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Lattice statistics in a magnetic field
I. A two-dimensional super-exchange antiferromagnet

By M. E. FisHER
Wheatstone Physics Laboratory, King’s College, London

(Communicated by J. T. Randall, F.R.S.—Received 20 June 1959)

The partition function of a two-dimensional ‘super-exchange’ antiferromagnet in an arbitrary
magnetic field is derived rigorously. The model is a decorated square lattice in which
magnetic Ising spins on the bonds are coupled together via non-magnetic Ising spins on the
vertices. By use of the decoration transformation all .the thermodynamic and magnetic
properties of the model are derived from Onsager’s solution for the standard square lattice in
zero field. The transition temperature T',(H) is a single-valued, decreasing function of the
field H. The energy and the magnetization are continuous functions of 7' for all magnetic fields;
but the specific heat and the temperature gradient of the magnetization become infinite as
— In |T—T,|. The initial (H = 0) susceptibility is & continuous and smoothly varying func-
tion of 7' with a maximum 40 %, above the critical point ; but 9x/9T becomes infinite at I' = T'.
In & non-vanishing field the susceptibility has a logarithmic infinity at 7' = T;. For small
fields the behaviour near the critical point is given by

X X (Np[kT) {2—J2—=D(T—T,) In |T—T,| - D'HIn |T—T,[},

where D and D’ are constants.

INTRODUCTION

The Ising model, originally proposed as a model of ferromagnetism, is one of the
simplest models of a co-operative physical assembly. None the less, its salient
features are characteristic of many real systems and, furthermore, it is one of the
few models for which rigorous mathematical results have been obtained. (For a
review of the extensive literature see Newell & Montroll (1953).) Thus from the
classic work of Onsager (1944) one knows precisely how the energy and specific heat
of the two-dimensional quadratic lattice in zero magnetic field behave through the
transition region. This knowledge has proved invaluable in estimating the reliability
of approximate but more general methods such as those of Bragg & Williams, Bethe
and, more recently, Kikuchi (1951).

Following Onsager’s work exact partition functions have been obtained for a
number of other plane lattices in zero magnetic field (Houtappel 1950; Syozi 1951;
Fisher 1959a). Kaufman & Onsager (1949) were further able to calculate the pair
correlations for the square lattice in zero field and Onsager (unpublished) and Yang
(1952) derived the spontaneous magnetization or long-range order. On the other
hand, no exact results have been found for any three-dimensional lattice and the
partition functions of the two-dimensional lattices have not been evaluated in a
finite magnetic field. In particular the susceptibility of the square lattice is unknown
even in the limit of zero field. On the basis of approximate calculations it is generally
agreed that the initial susceptibility of the ferromagnetic square lattice becomes
infinite at the critical temperature more rapidly than predicted by the Curie-Weiss
law x ~ (T —T.)"1. Recently the author (Fisher 1959b) has been able to show that
the singularity is actually of the form y ~ (7'—7.)~%. On the other hand, the precise
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Lattice statistics tn a magnetic field. I 67

behaviour of the initial susceptibility of the antiferromagnetic lattice has been a
matter of speculation. Some of the conflicting predictions that have been made are
illustrated diagrammatically by the graphs of y against 7' in figure 1.
Experimentally, antiferromagnetic solids are characterized by a maximumt in y
at a temperature which, in the earlier experiments, seemed close to that at which the
specific heat rose to a sharp peak (see figure 1a where 7, denotes the temperature
at which the specific heat anomaly occurs). The approximations of Bragg & Williams
and of Bethe (see, for example, Ziman 1951) predict that y has a discontinuous
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Fieure 1. The zero-field susceptibility, x, of an antiferromagnet as a function of temperature
T, in the critical region according to (@) early experiments, (b), (¢), (d) and (e) various
approximate treatments, (f) recent experiments and the exact solution of the Ising model.
T, and dashed line denotes the position of the specific-heat anomaly and O denotes the
corresponding value of x. (Note that the curves are schematic).

gradient at 7}, and falls away sharply on either side of 7, as in figure 156. (In a
magnetic field these approximations lead to a discontinuity in y itself at T, (Ziman
1951).) Brooks & Domb (1951) working with series expansions reached a similar
conclusion (although their critical temperature was lower). More recently Domb &
Sykes (private communication) concluded, from a study of higher terms in the series
(Domb & Sikes 1957) that the susceptibility was of the form shown in figure 1¢. Here
the susceptibility passes through a maximum above T}, and is falling as T’ approaches
T, from above.. At T}, a discontinuity in gradient was predicted with a possible meta-
stable state extending below 7. The Kikuchi (1951) approximation leads to similar
conclusions (private communication from Mr D. M. Burley). Somewhat before this

1 We refer here principally to X the susceptibility parallel to the preferred axis.
5-2



68 M. E. Fisher

Park (1956) had attempted to sum the susceptibility series on the assumption that
they were algebraic like the spontaneous magnetization. His formulae gave the
curves of figure 1d which also display a maximum above 7,. At T, a discontinuity
was predicted but Park observed that only small changes in the formulae were
needed to make the curves join smoothly, with a continuous gradient as in figure 1e.

