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Abstract: Vortices in superconductors are defined by two characteristic length scales,
the penetration depth and the coherence length. In this chapter, we address the case
where the penetration depth is much larger than the size of the superconducting sam-
ples and for which there is almost no screening of the magnetic field. In this limit, the
image of vortices as bundles of flux is no longer correct and the confinement effects are
governed by the coherence length, which corresponds to the size of the vortex core
in which the order parameter vanishes. We thus address the problem of the vortex
phases in strongly confined superconductors where the lateral size is a few times the
coherence length. The natural probe at this scale is scanning tunneling microscopy/
spectroscopy which have allowed us – since the pioneering work of Hess et al. – to
visualize both the vortex core and the supercurrent density at the nanometer scale.
Using a combined experimental and theoretical approach we show that the vortex
phases are governed by the competition between the loss of condensation energy in
the vortex core and the kinetic energy of the vortex and Meissner currents. In a first
part we describe some extreme confinement effects observed recently in nanoscale
two-dimensional superconductors. We start with the case of a system so small that
it can only accept a single vortex. Then we discuss some recent scanning tunnel-
ing spectroscopy experiments that revealed novel ultradense arrangements of single
Abrikosov vortices characterized by an intervortex distance up to 3 times shorter than
the bulk critical one. At yet stronger confinement, we show that giant vortices, corre-
sponding to the merging of several vortices into a single one, are indeed observed and
their structure is discussed. In a second part, we demonstrate that vortices also exist
inside Josephson junctions formed by two neighboring superconductors coupled by
a metallic link. We discuss the analogy and difference between the recently observed
Josephson proximity vortices and the usual Abrikosov vortices.

3.1 Introduction: Vortices in strongly confined superconductors

Confinement effects occur as soon as one of the dimensions of a superconducting sam-
ple becomes comparable to one of its characteristic length scales, ξ and λ. The pur-
pose of this chapter is to explore the vortex confinement in superconducting islands
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with lateral dimension D comparable to the coherence length, ξ ∼ D, for which the
magnetic penetration depth is much greater than the lateral dimension λ ≫ D. In this
limit, we will show that the well-forged image of vortices as magnetic flux tubes is
totally irrelevant. Paradoxically, this makes the understanding of confinement phe-
nomena easier because we can completely neglect the spatial variation of the mag-
netic field induced by the circulation of supercurrents. To understand the limits that
wewill explore onemust first recall some basic notions of bulk superconductors using
the Ginzburg–Landau approach [25]. We will show how low dimensionality, in thick-
ness or in lateral dimension, induces new behaviors that are difficult to grasp with the
bulk superconductor concepts. Once equipped with the right tools, we will address
some issues that naturally come tomindwhenone looks at the confined vortices:what
will happen when the size of a superconductor becomes comparable or even smaller
than one (or two!) of its characteristic lengths?Whichproperties of bulk superconduc-
tors remain in strong confinement regime? Which new phenomena appear? Heading
towards the nanoscale we will witness the emergence of new behaviors.

In this chapter, we will describe the mechanisms at work for vortex interaction
and confinement phenomena in nanosystems. The most important message we in-
tend to convey is that nanosuperconductors are within a limit where minimizing the
kinetic energy of the currents in the system plays a fundamental role in the organi-
zation of vortices. In particular, the competition between the Meissner currents, gen-
erated by the magnetic field, and the vortex currents results in oscillatory behaviors
that bear some similarities with the Little–Parks effect of the critical temperature as
a function of the magnetic field in superconducting rings [38]. In 1965, D. Saint James
[51] calculated that the critical field of a superconducting cylinder should be strongly
modulated as a function of its diameter when it reaches dimensions comparable with
a few ξ . In the same vein, in 1966 Fink & Presson [22, 23] calculated that the free
energy of a nanocylinder should be modulated by the magnetic field due to partial
compensation between Meissner currents and vortex currents. More recently, the ex-
ploration of Ginzburg–Landau equations in different geometries motivated by exper-
imental work on mesoscopic superconductors [10, 24, 39] showed that particular vor-
tex configurations, that do not exist in volume, could be favored by size or geometry
effects [8, 20, 53]. For instance, confinement could in principle stabilize some fivefold
vortex configurations which in principle cannot exist in bulk superconductors (Fig-
ure 3.1a). More surprisingly, it was predicted that stable vortex-antivortex configura-
tions could be stabilized in some triangular-shaped samples [13]. This prediction was
recently confirmed by Bogoliubov-de Gennes calculations for square shaped samples
[63]. Finally, one of the main challenges in the study of vortex confinement came from
the prediction of the existence of giant vortices [8, 20, 22, 23, 40, 52, 53]. Numerical
simulations predicted that, in the extreme confinement regime, several vortices could
merge, forming giant vortices characterized by a 4π, 6π, 8π . . . winding of the phase
instead of 2π for Abrikosov vortices (Figure 3.1b).
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Fig. 3.1: (a) Ginzburg–Landau simulation of vortex confinement in disks of radius R = 4ξ [53]. A pen-
tagonal configuration is stabilized, while in volume such a configuration is excluded. (b) Ginzburg–
Landau calculations of the magnetic field distribution for a square sample [8]. Depending on the
field the system is in a configuration with a vorticity L = 2 for H/Hc2 = 0.42 (a), H/Hc2 =0.52 (b), and
H/Hc2 = 0.62 (c). The system is in a configuration with a vorticity L = 3 for H/Hc2 = 0.62 (d),
H/Hc2 = 0.72 (e), H/Hc2 = 0.82 (f). For a given vorticity the system changes from a multivortex to
a giant vortex configuration. Between (a) and (b) and between (d) and (e) one can observe how the
vortices move closer to each other under the effect of the pressure of the Meissner currents when
the field increases.

