeC12 (Carrara et al. 1969), and CoCI~, 6I-I~O and CoBr~. 61120 
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Critical behaviour of the perpendicular susceptibility of (C2HsNHa)~CuCla 
near to the transition to the paramagnetie phase. The (internal) field 
is parallel to the next preferred axis. The numbers again indicate the 
relative temperatures T I T  c. The solid curves drawn through the data 
on the low-field side of Ho have been calculated from eqn. (4.50) with 
A = 1.52 x 10 -2 K -1 and r =0-32. 

(Metselaar and De Klerk  1973 a, b). In  E u T e  the t empera tu re  dependence 
of the ampl i tude  of the singulari ty in Xx at  H c is similar to tha t  observed 
in (CaHsNH3)2CuC1 a (Oliveira et al. 1972). Quite contrari ly,  the da ta  on 
CoBr a . 6 H a •  (Metselaar and De Klerk  1973 b), reproduced  in fig. 90, 
show an exact ly  opposite  behaviour ,  in t h a t  the ampl i tude  increases with 
decreasing tempera ture .  The magnet iza t ion curve of FeCI~ repor ted  by  
Carrara  et al. (1969) is again different,  since even at  a t empera tu re  as low 
as T ~ 0-2 T c the magnet iza t ion was found to increase l inearly for H > Ho 
up to H _ 6Ho, instead of saturat ing.  These various phenomena  ma y  be 
explained by  considering the  different  mechanisms t h a t  can cause these 
deviations f rom the  simple MF prediction. The  following four mechanisms 
are ment ioned  in the  l i terature.  

(i) Zero-point  spin deviations. A gradual  suppression of the effects of 
zero-point  spin deviat ions upon X± will occur when the sublat t ice moments  
are ro t a t ed  by  the  field f rom an ant i fer romagnet ic  to  a ferromagnet ic  
configurat ion (Kanamor i  and Yosida 1955, Jacobs  and Silverstein 1964). 
This resul t  in an ex t ra  increase of the magnet izat ion,  in addit ion to the  
MF te rm M - - X x  ° H(cf. eqn. (3.6)). 
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The isothermal differential susceptibility of C o B r a .  6 H 2 0  as a function of a 
(applied) field parallel to the easy axis, for different temperatures. 
The transition temperature is To=3.14 K. (After Metselaar and De 
Klerk (1972 b.) 

(ii) Besides the above effect, spin-wave theory predicts the occurrence 
of instabilities at the SF-P transition (Feder and Pyt te  1968), arising 
from the fact that  at H c the magnon dispersion relation changes suddenly 
from a linear (antifcrromagnetie) to a quadratic (ferromagnetic) wave- 
vector dependence. This leads to a divergent term in the susceptibility 
at H e (on both sides of He) which, to first order in the 1/2S expansion, is 
of the form x ± ~ H T ( H o - H ) - I / 2  for H--->H c- and similarly for H--->Hc+. 

(iii) Anisotropy effects. Carrara et al. {1969) have shown that  for a 
metamagnet (large anisotropy and Hf>~H~) the susceptibility increases 
for H-->Hc- , where the transition field is lowered from the MF prediction. 
For H > H c the magnetization rises slowly with H towards saturation. 

(iv) Biquadratic exchange, arising from the strain dependence of the 
exchange energy (Kittel 1960, Jacobs and Silverstein 1964). This also 
introduces an extra field-dependent term in the susceptibility that  reaches 
a maximum at H = He. 

The last effect is difficult to estimate quantitatively, since for most 
salts knowledge of the amount of magnetostriction is lacking. We feel 
however that  it will be small in most cases ; in any case it cannot explain 
the temperature dependences of the amplitude of the singularity in X± 
shown in figs. 89 and 90. Discarding mechanism (iv) therefore for the 
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present discussion, we remark that  the behaviour of FeC12 is adequately 
described by the mechanism (iii), as expected from its metamagnetic 
properties (see below). For FeC12 and (C2HsNHa)2CuC14 the mechanism 
(i) can be disregarded as a possible source, since, by the fact that  J~ >~J~, 
the zero-point spin reduction will be very small (De Jongh 1972 a). 
Calculations of Lebesque of our laboratory pertinent to the Cu compound 
yield a reduction AS ___ 10 -4 only. On the other hand, the anisotropy 
mechanism (iii) does not apply for the fairly isotropic compounds EuTe, 
(CeHsNH3)2CuC14 and CoBr 2 . 6H~O. (Note that  for the latter two the 
anisotropy within the easy plane is considered.) 