Sykes & Fisher (1958) using an analytic configurational approach discovered a
way of writing the susceptibility as the sum of a dominant part which could be
expressed in closed form in terms of the configurational energy, plus a residual series
which appeared to be small at all temperatures. This suggested strongly that the
susceptibility'should have a similar anomaly to the energy, i.e. 9y/0T should become
infinite as — In |7 — 7| which implies a vertical tangent as indicated in figure 1f.
Since then the author (Fisher 1959b) has been able to justify this conclusion
rigorously by using Kaufman and Onsager’s work on the correlations. (Incidentally
this disproves Park’s conjecture that y is algebraic.) It is interesting to note that
recent experiments on antiferromagnetic salts (see, for example, Lasheen, van den
Broek & Gorter 1958 and Cooke, Lazenby, McKim, Owen & Wolf 1959) lead to curves
rather similar to that in figure 1f and so in good accord with the true predictions of
the Ising model. '

The above results, however, do not yield explicit expressions for the initial
susceptibility as a function of temperature, nor do they indicate how y behaves
in a finite magnetic field. In the present paper we discuss a two-dimensional model
which fulfils these requirements. Thus we obtain an explicit formula for (7', H)
(equation (30) below) which shows thatin a finite field y has alogarithmic singularity.
Near the zero field critical temperature the behaviour is actually given by
N p?
kT
where £, D and D’ are constants (see also figure 13 below). Exact expressions are
also obtained for the energy, specific heat and magnetization of the model as
functions of 7" and H.

(T, H) % 25 (e~ D(T =Ty In | T~ T,| - D'H2In T~ T,]}

1. MODEL OF A SUPER-EXCHANGE ANTIFERROMAGNET

The model for which we obtain the results mentioned above is slightly different
from the standard antiferrogmagnetic square Ising lattice which is treated by most
authors. Consider the square array of Ising spins denoted by the black dots in
figure 2, where each spin is supposed to have a magnetic moment 4 through which it
interacts with an external magnetic field /. We will also suppose that the magnitude
of each spin is § = } although this restriction can be removed. If coupling is intro-
duced between these spins, such that nearest neighbours tend to aline with their
spins pointing in opposite directions, then the lowest energy state will be one of
antiferromagnetic ordering as indicated by the + and — signs in figure 2. When the
temperature or magnetic field is increased from zero the order will break down and
an order—disorder transition may occur at a given temperature or field. In the
standard Ising model, antiferromagnetic ordering is achieved by introducing direct
nearest-neighbour interactions between the spins of figure 2, so that parallel nearest-
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neighbour spins have a mutual potential energy —.J (J < 0), whilst anti-parallel
spins have an energy +J. As is well known this model exhibits a transition but
rigorous results can only be obtained in a zero magnetic field.

Direct nearest-neighbour coupling is not the only way of achieving antiferro-
magnetic ordering. Indeed, the neutron diffraction experiments of Shull & Smart
(1949) and their theoretical explanation by Anderson (1950) in terms of ‘super-
exchange’ coupling show that in many real antiferromagnets the coupling between
the magnetic spins takes place indirectly via a non-magnetic intermediary atom.
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Ficure 3. A super-exchange antiferromagnetic lattice. The black circles denote magnetic
spins and the open circles non-magnetic spins. The vertical bonds are ‘ferromagnetic’,
while the horizontal bonds are ‘antiferromagnetic’ in character.

We can construct a two-dimensional ‘super-exchange’ model along these lines by
allowing the magnetic spins at the corners of a square in figure 2 to interact with
each other via a non-magnetic central spin.f A ‘non-magnetic’ spin, which we
denote by an open circle, is simply an Ising spin which is not coupled to the magnetic
field, i.e. it has zero magnetic moment. To ensure antiferromagnetic ordering we
must suppose that the magnetic spins marked by a + in figure 2 have a positive
(ferromagnetic) interaction with their neighbouring non-magnetic spins, whilst
those marked — have a negative (antiferromagnetic) interaction. If the resulting
lattice is rotated through 45° it is seen to be quite equivalent to the ‘decorated’
square lattice shown in figure 3. This is a standard square Ising lattice with non-
magnetic spins at the vertices which has been decorated by placing a magnetic spin
on each bond. The antiferromagnetic character is ensured by supposing that the
vertical bonds are ferromagnetic (J > 0), whilst the horizontal bonds are anti-
ferromagnetic (J < 0). (Equivalently one may suppose that all the interactions are
ferromagnetic, but that the magnetic moments of the spins decorating the horizontal

+ A superficially similar but actually distinet type of ‘super-exchange’ Ising model was
considered by Domb & Potts (1951).
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bonds are of opposite sign to the moments of the spins on the vertical bonds:
mathematically this convention is rather more convenient.)