In addition to vortices in superconductors, one might also look for vortices in nor-
mal metals! As strange as it seems, proximity Josephson vortices living in the normal
part of superconducting-normal-superconducting junctions (S–N–S) were recently
predicted by Cuevas&Bergeret [9, 17]. The existence of Josephson vortices has been
proposed since the 1960s to explain the critical current modulations of large Joseph-
son junctions in a magnetic field [14, 61], but these vortices were supposed to have
no core, at least in the S–I–S Josephson junction. Bergeret &Cuevas predicted that in
fact in large S–N–S junctions, Josephson vortices could be very similar to Abrikosov
vortices with a normal core surrounded by a minigap. This new type of object could
be of great interest for the realization of highly integrated quantum electronics de-
vices. Indeed, if instead of normal metals one exploited topological insulator surface
states for the normal link of S–N–S junctions, then proximity vortices could exhibit
Majorana bound states which are key ingredients for quantum computing.

In this chapter, we will explore a wide range of vortex confinement starting from
the extreme case of an island that can accept only one vortex in which the effects of
a supercurrent on the phase diagram are obvious. Then we will address the case of
slightly larger systems that can accept several vortices but where strong confinement
effects are still present. We will show that under certain strong confinement condi-
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tions several vortices can be pushed to merge so as to form giant vortex states. Then
we will describe some recent experiments on the generation of proximity vortices in
nanoscale S–N–S Josephson junctions.

3.2 Theoretical approach of vortices confined in systems much
smaller than the penetration depth

3.2.1 Characteristic length scales

In samples with characteristic dimensions D much smaller than the London penetra-
tion depth D ≪ λL (see Figure 3.2) the magnetic field almost completely penetrates
the sample and is substantially equal to the applied field in the absence of the sam-
ple. To get an idea of the orders of magnitude, consider a thin plate of thickness a
placed in a magnetic field μ0H0 parallel to the surface of the plate. When the thick-
ness of the plate is much smaller than the penetration depth, a ≪ λL, the expression
of the field at the center is B (z = 0) ≈ μ0H0 [1 − (a/2λL)2]. Thus, for a thin plate with
a = 0.1λL, the magnetic field in the center is B = 0.9975μ0H0, i.e., only 0.25% less
than the applied field. In the following, we will therefore overlook the field induced
by the currents flowing in the samples and only consider the applied field (see Fig-
ure 3.2). Another major consequence is that the energy of expulsion of the magnetic
field,whichusually plays a very important role in bulk superconductors, can be totally
neglected,whichwillmake theunderstandingof the phenomena easier. However, this
limit is quite frequently a source of misunderstanding for those accustomed with in-
tuitive images forged from the bulk case. Therefore, we will briefly present below a
theoretical development for the changes that are seen with this limit in comparison to
the usual case where the magnetic response generally cannot be overlooked.

In addition to the penetration depth, a second length scale plays a fundamental
role in superconductors; this is of course the coherence length, ξ . InGinzburg–Landau
theory it is expressed as ξGL = √ ℎ2

8m |α| . In Bardeen–Cooper–Schrieffer (BCS) theory
that length takes amore intuitive form given by ξBCS = ℎvF/π∆. This coherence length
defines the characteristic length scale over which the order parameter can vary. For
instance, the order parameter, which vanishes in the vortex center, is restored over a
typical distance ξ of its core.