Thus, through the properties of the individual salts, we are in a position 
to choose for one, in some cases two mechanisms. As mentioned, for 
FeCl 2 the anisotropy effect will be predominant, although (ii) will perhaps 
also contribute. For (C2HsNHs)2CuC14 we can definitely choose for 
mechanism (ii) and in fact the spin-wave calculations yield the proper 
temperature dependence of the amplitude of the singularity. Guided by 
Fcder and Pytte 's  result, De Jongh (1972 a) fitted the data for H < H c to 
the formula 

[x±(H) - x±(O)]/x±(O) = AT(H/He)[1 -H/Ho] -~, (4.50) 

where A and T are (positive) constants. I t  turned out that  all the 
measured isotherms between O.12<T/To<0.96, for the field in the 
perpendicular direction, as well as parallel to the easy axis for H > HsF, 
could be described within 1 to 2% by this formula up to fields H/Ho < 0.98, 
with the same values for A and r (r _~ 0.32). The discrepancy with the 
spin-wave prediction r =  0.5 should not be taken too serious, amongst 
other things because it is only the leading term in the 1/2S expansion. 
The heavy curves drawn through the data for H < Ho in fig. 89 are calcu- 
lated from eqn. (4.50) with the experimental values for A and r. The 
data for H > H o are not easily analysed in a similar way because the 
' paramagnetic ' contribution to the susceptibility is difficult to subtract. 
This contribution arises, of course, from the fact that  for T > 0, after the 
rotation of the mean directions of the sublattice moments towards the 
easy axis is completed, there still remains the saturation of these sub- 
lattice momenta to be accomplished. 

The compound CoBr 2 . 6H20 , on the other hand, is a clear candidate 
for mechanism (i), since through its 2-d XY character it will no doubt 
have substantial zero-point spin deviations (cf. the discussion in § 3.2.2). 
The effect of (i) should become the more apparent the lower the tempera- 
ture, firstly because the contribution of (ii) decreases with temperature, 
and secondly because the effects of the zero-point spin deviations will be 
the larger the lower the temperature. The data of fig. 90 are seen to be 
in good agreement with these simple arguments. 

In EuTe one may expect a mixture of both effects (i) and (ii), but since 
this is a 3-d compound with a high spin value the zero-point effects are 
very small and thus mechanism (ii) will likely dominate. The data of 
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Oliveira et al. (1972) show a temperature dependence of the amplitude 
that  is similar to that  observed in the Cu compound. Unfortunately 
these particular measurements were performed on a conducting sample. 
In addition we may add that Jacobs and Silverstein (1964) analysed an 
EuTe isotherm measured at T/Tc~_0.22 in terms of mechanism (i), 
showing that  even at this (low) temperature, zero-point reduction alone 
cannot account for the observed behaviour. 

In conclusion we may say that  the experiments on the isotropic anti- 
ferromagnets strongly support the first-order character of the spin-flop 
transition, although the nature of the susceptibility divergence at HSF 
is certainly different from the MF theory (as yet  there is no theoretical 
t reatment available to explain the data  in fig. 88). In the case of the 
S F - P  transition spin-wave theory predicts divergences in the suscepti- 
bility at He, which would make the transition to be still of second order, 
as it is in the MF approximation although this predicts discontinuities in X. 
Indeed, anomalies in the experimental susceptibilities are found at He, 
the dependence on temperature being in apparent agreement with spin- 
wave theory. However, the possibility of finite cusps in the suscepti- 
bility cannot be excluded by the experiments, so that  the SF-P  transition 
could still be of an order higher than 2. This question must be solved 
by  further theoretical and experimental work. 