The super-exchange model just described is clearly distinct from the usual anti-
ferromagnetic Ising model. Notice, for example, that the standard model becomes
ferromagnetic when the sign of J is changed, whereas the super-exchange model
remains invariant. None the less, the super-exchange decorated lattice is a reason-
able model of an antiferromagnet. Furthermore, its partition function can be
calculated rigorously in an arbitrary magnetic field, thereby yielding explicit
expressions for all the thermodynamic and magnetic properties of the lattice as
functions of both temperature and magnetic field. This is achieved, as shown in
§2 below, by employing an algebraic transformation to relate the decorated lattice
in a magnetic field to the standard square lattice in zero field. The properties of the
super-exchange lattice then follow directly from Onsager’s work. The details are
presented in §§3 to 6 of the paper, whilst various generalizations of the model are
discussed in § 7. By using theresults of Kaufman & Onsager (1949) and of Yang (1952)
it is also possible to. calculate the long-range order and most of the spin-spin corre-
lation functions of the super-exchange lattice. This is done in part IT of the present
paper which is being prepared for publication.

2. DERIVATION OF THE PARTITION FUNCTION

As noted above the super-exchange antiferromagnetic lattice of figures 2 and 3 is
derived from the usual square-lattice Ising model by ‘decorating’ each bond of the
standard lattice with an extra spin. Now the configurational partition function Z of
any such decorated lattice may be derived from the corresponding partition
function @ of the basic (undecorated) lattice by a simple transformation of the
temperature and magnetic field variables (‘bond decoration process’). The method
has been used in particular applications by Naya (1954) and by Syozi & Nakano
(1955). Recently the present author (Fisher 1959a) has discussed this and other
transformations of the Ising model from a more general standpoint. Normally the
bond decoration process connects a decorated lattice in a non-zero magnetic field
to the corresponding basic lattice also in a non-zero field. For a certain class of
decorated lattices, however, it was discovered that the partition function for a finite
magnetic field could be derived from that of the basic lattice in zero magnetic field.
In all such cases the resulting decorated lattice is anti-ferromagnetic in character,
one of the simplest examples being the model under discussion. The general trans-
formations for the partition function are given in the author’s paper (Fisher 1959a),
but it isworth while presenting the details for the present model, since the arguments
are simple and will serve to introduce the notation.

We denote a spin variable of a non-magnetic or vertex spin of the antiferro-
magnetic decorated lattice (figure 3) by s} = + 1, that of a magnetic spin on a
vertical bond by s} = +1 and that of a magnetic spin on a horizontal bond by
sy = + 1. A configuration of a lattice of N vertices (and 2NV magnetic spins) is then
specified by the set of 3V spin variables s}, s;- and s; . The corresponding energy is

then taken to be
B = —JZsis} +JEstsi —pHEsi —pHZsy;, (1)
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where J is the interaction energy between a neighbouring magnetic and non-
magnetic spin anid J > 0 for a ferromagnetic coupling, x is the magnetic moment of
the magnetic spins and A is the external magnetic field. The first two sums extend
over the N vertical and N horizontal bonds, respectively, and the last two over the
two sets of N magnetic spins. It is convenient to introduce the dimensionless

parameters
K =J|kT, o=upuH|2J, (2)

and L = uH[kT = 2Ko. (3)

The temperature is measured by K, and « is the reduced magnetic field. The partition
function of the decorated lattice may now be written

Z(K,L)= ¥ X X exp {KZ(s9si" +sYsp) + LXsj — LEsi}, 4)
=x1gt=x41s"=x1
where, for convenience, the sign of the (dummy) variables s; has been changed.
As mentioned in the Introduction this is equivalent to taking all the interactions as
ferromagnetic and associating moments of opposite signs with the spins s;} and s;;,
respectively. Now consider the summation over a particular spin variable s+ for
a magnetic spin on a verticéal bond. We may write
exp {Ks+(s}+3) + Lst} = fexp {Gssd + Ly, sy + Ly 59},

st=x%1
where the equivalent (undecorated) interaction parameter ¢ is defined by

cosh (2K + L) cosh (2K — L)

exp4G(K,L) = cosh? T (5)
the new magnetic parameter by
exp 4Ly, (K, L) = cosh (2K + L)/cosh (2K — L) (6)
and the multiplicative factor by )
f4K,L) = 2*cosh (2K + L) cosh (2K — L) cosh? L. (7)