The characteristic lengths λ and ξ are not intangible constants of materials but
depend on both temperature and disorder. The disorder decreases the effective value
of ξ but increases that of λ, so that any type I superconductor becomes type II when
the mean free path of electrons is sufficiently affected by the disorder. In the diffusive
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Fig. 3.2: Schematic picture highlighting the difference between a superconducting disk with diam-
eter D > λ in which the magnetic field is screened on the edge by Meissner currents and in which
Abrikosov vortices behaves like flux bundles. The flux lines in blue show that the magnetic field is
strongly affected by the response of the sample. In the opposite limit, for samples much smaller
than the penetration depth D ≪ λ, the flux lines are not affected by the response of the sample that
is completely negligible, and the magnetic field is practically equal to the applied magnetic field. In
this limit, the vortices can no longer be considered to be flux bundles.

limit, that is to say when l ≪ ξ0, the effective lengths are given by [19]:

ξ (T, l) ≈ 0.85√lξ0 (T)
λ (T, l) ≈ 0.64λ0√ ξ0 (T)

l

Where ξ0 and λ0 are the coherence and penetration length in the absence of disor-
der. Note that even in the absence of disorder, type I superconductors become type II
in sufficiently thin layers. Indeed, within the limit of a thin sample h ≪ λ, the effective
penetration length l can increase dramatically. The London length must be replaced
by the Pearl length Λ [47]:

Λ (T, l) ≈ λ2 (T, l)
h

Superconducting films of a few nanometers thickness are thus in the Pearl limit
because λ is generally of the order of a few hundred nanometers. Specifically, for the
samples studied below , the Pearl length Λ reaches several tens of microns, while the
lateral dimensions of the systems are of the order of a few hundred nanometers. The
limit D ≪ Λ is thus extremely well justified.

3.2.2 Vortex states in small superconductors

In type II superconductors, at thermodynamic equilibrium, vortices enter the sample
beyond the first critical field Hc1. The number of vortices increases with the magnetic
field until the second critical field Hc2 = ϕ0

2πμ0ξ2 where a normal state is reachedwithin
the sample because the vortex cores overlap. In 1963, St. James and de Gennes [50]
showed that the superconducting state could exist beyond Hc2 near an interface with

Unauthenticated
Download Date | 10/10/17 9:41 AM



98 | 3 STM studies of vortex cores in strongly confined nanoscale superconductors

Fig. 3.3: Left: Vortices in a bulk type II superconductor with a diameter D ≫ λ. For a low density of
vortices there exists a region on the edge of the sample where the field is screened over a distance λ
from the edge and from the vortices. In this region it is possible to find a contour (dashed line) over
which the supercurrent velocity cancels. The flux of the magnetic field inside this contour is nΦ0,
where n is the number of vortices within the contour. Right: a bulk superconductor in a magnetic
field H such as Hc2 < H < Hc3. In the inner sample vortices overlap and form a normal state region
(in blue) while superconductivity is still present on the edge over a rim of thickness ξ (in gray).

an insulating medium to a third critical field Hc3 = 1, 695Hc2. This surface supercon-
ductivity extends over a thickness of the order of ξ at the edge of the sample as shown
in Figure 3.3. Similar phenomena appear in confined superconductors, but the critical
fields involved are different. In particular, the first critical field μ0Hc1 = ϕ0

4πλ2 ln (λ/ξ)
clearly implies the penetration depth: if we neglect the logarithmic term we see that
the first critical field is the one that generates a flux quantum in a disk of diameter 2λ.
In a sample with diameter D ≪ λ such a critical field has hardly anymeaning; the first
critical field, that is to say the field at which the first vortex penetrates, will be directly
dictated by the diameter of the sample rather than λ. The second critical field, mean-
while, will be difficult to define in samples of diameter D ∼ ξ because at this level
there are no clear differences between bulk superconductivity and surface supercon-
ductivity. However the Hc3 terminal field, where the entire sample becomes normal,
remains well defined experimentally, its value will be modulated by the sample size
and will greatly deviate from the values obtained in volume.