The same problem arises when one considers the nature of the A F - P  
transition (for temperatures above the triple point) which is believed to 
be of second order. The field-dependent heat capacity (e.g. fig. 85) 
seems to support this, since for the experimental examples available the 
specific heat anomaly apparently remains sharp, as for H =  0, although 
the height of the experimental maxima decreases with H. Also the 
peaks in the susceptibility observed at the A F - P  boundary in e.g. 
MnC12 . 4H20 (Giauque et al. 1970), GdA10 a (Blazey et al. 1971) and 
(C2HsNHa)2CuC14 (De Jongh et al. 1972 b) have more the character of 
finite cusps than divergences, although the peaks in the latter two 
examples are more pronounced than in the first. I t  has yet to be in- 
vestigated whether the small size of the observed anomalies arises from 
the experimental conditions (naturally the experimental specific heat 
singularities are also always finite even for H =  0). In any case, if the 
A F - P  transition be of order higher than 2 this would mean either that  the 
transition at H =  0 ( T =  To) is a special point, since the transition at T o 
is generally accepted to be of second order, or that  this latter assumption 
is false and that  also for H = 0 the transition is of higher order. Neither 
of these possibilities is in accordance with current theoretical ideas on the 
subject ,  which expect the order of the transition not to be affected by a 
magnetic field and thus equal to 2. 

Lastly we turn to the experimental examples of metamagnetic behaviour. 
We have already mentioned FeOl~ ; other materials are FeBr 2, CoCl=, 
DAG (with H parallel to the [111] axis) and Ni(NOa) 2 . 2H20. The 
magnetization isotherms of FeC12 measured by  Jacobs and Lawrence 
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Fig. 91 

200 
{emu/g} 4..2 K 

17.3K 
20./. K 

b4 

100 21.0 K ~  

22.5K 
(a) 

FeCI2 

, I I I 

00 10 Happ"-"-~20 {kOe) 
(a) 

12 

(kOe) 
H 

I 

z, 
(b) 

FeCI 2 

i L I 

0 I I I I 

0 10 T(K) ~"20 
(b) 

l 
.i. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

(a) Magnetization isotherms of the metamagnet FeC12 as measured by Jacobs 
and Lawrence (1967). The transition temperature is To--23.5K. 
(b) The metamagnetic phase diagram of FeCl~, showing the first-order 
transition line (solid curve) and the higher order line (dashed curve). 
The tri-critical point is estimated to be at about 20.4 K. 
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(1967) are shown in fig. 91 (a). One observes that  up to T =  20-4 K the 
curves of the magnetization versus the applied field show a linear portion, 
with a slope that  is independent of temperature. Within the (unfortu- 
nately large) experimental errors, this slope equals the reciprocal of the 
demagnetizing factor of the sample, in agreement with the expected 
first-order character of the transition. For higher temperatures the 
linear region apparently is absent, instead the curves display an inflexion 
point, indicating a transition of higher order. Correcting for demagnetiz- 
ing effects, a phase diagram is obtained (fig. 91 (b)) that  is in qualitative 
agreement with the theoretical expectation outlined above. Considerable 
hysteresis in the metamagnetic transition was reported. 

Additional evidence for the first-order character of the transition is 
provided, for example, by the work on Ni(NOs) ~ . 2H~O (Schmidt and 
Friedberg 1970) and DAG (Landau et al. 1971), in which case the de- 
magnetizing factor of the sample was known to much higher accuracy 
(about 1% for DAG), and the discontinuities in the magnetization versus 
the internal field curves were indeed found to be vertical within the error 
involved in the demagnetizing correction. In between the value for the 
applied field at which the magnetization starts to rise and that at which 
it levels of, the system is in a mixed state of co-existing antiferromagnetie 
and paramagnetic regions. By  making a plot of applied field versus 
temperature one obtains a phase diagram as shown in fig. 92 for DAG 
(Landau et al. 1971). The different symbols refer to the various thermal 
and magnetic measurements used in locating the phase boundaries. From 
such a graph one may determine accurately the value of the tri-critical 
point. Correction for the demagnetizing factor ( N =  5.35) of the sample 
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yields the broken curve that  is similar to the one shown for FeC12. I t  is 
interesting to observe that  within the experimental accuracy there occurs 
no kink at  the tri-critical point. 

Instead of the H~pp. versus T plot one can also draw a magnetization 
versus T diagram, given in fig. 93. Below the tri-critieal point there are 
two branches, which are the loci of the ends of the vertical discontinuities 
in the magnetization isotherms. Between the tri-critical point and T o 
the AF-P  phase boundary was identified by the maxima in the isothermal 
susceptibility measured as a function of field. A similar diagram for 
Ni(NOs) 2 . 2HsO was constructed by Schmidt and Friedberg. I t  is this 
M - T  diagram tha t  is the analogue of the composition-temperature 
diagram for SHe-4He mixtures (Griffiths 1970 a). In the latter the tri- 
critical temperature corresponds to that  below which spontaneous phase 
separation takes place. The upper and lower branches below the tri- 
critical point give the temperature variation of the SHe-rich and the 
4He-rich phases, respectively. The boundary in between the tri-critical 
point and T c is the line of A transitions of the single phase. 
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The M - T  diagram of DAG, which can be considered to be a magnetic analogue 
of the composition-temperature diagram for 3He-4He mixtures. 