Precisely similar relations hold for a magnetic spin on a horizontal bond except that
the corresponding new magnetic parameter Ly is identically equal to — L; (change
L to —L in (5), (6) and (7)). Consequently, when the summations over all the
magnetic spin variables are performed, the magnetic contributions L, and L at
each non-magnetic vertex cancel identically so that (4) reduces to

Z(K, L) =f* X exp {GZssf} = [f (K, L)V Q{G(K, L)}, (8)

where Q(G) is the zero-field partition function of a standard square Ising lattice of
N spins with interaction energy J* = k7T'G.. Since the magnetic field is zero this
partition function is known exactly from the work of Onsager (1944). (Onsager
denotes the interaction parameter G' by H.) The relation (8) shows that all the
thermodynamic and magnetic properties of the antiferromagnetic decorated lattice
can be derived directly from Onsager’s solution.
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3. PROPERTIES OF THE TRANSFORMATION AND THE TRANSITION CURVE

The transformation equation (5) can be regarded as mapping the antiferro-
magnetic decorated lattice at a temperature 7' ( ~ 1/K) and in a magnetic field
H (~ a = L|2K) on to the standard lattice in zero field at a modified temperature
T* (~ 1/G). Now the critical temperature of the standard Ising lattice is deter-
mined b,
Y exp 2G, = 1+4/2. (9)
Consequently, for the antiferromagnet this equation determines the transition
temperature T (at which the long-range antiferromagnetic order disappears) as
a function of magnetic field. The resulting transition curve is given by the implicit

ti
equation sinh2K¢ — (2+2~/2)é008h 2Kt05, (10)

In zero field this yields
K, = K,0) = cosh=1(1 +,/2) = 0764285, (11)
which corresponds to a critical temperature
T, = 1-30841(J [k). (12)

This is about 40 9, lower than the critical temperature of the normal square net as
is to be expected in view of the smaller effective co-ordination number of the
present model.

Equation (10), of course, may also be regarded as an equation for the ‘transition
field’, o, as a function of temperature (the transition field being the magnetic field
required to destroy the long-range order at a given temperature). At zero tempera-
ture this is equal to the  critical field’ a, = 1, or H, = 2J |y, which, as may be seen by
simple energetic arguments, is just strong enough to aline all the magnetic spins.
As the temperature is raised the transition field changes and finally falls to zero at
the critical point 7}, above which temperature no long-range ordering can occur.
The actual relation is shown by the heavy curve in figure 4. In the shaded region
below the transition curve or phase boundary,.long-range antiferromagnetic
ordering prevails with the magnetic spins on the vertical and horizontal bonds
pointing predominantly in opposite directions. Outside the transition curve the
behaviour is essentially paramagnetic.

Atlow temperatures the transition field falls away from its maximum value, o = 1,
linearly with temperature according to

o= 1—1K-1In2(1 +,/2) — O(e—*E/K). (13)

This is at variance with the work of Brooks & Domb (1951) and of Ziman (1951).
Brooks & Domb studied the normal antiferromagnetic square net by expansion
methods and exposed the general features of the transition region asdescribed above.
However, they postulated that the linear term in (13) would vanish, making the
transition curve horizontal at low temperatures. Ziman, on the other hand, used the
Bethe approximation which indicated a positive (increasing) linear term so that the
transition curve ‘bulged’ above the critical field « = 1 and 7}(H) became a double-
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valued function of H. Ziman suggested that this was merely due to the inadequacy
of the Bethe approximation and our present result confirms his view.

For small magnetic fields (higher temperatures) the transition temperature falls
slowly from its maximum value 7}, as the magnetic field is increased. From (10) we
obtain the expansion

T(H) = T, }2+2./2)7F (u2[1J) H2 + O(HY). (14)

At a = },i.e. at afield of one-quarter the critical field, the transition temperature has
only fallen by 4 %,, whilst at & = } we find 7)(})/7, = 0-8049.
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Fieure 4. The transition curve and ‘isotherms’ of reduced magnetic field a = (u/2J) H
against reduced temperature K- = (k/J) T for fixed parameter G1.