The generally widespread image of an isolated vortex in a superconductor is that
of a tube of magnetic field carrying a flux quantum ϕ0 (Figure 3.3). An isolated vor-
tex acts like a current swirl around a normal core with supercurrents decreasing as
j ∝ 1

r Exp (−r/λ) for r ≫ ξ . This naive picture in terms of the flux bundle is causing
much confusion in the interpretation of confinement phenomena in superconducting
nanosystems. For a better understanding of the phenomena associated with confined
vortices it is best to return to the most basic possible definition of a vortex. Quantum
condensates, whether Bose–Einstein condensates of cold atoms or superfluid helium,
admit all vortices when the condensates are put in rotation. In these neutral conden-
sates, vortices are defined as singularities in the phase field of the order parameter. As
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the wave function has to be single-valued, the circulation of the gradient of the phase
around a vortex must be amultiple of 2π. In the case of an Abrikosov vortex the phase
turns by 2π around the vortex core; we deduce that, very close to the core, the phase
gradient is 󵄨󵄨󵄨󵄨∇φ (r)󵄨󵄨󵄨󵄨 = 1/r. This 1/r dependence indeed appears in the formula for the
current flowing around the vortex in bulk samples j ∝ 1

r Exp (−r/λ), however there is
an additional dependence Exp (−r/λ) which comes from the fact that the vortex cur-
rents generate a magnetic screening field which decays exponentially over a distance
λ. These two contributions are better seen in the general expression for the current
1
4m

󵄨󵄨󵄨󵄨󵄨( ℎ
i ∇ − 2eA (r))ψ (r)󵄨󵄨󵄨󵄨󵄨2 where the term 1/r comes from the phase gradient, while

the screening term in Exp (−r/λ) is due to the magnetic field generated by the vortex
currents and is expressed by the vector potential term. In confined superconductors
with D ≪ λ diameter, it is clear that the exponential dependence will be negligible.
This is simply due to the fact that the samples are not large enough for vortex cur-
rents to generate a magnetic flux equal to ϕ0. Given the size of the samples for which
confinement effects occur, we can consider that the circulating vortex currents do not
alter the applied magnetic field, as seen in the Meissner phase (Figure 3.2). This lack
of effective screening leads us to consider that the structure of vortices in strongly
confined superconductors resembles that of vortices in neutral condensates, such as
superfluid helium or Bose and Fermi condensates of cold atoms, which are associated
with no flux quantum but instead with a singularity in the phase field [1, 62, 64].

3.2.3 Fluxoid

If we consider an isolated vortex in a superconducting disk of diameter D ≪ λ in the
absence of an applied magnetic field (Figure 3.4d), as might be the case for a vortex
pinned on a defect, we find an interesting situation which may seem disconcerting at
first glance. Indeed, as the diameter of the sample is much lower than the penetration
depth, themagnetic field generated by the vortex currents is clearly insufficient to gen-
erate a flux quantum, or the commonly accepted vision of a vortex as a quantized flux
tube. . . To understand the essence of the problemwemust now introduce the concept
of fluxoid, whichwillmake the usual association of a vortex to a flux quantum clearer.
A good comprehension of this point is essential to understanding the mechanisms at
work in nanosuperconductors.

Themagnetic field flux ΦS through a surface S is directly linked to the circulation
of the vector potential on a contour δS:

ΦS = �
S

B ⋅ d2S = �
S

[∇ × A (r)] ⋅ d2S = ∮
∂S

A (r) ⋅ dl
Using the expression of the supercurrent which connects the superfluid velocity,

thegradient of thephaseand thevector potential: j (r) = e
m

󵄨󵄨󵄨󵄨ψ (r)󵄨󵄨󵄨󵄨2 [ℎ∇φ (r) − 2eA (r)] =
2enSvS, there is a relationship between the flux of themagnetic field, the supercurrent
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density vector and the phase gradient:

L = 1
2π ∮

δS

∇φ (r) ⋅ dl = ΦS/Φ0 − 2m
h ∮

δS

vS (r) ⋅ dl
This relationship defines the fluxoid L, also called the winding number of the

phase. The phase should rotate by amultiple of 2π over the closed contour δS so as to
keep the order parameter single-valued. Thus, the fluxoid Lmust necessarily be an in-
teger. In the case of an isolated vortex in a bulk sample we can find a contour around
which the current is canceled. This requires taking a contour passing at a distance
much greater than λ of the vortex (Figure 3.3). Here, the current is canceled and the
circulation of the superfluid velocity is zero. For an Abrikosov vortex, the phase ro-
tates by 2π, i.e., the fluxoid is L = 1. We conclude that the magnetic field flux through
the surface S surrounding the vortex is equal to a flux quantum: ΦS = Φ0. From this
comes the usual image of the vortex as amagnetic tube carrying a flux quantum. If we
now return to the case of a vortex confined in zero field in a sample of diameter D ≪ λ
(Figure 3.4), we see immediately that the previous arguments no longer apply. This
is because the circulation of the superfluid velocity does not vanish for any contour
within the sample; in this casewe cannot directly link themagnetic flux to the fluxoid.
Thus, we can have an interesting case where the magnetic flux through the sample is
almost zero (D ≪ λ) while the fluxoid is L = 1. The fluxoid in this case comes from
the circulation of the superfluid velocity L ≈ − 2m