Among the other interesting features emerging from the study of 
Landau et al. on DAG is the fact that  the specific heat, measured as a 
funetion of temperature in constant internal fields, displays sharp, 
possibly infinite, peaks at the first-order transitions below the tri-critical 
point. These peaks reflect the latent heat of transition accompanying 
the first-order transition. About the nature of the phase boundary in 
between To and the tri-critical point, the same questions pertain as to 
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the A F - P  transition in the isotropic antiferromagnets. Although sharp 
peaks are observed in the heat capacity and the susceptibility, they appear 
to be finite so that  it is still doubtful what the order of this transition will 
be. We remark in conclusion that  in the experiments on antiferro- 
magnetie substances performed thus far, the temperature dependence of 
the A F - P  phase boundary has always been found to be of parabolic form, 
in agreement with theory. 

In concluding this section we briefly comment on the field-dependent 
behaviour in ferromagnets. To our knowledge the only experiments 
performed so far are the specific heat measurements of Miedema et al. 
(1963) on CuK~C14 . 2H20 and those on EuS by  Teaney et al. (1968). In 
both cases the application of a constant field changes the appearance of 
the specific heat curve from a sharp peak into an apparently non-anomalous 
curve with a rounded maximum, the position of which was, in the case of 
CuK~C14 . 2H20 , found to decrease firstly with respect to T c in small 
fields, and then moving upwards again as the field increases to higher 
values. A decrease of the temperature of the maximum as a function of 
field was also observed in EuS. These features seem to be consistent 
with the expectation quoted above that  the transition in an isotropie 
ferromagnet will be destroyed on application of a non-zero external field. 

However, Teaney et al . ,  analysing their data in terms of a complex 
critical temperature, claim that  the apparent logarithmic divergence, 
found for H = 0 as T-+To + (see above), is preserved in non-zero fields. 
They attribute the observed rounding to inhomogeneous magnetization 
and report some evidence for this by  comparing the rounding found in a 
spherical sample with that  in a cylindrically shaped specimen, for which 
it was found to be considerably larger. 

Leaving it to the reader to judge the merits of the approach of Teaney 
et al. (1968), we mention the paper of Wojtowicz and I~ayl (1968) that  
was inspired by the work of Griffiths and Arrott  (see Arrott  1968). 
Within the MF approximation, Wojtowiez and Rayl  show the possible 
existence of transitions from a non-uniformly to a uniformly magnetized 
state in an isotropic ferromagnet with dipolar interactions included. In 
low fields these transitions are reflected as sharp anomalies in the heat 
capacity, which occur at a temperature that  decreases roughly quadratically 
with field and broaden as the field is increased. Furthermore, these sharp 
peaks are superimposed upon much broader maxima associated with the 
development of long-range order in the uniform state by  the field. 
Although the existence of the sharp anomalies is as yet  not verified by  the 
experiments, the shape and temperature dependence of the broad maxima 
are qualitatively in good accord with the observations in CuK2C14 . 2HsO. 
Yet  another mechanism for the occurrence of field-induced phase transi- 
tions in the experimental ferromagnets may be the presence of anisotropy, 
as shown by  calculations bearing on this problem (see, e.g., Pfeifer 1971, 
Durezewski 1970). In this case the transition temperature also decreases 
with field. 
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Lastly we mention that in the work on EuS (Van der Hoeven et al. 
1968) the specific heat at the critical isotherm was found to vary loga~ 
rithmically with field. Moreover the authors analysed their data in 
different fields in terms of an equation of state, rather similarly to the 
example given above in § 4.4. 