The remaining (thin) curves in figure 4 represent the complete set of ‘isotherms’
obtained by fixing the value of G in the transformation equation (5). They are
labelled by the modified temperatures, G—1, of the corresponding square lattice and
indicate how the various zero-field properties of the basic lattice are mapped on to
the temperature-magnetic field plane of the decorated lattice. For large K (low
temperatures) and near o = 1 we have the generalization of (13), namely,

o =1—1K-1ln (e — 1)+ O(K1eK), (15)
which shows that the isotherm for G—1 = 4/In 2 = 5-77077 has zero slope at low

temperatures. (The critical isotherm corresponds to G—1 = 2-26919.) In zero field
the transformation simplifies to

G = }Incosh2K, K = }cosh~'In2G, (186)

whilst for small fields and all temperatures we can obtain the expansion
K1 = Kyl—a?tanh 2K+ O(a?), (17)
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where K, is given by (16). At high temperatures (small K) and all fields the expan-
sion is

G(K,x) = K2—3K41+6a?) +32K%1 + 1502+ 15a%) +...., (18)
which shows explicitly that high temperatures always transform into high tempera-
tures. At low temperatures, on the other hand, the results depend on the magnetic
field. For zero field the relation is simply

G(K,0)=K—}In2+%e 2K+ .., (19)

whilst if 0 < || < 1 K, o) ~ K(1—|e|), (20)

indicating that low temperatures transform to low temperatures. Near |a| =1
equation (15) is valid whilst for |«| > 1 the relation is

Q(K,a) ~ }exp{—4K(|a| —1)}, (21)

so that, in this case, low temperatures on the decorated lattice transform to high
temperatures on the basic lattice. (These general features of the transformation are
evident from the curves of figure 4.)

4. ENERGY AND SPECIFIC HEAT

The configurational energy and specific heat of the antiferromagnetic lattice can
be derived in the standard way by differentiating the partition function Z(K, c).
It is convenient to define the reduced energy per vertex (i.e. per non-magnetic

spin) by UK,a)= —UINJ = N-19In Z(K,x)/oK, (22)

where U is the total configurational energy of the lattice. The reduced energy is
always positive and varies from a maximum at 7" = 0 to zero at T' = co. Through the
transformation (8) we find

UK, a) = (Gg), Z*@) +20Inf (K, )[oK, (23)

where (Gx), denotes the derivative (0G/0K), and where %*(G) is the reduced energy
of the standard square net. From Onsager (1944) we have

U*(@) = coth 2G[1 +(2tanh?2G— 1) %K(kl)], (24)

where the modulus of the complete elliptic integral K(k,) is
"k, = 2tanh 2G/cosh 2G. (25)

By use of equations (5) and (7) we could, of course, rewrite (23) as an explicit function
of K and a but the resulting formula is rather long. The main point is that (for
T > 0)both G(K, o) and f (K, ) are continuous analytic functions of both arguments
so that (Gg),, 0Inf/oK and all similar derivatives are smooth, slowly varying
functions. For example, in zero field we have

(Gr), = %m f=tanh2K (a=0). (26)
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(At zero temperature, that is in the limit K — co, simple discontinuities occur at the
critical field o« = 1. This can be seen from figure 4.) These considerations show that
the behaviour of the energy in the transition region is determined by the elliptic
integral term in (24). Thus the energy is continuous through the transition region
and for fixed magnetic field behaves as %;+ A(T —T;)In |T—T}|. In consequence
Oy, the specific heat at constant field, becomes infinite as —In |7'— 7;|. This type of
singularity is characteristic of all plane Ising lattices for which exact solutions are
known (see, for example, Houtappel 1950 and Syozi 1951). An expression for
Oy is readily derived by differentiating (23) with respect to K. The result may be
expressed directly in terms of Onsager’s formula for the specific heat C* (see
equations (31) and (32) below).

The detailed behaviour of the thermodynamic functions can be seen from figures 5
and 6 in which the energy and the specific heat are plotted as functions of the tem-
perature for various fixed magnetic fields. The specific heat anomaly is greatest in
zero field, the strength of the singularity decreasing steadily as o increases and
finally vanishing at the critical field & = 1. The position of the infinity moves to
lower temperatures as the field increases in accordance with the transition curve
discussed in the previous section. At the critical field the energy,as 7' increases, falls
slowly from the value %, = 4. In smaller fields the drop is more rapid and the
gradient becomes infinite at the appropriate transition temperature. In larger fields
the ground state (7' = 0) energy is greater than %, and the curve falls slowly as for
a = 1. The critical value of the energy (in zero field) is given by

U(T,)|%(0) = (1 +4/2)t = 0-77689,

which is slightly larger than the corresponding figure 0-70711 for the normal square
lattice. With increasing field the transition energy %(T) increases and the locus of
transition points meets the axis at

lim %(T) = U, = 4.
T—>0

At high temperatures the energy falls off as % ~ 4K (1 4 a?).

Figure 7 shows the energy as a function of the magnetic field for fixed temperature.
For fields greater than o = 1 all spins are alined with the field and the energy rapidly
becomes proportional to «. For smaller fields and below the critical temperature
there is an anomaly at the transition field H, of the form

Yyt A'(H ~H)In |H ~HJ.

The energy reaches a minimum at a slightly greater field. Figure 8 shows the con-
tours of the energy surface in the temperature-field plane. The transition curve is
marked by a dashed line and the energy contours touch this tangentially. The
dotted line represents the locus of energy minima. It can be seen that for tempera-
tures up to 7' = 1-45(J k), i.e. 11 %, higher than the critical temperature, the
energyat first decreases when the magnetic field increases from zero. This is an
indication of the residual intermediate-range order still present above the transition
temperature.
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1 l | | [
0 0-25 05 075 10 o 125 15

Ficure 7. The variation of energy with magnetic field at fixed temperature. The dashed line
is the locus of transition points.

0

Ficure 8. The contours of constant energy in the temperature-magnetic field plane. The
dashed line is the transition curve and the dotted line is the locus of energy minima (at
fixed T).
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5. MAGNETIZATION
We define the reduced magnetization per vertex by
SJ(K,a) =I|Npy=N-19InZ(K,L)[oL, (27)

where I is the total magnetization of the lattice. The saturation value of the magnet-
ization is given by .# = . = 2. The transformation equations now yield

J(K, ) = (Gr) g U*(@) +20Inf (K, L)/oL. (28)

In zero magnetic field both the derivatives (G)x and 91n f/oL vanish so that the
magnetization is identically zero (as it should be). Figure 9 shows the behaviour of

0-58579

] |

0 1 130841 2 3 Kt 4 5

Fiaure 9. The magnetization versus temperature for fixed magnetic field. The value . = 2

corresponds to saturation and the value &« = 1 corresponds to the critical magnetic
field H = H,. The dashed curve is the locus of transition points.

the magnetization as a function of temperature for fixed magnetic field. At high
temperatures the magnetization falls to zero (according to Curie’s law). As the
temperature is reduced at a small fixed field (x < 1) the magnetization rises and
reaches a maximum at a temperature well above the appropriate transition tem-
perature. With further decrease in temperature the magnetization falls sharply and
in the transition region behaves as .#,+ B(T;— T') In |T,— T'|, i.e. it is continuous and
smoothly varying through 7', although, like the energy, it has an infinite temperature
gradient at the transition point. This is at variance with the Bethe and similar
approximations according to which the magnetization should show & ‘kink’, or
discontinuous gradient at 7. The dashed curve in figure 9 represents the locus of
transition points, i.e. the curve of the transition magnetization ..#, against
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temperature. As the temperature decreases to zero the curve becomes horizontal
and intersects the axis at

lim £(T) = 2—,/2 = 0-29289.7,.
70
In the critical field H, (e« = 1) the curve of magnetization displays no maximum

(or other anomaly). However, at zero temperature it does nof approach saturation,
as might be expected. Rather, the mean magnetization at 7' = 0 and H = H, is

given by lim ST, H,) = 8— 1%*11n2) = 0-70441.7,.
70
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Ficure 10. The magnetization as a function of magnetic field at fixed temperature. The
dashed curve is the locus of transition points. The curves are labelled by the appropriate
value of the reduced temperature K.

For fields only slightly greater than H, the magnetization exhibits a point of
inflexion and increases very rapidly at low temperatures reaching saturation at
T = 0 (see figure 9). At higher fields saturation is approached more gradually.

In figure 10 the magnetization is plotted against the field at constant temperature.
Well above the critical point (K~ = 2-0 and 3-0) the curve is of standard para-
magnetic type, i.e. concave downwards. Nearer the critical temperature (e.g.
K-1 =1-5) the curve is concave upwards for small fields and exhibits a point of
inflexion. Below the critical temperature the magnetization curve rises more
sharply and at the transition field H, displays an anomaly of the form

S,+B'(H—H)ln |HB-H|.

The dashed line represents the locus of transition points. At zero temperature the
magnetization rises discontinuously to its saturation value at the critical field.
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Figure 11 is a plot of the isomomentals in the temperature-field plane. The dashed
line is the transition curve which is crossed tangentially by the isomomentals. It will
be noticed that the isomomentals are appreciably curved in the paramagnetic region
although the Bethe approximations predict that they should be straight (Ziman

1951).
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Fieure 11. The contours of constant magnetization in the temperature-magnetic field plane.
The dashed line is the transition curve.