§ 5. CONCLUDING REMARKS 

The first aim in writing this paper has been to present a catalogue of 
those magnetic crystals that  from experimental investigations have proven 
to be approximate representatives of one of the simple models used in 
theoretical descriptions of magnetic ordering phenomena. The present 
review clearly lacks completeness, i.e. it covers a limited variation in the 
type of magnetic interaction only and furthermore has been concentrated 
on insulators. We have considered three different dimensionalities for 
the spin (Ising, X - Y  or Heisenberg), three magnetic lattice dimcnsionali- 
ties and two signs for the exchange interaction. However, we did not 
include magnetic crystals with predominantly dipolar interactions, 
magnetic metals in which the magnetic moments are not localized (itinerant 
magnets) and metals in which the interactions between localized moments 
are of the long-range, oscillating type (Rudermann-Kit tel  interaction). 

The choice made has been influenced by  the authors' own interests and 
activities. One may say that  the selection comes down to a preference 
for those magnetic systems that  on the one hand are the relatively most 
simple ones and on the other hand the most extensively investigated 
substances. 

In addition to the systematic presentation of a collection of simple 
magnetic systems, i.e. how they can be conceived and where they have 
been found in Nature, we have tried to make clear why this type of research 
in magnetism has drawn so much attention. We have collected a number 
of experiments which present convincing experimental verification of 
theoretical predictions derived in fields as the theory of spin waves, series 
expansion methods and theories which treat  the critical behaviour that  
accompanies phase transitions in general. Concerning the latter, we 
restricted ourselves to magnetic phase transitions, which means a severe 
limitation in view of the extensive literature on, for instance, gas-liquid 
phase transitions or ordering phenomena in alloys. 

Having viewed the present collection of crystals that  approximate 
simple magnetic models, one may ask which types are already sufficiently 
covered experimentally and for which types there is still a need for more 
complete experimental information. Firstly, considering the one- 
dimensional systems, we conclude that in fact only for Heisenberg 
antiferromagnetic chains is the situation completely satisfactory. Ap- 
parently, ferromagnetic Heisenberg chains and both ferro and antiferro- 
magnetic Ising chains are more difficult to realize. A reason for this 
may be the large reduction of the spin moment that  is inherent in an 
isotropic low-dimensional antiferromagnetic system. In spite of the 
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fact that  there are no good examples of Ising chains, however, one cannot 
positively conclude that it would be worth while to put considerable 
experimental effort into finding better ones. The theory for one- 
dimensional Ising systems is exact, while for Heisenberg ferromagnetic 
chains, too, the theoretical predictions derived by extrapolation from 
properties of rings with a finite, increasing number of spins are apparently 
sufficiently accurate to warrant the assumption that  no new surprising 
phenomena are to be discovered by doing more experiments. Un- 
doubtedly all of the thermodynamic behaviour can be calculated accu- 
rately enough theoretically, while the specific properties that  have to do 
with an exceptionally large degree of short-range magnetic order can be 
(and have been) investigated equally well in the one-dimensional 
Heisenberg antiferromagnets, of which so many representatives are known 
at present. Generally speaking, we would say that a search for still 
more examples of simple magnetic model systems would be justified only 
in the case where the additional experimental work is expected to provide 
new contributions to the mutual stimulation of theory and experiment. 

An interest in one-dimensional systems that  remains is connected with 
studies of the magnetic interaction in insulators (its quantitative value). 
Low-dimensional magnetic systems offer the possibility of a relatively 
accurate and easy determination of the value of the exchange constant ; 
also, the much smaller interaction between magnetic atoms of neighbour- 
ing chains, which gives information concerning complicated exchange 
paths, will be reflected in the experimental T c values. 

Turning next to the two-dimensional magnetic systems, we can conclude 
that  there is a large number of Heisenberg substances, ferromagnetic as 
well as antiferromagnetic. The number of crystals in which the two- 
dimensional Ising model is approximated is again much smaller but  like- 
wise this does not necessarily imply a real need for further experimental 
research. The zero-field two-dimensional Ising problem is exactly 
soluble and also the field-dependent properties of the ' ideal system ' can 
be adequately studied theoretically so that  there seems to be no need of 
additional experimental verification. Note t h a t  the situation for 
Heiseuberg magnets in two dimensions is fully different. Here the 
theory is far from complete, whereas experimentally it has been possible 
for instance to derive with good accuracy the specific heat of the quadratic 
Heisenberg ferromagnet with S = ½, theoretical predictions being restricted 
to the low and high-temperature limiting cases only. Surprisingly, the 
series expansion analyses have led to the prediction of a phase transition 
in the magnetic susceptibility (Stanley and Kaplan 1966). Experiments 
have confirmed that  this should be a phase transition to a state of infinite 
susceptibility but no spontaneous magnetization. 