6. SUSCEPTIBILITY

In experimental studies of the susceptibility y it is customary to plot a graph of
1/x against T' in order to effect a comparison with the Curie-Weiss law

[x ~ (T +0)].
Antiferromagnets are characterized by a minimum in this curve, i.e. a maximum in

the susceptibility y. From the theoretical viewpoint, however, the quantity 7Ty is
more significant than 1/x. Accordingly we definet a ‘specific susceptibility’ by

§(K,a) = kTy/Nu? = N-10*In Z(K, L)[oL>. (29)
If Curie’s law (x ~ 1/T') were obeyed £ would be a constant (of value 2 in the present
instance). Actually for an ideal antiferromagnet in zero field, £(7') will fall mono-
tonically as the temperature is decreased and will vanish at 7' = 0 (see figure 12).
The transformation equations now yield

§(K,2) = (Grr)x #*() + (G )k 2X(@) + 20 Inf (K, L)[0L2. (30)
where 2*(@) is essentially the speclﬁc heat of the standard square Ising net.
Explicitly o2 ou*

%G = anl nQ(Q) = F i kT*2C*|J2, (31)

so that from Onsager (1944) we have
D) = 2 coth? 2 {; K(ky) 2 B(ky) — 41~ ) [1 +H2 K(kl)]}, (32)

T Other authors have also worked directly with this quantity.
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where k] = (1—k3)} = 2tanh22G - 1. (33)

It can be seen that 2*((¥) exhibits a logarithmic singularity at the critical point.
In zero magnetic field the derivative (Gz)x vanishes so that the singular term
drops out of the expression for the specific susceptibility, which then simplifies to

£(K,0) = 2—tanh? 2K [1 4 1%*(G)]. (34)
In virtue of (23) and (26) this may also be written
£(K,0) =2—3%(K,0)tanh 2K, (35)

which shows that the specific susceptibility (in zero field) is intimately connected
with the corresponding configurational energy #(XK,0). Figure 12 shows the
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Ficure 12. The zero-field specific susceptibility §, = (k/Nu?) T'x, as a function of temperature
(solid curve). The dashed curve represents }[4— % (K, 0)], where (K, 0) is the reduced
energy in zero field. The co-ordinates of the critical points are marked on the axes.

behaviour of £(X, 0) and that of 3[4 —%(K, 0)] (dashed curve) for comparison. (It
would be interesting to have similar experimental comparisons between 7"y and the
energy or between 9y/07 and the specific heat.) Clearly, the anomaly in £ and hence
in the initial (zero-field) susceptibility x, is of the same type as that in the energy. In
other words, in the transition region we have

Nu? '
Yo~ g e~ DI ~T)In |T-T,]}, (36)

where the critical value of the susceptibility per magnetic spin is determined by
1£, = 1—-1./2 = 0-29289.

The complete behaviour of the éusceptibility is shown by the plot of K& (~ x,)
against temperature in-figure 13 (solid curve). As 7' falls from high temperatures the
susceptibility rises and reaches a maximum at a temperature of about 1-407;. Asthe

6 Vol. 254, A.
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critical temperature is approached x, drops more sharply but is smoothly varying
and continuous through the transition although oy/0T becomes infinite at 7). As
noted in the Introduction this behaviour is at variance with almost all previous
treatments of the problem.

Actually the author has shown (Fisher 19595) that the relations (35) and (36)
are special cases of a general result valid for antiferromagnetic plane Ising lattices.
More precisely, by considering the spin-spin correlation functions it can be estab-
lished that a relation of the type (35) between the specific susceptibility and the
energy always holds. In the general case, however, the factor tanh 2K is replaced
by some other, presumably more complicated, slowly varying function. For the
standard Ising lattices a similar but somewhat less explicit formula had been
obtained previously by Sykes & Fisher (1958) on the basis of combinatorial
arguments.
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Ficure 13. The temperature dependence of the zero-field susceptibility x, ~ K&, (solid curve)
and the susceptibility in a magnetic field' H = }H, (dashed curve). The critical co-
ordinates are marked on the axes.

At high temperatures the susceptibility is given by the expansion

Xo:%‘_z{1_2(%,)2+...}. (37)

The first correction term to Curie’s Law is of order 1/7'%, whereas it is normally
expected to be of order 1/T'. This difference is due directly to the ‘super-exchange
character’ of the present model, i.e. to the fact that the magnetic spins are coupled
to their neighbours indirectly via two bonds.

Although the susceptibility in zero field is finite at the transition temperature,
this is no longer true in the presence of a magnetic field. The coefficient of the singular
term 2*(@) in (30) has the expansion

(Gr)xk = a2K?tanh? 2K + O(a), (38)
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so that in a finite field the susceptibility has an infinity at the transition temperature.
Near the critical point the behaviour is given by

Nu? ’
AT H) % o e~ DI~ L) [T~ T| -D'Eln [T~ T}, (39)

which indicates that the magnitude of the singularity is proportional to the square
of the field.

The dashed curve in figure 13 shows the behaviour of the susceptibility in a field
a = }. The position of the transition and of the maximum in y have been shifted to
lower temperatures and the height of the maximum has been increased. At this
value of field the infinite peak at T)is very narrow and to a rough approximation the
transition appears rather as a discontinuity in gradient. This is reminiscent of many
older experimental measurements (see, for example, the review article by Lidiard
1954) and of the predictions of the cruder theoretical treatments. It would be out of
place to attempt a detailed comparison of the present model with experiment
because of the obvious limitations of the dimensionality and the assumed Ising
interaction. It is worth while, however, to point out that recent experiments on
antiferromagnetic salts (for example, those by Lasheen ef al. 1958 on MnCl,.4H,0
and by Cooke ¢t al. 1959, on K, Ir Cl;) bear out the general behaviour shown in
figure 13. Thus it is found that the maximum in y occurs above the transition point
(Neél temperature) which in turn is characterized by an exceedingly sharp drop in
x coincident with the specific heat anomaly. Furthermore, differential measurements
of y in a finite field clearly indicate a lowered transition temperature, an increased
height and lower temperature for the maximum and a quadratic dependence on the
magnetic field. So far measurements in a finite field have been too coarsely spaced to
reveal the possible existence of a small peak in y at the transition temperature. It
would be interesting to have more detailed experiments.

7. CONCLUSIONS AND GENERALIZATIONS

We have studied the exact behaviour of the thermodynamic and magnetic
functions of a particular two-dimensional model of an antiferromagnet in an
arbitrary magnetic field. The corresponding long-range and short-range order or
spin pair correlations may also be evaluated and this is done in part IT of the present
paper.

The model investigated is only one of a number of similar exactly soluble anti-
ferromagnetic lattices. A simple generalization is the introduction of second-
neighbour interactions between the non-magnetic vertex spins of the model. This
leads to a series of models which display a variety of interesting features. Further-
more, all these lattices can still be solved exactly if the magnetic spins have an
arbitrary magnitude S. Other models can be found in which coupling between
the magnetic spins in one lattice direction is direct (rather than indirect as is the

1 The maximum in the case of MnCl,.4H,0 occurs only about 5%, above T, as against
40 9% on our model. Comparison with series expansions for the three-dimensional Ising model
suggests that this difference is essentially due to the lower dimensionality of the model. Most
critical phenomena appear to set in more sharply in three dimensions than in two.

6-2
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‘super-exchange’ coupling of the present model). The author hopes to discuss some
of these models in the future.

Itis clear that similar models could be constructed in three dimensions. Thus if the
simple cubic Ising lattice could be solved in zero magnetic field one would have a
three-dimensional model of an antiferromagnet soluble in an arbitrary magnetic
field. Asintwo dimensions the behaviour of the initial susceptibility in the transition
region would match the anomaly in the energy. The approximate work that has
been performed on the simple cubic lattice (by extrapolating precise series expan-
sions (see, for example, Wakefield 1951)) does enable us to conclude, for example,
that the susceptibility would show the same general features as in figure 13. The
exact nature of the anomalies, however, cannot at present be predicted.

As is well known (see, for example, Newell & Montroll 1953) the standard Ising
model of antiferromagnetism is equivalent to the order-disorder problem for a binary
alloy and to a lattice gas with repulsive interactions. (The latter model has been
studied recently by Burley 1959 and by Temperley 1959.) The restriction to zero
magnetic field (and hence zero magnetization) corresponds for these models to
stoichiometric composition (N, = Np) and fixed density (p = 4pmax.), respectively.
This restriction is removed by the present model but the ‘super-exchange’ coupling
leads to an additional temperature-dependent four-body interaction which is rather
artificial. None the less, certain predictions may be of general significance.

The present model and its generalizations should be useful for testing the pre-
dictions of approximate methods in a finite magnetic field. Hitherto this has only
been possible for zero field.

Finally, we consider how far the properties of the ‘super-exchange’ antiferro-
magnetic lattices will be representative of the properties of the standard antiferro-
magnetic Ising lattices. This question cannot, at present, be answered with complete
rigour, but it seems probable that in all essential features the models will agree. Thus
in zero field the anomalies in the thermodynamic functions, and also (as will be
shown in part II) in the long-range order and in the correlations, are certainly the
same as displayed by the standard plane lattices. Furthermore, as mentioned above,
one can show (Fisher 19590) that the anomalies in the initial susceptibilities also
agree. This implies that the magnetizations, at least in small fields, behave in the
same way which, in turn, indicates that the susceptibilities in a magnetic field will
exhibit similar singularities. Indeed, it emerges generally from the study of co-
operative phenomena (see, for example, Domb & Sykes 1956 and Rushbrooke &
Wood 1958) that for a given type of interaction the nature of the transition anomalies
depends primarily on the dimensionality of the lattice and there seems little reason
to suppose this is not also true.in a magnetic field.

The author is grateful to Professor C. Domb and to Dr M. F. Sykes for. their
comments on the manuseript and for stimulating discussions.
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