We suggest that  a search for new examples of two-dimensional magnetic 
crystals is not necessary. Any forthcoming fundamental question, which 
is in principle open for experimental studies, can likely be answered 
from an investigation of the series of compounds known. 
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Similar to one-dimensional magnetic crystals, two-dimensional com- 
pounds will remain attractive for investigations of magnetic interaction 
constants. Apart from an accurate determination of the value of the 
main exchange constant, the quasi two-dimensionM crystals in addition 
often offer the possibility of studying in detail the interaction in the third 
dimension and the effects of magnetic anisotropy. 

Surprisingly enough, the number of fair approximations of simple 
models in three dimensions is quite limited. The few good examples do 
agree with theoretical predictions, but  a conclusion of how important it 
would be to have more or better experimental realizations of three- 
dimensional Ising and Heisenberg magnets cannot be drawn straight- 
forwardly, amongst other things because of the approximate nature of 
the theoretical results obtained so far. 

In this section we did not mention the XY model until now. In this 
case both theoretical and experimental information are far from complete. 
For instance, the spin-wave theory for the planar models has received 
little attention. Quite generally, one expects an XY system to behave 
as intermediate between Ising and Heisenberg (critical exponents);  in 
the special case of two-dimensional lattices the XY model is similar to 
the Heisenberg model, in that  it will Mso possess the new type of phase 
transition to a state of infinite susceptibility without long-range order. 

Further  experiments on XY type crystals would therefore be quite 
interesting. However, the XY models is relatively difficult to realize. 
In Fe 2+ and Ni ~'+ compounds, in which the crystal field would produce a 
singlet state lying lowest in the absence of magnetic interactions, the 
XY model can only be a relatively poor approximation. At the higher 
temperatures these substances will behave as anisotropic Heisenberg 
rather than XY systems, and for this reason the effective spin value is no 
simple constant. We suggest that  compounds similar to CoC12 . 6H20 
are more attractive in studying the XY model. One would like to have 
an isolated crystal-field doublet to be the only populated level at tempera- 

~), tures of the order of the exchange constant (effective S = while the 
XY character then arises from the anisotropy in the g tensor (g. > g t~). 
There are possibilities in finding gx>>g, among rare-earth ions, but  in 
that  case it is difficult to produce magnetic interactions that  are pre- 
dominantly of the exchange type. 

A conclusion that  can be drawn from § 4.2 is that  the applicability of 
the spin-wave approximation in describing the low-temperature properties 
of magnetically ordered crystals is beyond doubt, including the case of 
antiferromagnetism with the inherent phenomenon of zero-point spin 
deviations. For chains with only short-range order the situation is not 
fully clear. Apparently it makes sense to speak about  spin-wave-like 
excitations also in systems which have no long-range order. I t  is possible 
to s tudy the dispersion relations in neutron scattering experiments, but  
in particular the static properties of one-dimensionM systems (specific 
heat and suceptibility) only qualitatively agree with simple spin-wave 

A.P. Q 



242 L . J .  de Jongh and A. R. Miedema o n  

theory. The key to the solution of this problem may lie in the s tudy of 
those spin-wave-like excitations which have wavelengths nearly equal to 
the correlation length, i.e. neutron diffraction experiments in which for a 
specific Ic value or energy the effect of a varying degree of short-range 
order is studied. In this respect neutron scattering experiments have a 
clear advantage over magnetic resonance experiments in which the 
temperature dependence of the linewidth (N.M.R., E.S.R.) is used as a 
tool to s tudy the effects of the anomalously large degree of short-range 
order in low-dimensional magnetic crystals (Nagata and Date 1964, 
Bucci and Guidi 1970, Maarschall 1970, de Wijn, Walker, Davis and 
Guggenheim 1973b). A resonance linewidth represents an integral 
property over the full spectrum of excitations, whereas in a neutron 
diffraction study an excitation of a particular frequency may be selected. 

Closely connected to the problem of how to describe spin waves at 
temperatures above To is the question of how to renormalize the dispersion 
relation as a function of temperature. The energies of long wavelength 
spin waves become renormalized according to the spontaneous magnetiza- 
tion, short wavelength excitations on the other hand apparently have 
their frequencies renormalized according to the magnetic energy. For 
intermediate frequencies one has no clear idea yet  as to how renormaliza- 
tion effects have to be taken into account. 

Returning to the correlation length, we want  to stipulate the prime 
importance of this quantity in understanding the behaviour of quasi one 
or two-dimensional systems. Differentiating between the inter-planar 
(or inter-chain) correlations and those within the magnetic layers (or 
chains), we have seen in the preceding pages that  the former quite often 
play a very minor role, becoming manifest only at the lowest tempera- 
tures. In addition to the difference in strength between the inter and 
intra-layer interaction, this may be at tr ibuted to the difference in the 
dependence on temperature and on distance of the correlations in two 
and in three dimensions. Theoretical work (Jasnow and Fisher 1967, 
Lines 1970) has shown that the correlations in two-dimensional systems 
fall of considerably more slowly with distance than in three dimensions. 
The fact that at the same kT/J the correlation length is much larger in 
e.g. two dimensions, explains the large degree of short-range intra- 
planar order, long before the inter-planar correlations come into play. 
Thus the behaviour as a function of temperature of an array of nearly 
isolated layers is two-dimensional over a very wide temperature range, 
until, sometimes extremely close to Tc, the effect of the correlations in 
the third dimension is felt. This contrasts with the situation in thin 
magnetic films, for which one may argue that they will also approximate 
a two-dimensional system when the film thickness becomes of the same 
order as the lattice constant. In the case of thin films the high-tempera- 
ture properties will be that of the bulk material, since only as the tempera- 
ture is lowered to T c will the correlation length become comparable with 
the film thickness, so that a two-dimensional character may manifest 



Experiments on simple magnetic model systems 243 

itself. We remark that thin films in general present a more difficult 
problem than crystals consisting of nearly isolated layers, since in the 
former the boundary effects are of considerably more importance than in 
the latter. 

In § 4.3 we have stipulated the usefulness of predictions based on 
series expansion methods. I t  is surprising that a truncated series can 
provide accurate quantitative results for thermodynamic properties of 
interest at  temperatures as close to To as 1°/o . Also the results derived 
for critical exponents appear to be quite satisfactory. 

In § 4.4 we have witnessed that unusual values for the critical exponents 
fi and y (i.e. values different from those of three-dimensional lattices) 
have indeed been observed experimentally. The experimental analysis 
in these cases has to be performed in a temperature region slightly away 
from Tc rather than as near to T c as possible. For instance, studying 
two-dimensional Hcisenberg compounds a relatively weak interaction in 
the third dimension or a small anisotropy will lead to a three-dimensional 
or Ising-type critical behaviour, respectively, at temperatures which are 
sufficiently near to To. (In practical cases this may amount to 
( T -  Tc)/Tc ~- 10-a-10 -2 already.) 

A conclusion of § 4.4 is that  the experimental information on critical 
behaviour agrees with theoretical expectations. Further experiments, 
in particular on systems with unusual exponent values, would be of much 
interest, but  within the group of systems covered in the present paper this 
will be difficult. Approximately one-dimensional lattices will show three- 
dimensional critical behaviour (if any), quasi two-dimensional crystals too 
will show three-dimensional behaviour at temperatures sufficiently close 
to T c, which region may in the highly anisotropic cases be preceded by 
one where it is two-dimensional Ising-like. Likewise an approximate 
two-dimensional Heisenberg compound may, away from To, show the 
critical behaviour characteristic for the ideal system. For this model 
two cross-overs may be observed as T~ is approached, namely, firstly 
from two-dimensional Heisenberg to two-dimensional Ising (or X¥)  and 
thereafter to three-dimensional Ising behaviour. Obviously a critical 
exponent for the heat capacity may in this case only be observed in the 
three-dimensional (or in the two-dimensional Ising) region. 

We suggest that  in addition to giving much attention to the dependence 
of critical exponents on lattice dimcnsionality, one should like to have 
more information on sets of critical exponents for magnetic systems 
unusual in other ways, viz. magnetic systems having long-range interac- 
tions, magnetic crystals with well-defined temperature-dependent inter- 
action constants or dilute magnetic systems (crystals in which a fraction 
of the magnetic sites is occupied by  diamagnetic atoms). 

One may conclude from § 4.5 that  there is still a lot of interesting work 
to be done concerning field-dependent properties and field-induced phase 
transitions in general. Since one is restricted to long-range ordered systems, 
one basically deals with either 3-d or 2-d-Ising systems. Nevertheless, 
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approx imate ly  low-dimensional crystals have  an advantage  tha t ,  when 
considering their  three-dimensional  magnet ic  propert ies  at  t empera tu res  
below To, the  magnetic  field region of interest  when s tudying transi t ions 
in the  H - T  phase diagram is often res t r ic ted to  easily accessible low field 
values. 

Fig. 94 
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The magnetic heat capacity of K~PbCu(NOJG, an example of an f.c.c, anti- 
ferromagnet with S=½. The curve displays the broad maximum 
(height about C/R=0-3) characteristic for magnetic systems that  
(ideally) would have no transition to long-range order. The temperature 
of the maximum is about 3 K. The small anomaly found at T _~ 0"5 K 
could be interpreted as a transition to long-range order, caused by next- 
nearest neighbour interactions. This temperature should be compared 
to the molecular field prediction for the transition temperature, which 
is of the order of 0__ 10 K, as deduced from estimates of the exchange 
constant. (After B15te, private communication; see also Huiskamp 
(1966).) 

Concentra t ing a little more on possibilities for  fu ture  work it  will come 
as no surprise t ha t  we suggest t h a t  one should pay  more a t t en t ion  to  
some of the magnetic  systems tha t  have not  been t rea ted  in the present  
review. Fo r  instance, we did not  consider the  f.e.c, or t r iangular  anti-  
fer romagnets  t ha t  have transi t ion t empera tu res  s t rongly dependen t  on 
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the  va lue  of the second neares t -ne ighbour  interact ion,  since t hey  will no t  
show long-range order  in the case of only neares t -ne ighbour  in teract ions  
(see fig. 94). Also one m a y  s tudy  magnet ic  ordering in the case of only  
dipolar  in teract ions ,  in helical spin systems,  weak  fer romagnets ,  metMlic 
i t ineran t  magne ts ,  alloys of ra re -ea r th  meta l s  wi th  localized m o m e n t s  
coupled b y  the  mechan i sm of magnet ica l ly  polar ized conduct ion electrons, 
di luted magne t i c  insula tors  and  the  magne t ic  substances  whose proper t ies  
are af fec ted  b y  the  size of the  crystal .  H e r e  a lot  of interest ing work  is 
still to be done, theore t ica l ly  as well as exper imenta l ly .  

Fig. 95 

(~) (b) 

Staring crowd' analogue of ]phase transition. (a) ' normal '  phase. (b) ' condensed' phase. 

The ' staring crowd ' phenomenon (Mattuck and Johansson 1968) is an illustra- 
tion of the fact tha t  phase transitions are certainly not confined to 
physics but is a more general phenomenon that  can be found everywhere 
in Nature whenever one deals with a system consisting of elements 
between which there exists some sort of feed-back mechanism (exchange). 
I f  one of the elements (spins, human beings) gets conditioned in a certain 
fashion-- in the above example the at tention of one of the persons is 
at t racted by  something at the window-- the  neighbouring elements 
become conditioned in a similar way, even though there is no external 
force present that  compels them to do so (they may  see nothing at all 
at  the window in question). Another example from daily life is the 
' spontaneous  buy ing '  of luxury goods as colour-television sets, new 
cars, etc., which occurs when a given person has enough neighbours 
around him that  possess such an item. 

R 2  
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The main point at this moment for doing such research may be to get 
additional evidence supporting the ideas of a universal description of 
phase transitions in terms of a few parameters. Taking this argument 
as a start, it is only a small step to fields outside magnetism, phase transi- 
tions being of importance for molecular physics and metMlurgy as well as 
for biology and as illustrated by fig. 95 also, for example, for the social 
sciences. 

A final conclusion to be drawn from the present paper concerns materials 
science in magnetism. In the above we have learned that  it has been 
possible to find experimental approximants of various highly artificial 
theoretical models which theoreticians are forced to use. In many cases 
the compounds were not discovered by accident but have been searched 
for systematically. This leads us to the optimistic conclusion that,  if it 
is made sufficiently clear which combination of properties has to be looked 
for, even the apparently most unlikely combinations may be realized in 
practice. 
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