h ∮δS vS (r) ⋅ dl. For a hint of what
is happening here, one can consider a circle of radius r for the δS circuit. It follows
that mvsr = Lℎ, which is none other than the quantization of angular momentum:
a vortex of vorticity L confined in a nanodisk behaves like a 2D artificial atom with a
wave function of angular momentum L. As we know from atomic physics the radial
part of the wave function is directly related to the angular momentum; in the case of a
vortex the consequence of this simple picture is that for a vortex or a giant vortex with
L = 1, 2, 3. . . , the radial dependence of the order parameter close to the core is rL as
will be shown later.

3.2.4 Zero-current line: Meissner versus vortex currents

Aswe can see, there is noneed to have a quantumof flux in the system tohave a vortex.
However, in many situations, the notion of a flux quantum can be useful, even in the
limit D ≪ λ. This is particularly the case for a vortex in a cylinder in the presence of a
magnetic field as described on Figure 3.4d. This figure describes the typical casewhere
the Meissner currents induced by the magnetic field exceed the vortex currents at the
edge of the cylinder. In a cylinder subjected to a perpendicular field B, the supercur-
rent velocity is given by vθ = e

2mr (ϕ0 − πr2B). For πr2B < ϕ0, the current rotates in
the clockwise direction as the vortex currents are dominant, while for πr2B > ϕ0 the
current rotates in the opposite direction because the Meissner currents are dominant.
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The velocity changes its sign when the flux πr2B is becomes equal to the flux quan-
tum ϕ0. The explanation is simple, there is a zero-current line located at r = √ϕ0/πB
where Meissner currents and vortex currents compensate perfectly. Applying the flux-
oid formula on the zero-current contour we find L = ϕ/ϕ0. Thus, for a vortex with a
quantum of fluxoid there is exactly one flux quantum within the zero-current line. By
contrast, the total flux of the field through the island ϕtotal = πD2B will be greater
than a flux quantum and has no reason to be quantified except for some accidental
values of B.

3.2.5 Kinetic energy balance: Meissner state

The competitionbetweenMeissner currents andvortex currents plays anessential role
in the energy balance of the vortex configurations. In superconductors with D ≪ λ
the penetration of vortices aims primarily at minimizing the total kinetic energy of
the currents. For simplicity consider a disk as shown in Figure 3.4. In the absence of
the vortex, only Meissner screening currents circulatewith the following dependence:
j (r) = − e2

m nsBr. As j ∝ B, the currents increase linearly with the applied magnetic
field; it follows a quadratic increase in the total kinetic energy (Figures 3.4a and 3.5e).
Beyond a certain field the kinetic energy could exceed the condensation energy and
theMeissner state become less stable than the normal state. However, before this hap-
pens, when the field induces currents near the critical current, the superfluid density
begins to collapse and the gap closes when the system reaches the normal state as
shown in Figures 3.4b and 3.5a. It is clearly seen in Figure 3.5e, in the case L = 0,
that the kinetic energy begins to grow quadratically before falling and tending to 0
when the superfluid density collapses. This evolution is clearlymanifested on the con-
densation energy (see Figure 3.5f), which is directly related to the superfluid density.
At low field the condensation energy is practically unaffected, the superfluid density
is almost the same as in zero field, while in a strong field the condensation energy
tends to 0 as the gap closes. The sample thus eventually reaches the normal state
when the total energy of the superconducting state reaches that of the normal state
∆E = Esupra − Enormal = 0 (case L = 0 in Figure 3.5g).

3.2.6 Kinetic energy balance: Vortex state

When the field is increased, rather than switching from Meissner to normal state the
system can accept one or several vortices, as shown on Figure 3.5b–d. The vortex cur-
rents partially compensate the Meissner current so as to minimize the total kinetic
energy. The more the field increases the more the system accepts vortices until finally
the normal state is reached.
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Fig. 3.4: (a) A disk in Meissner state in a small magnetic field. The current increases linearly with
radius up to the edges, the order parameter is almost constant everywhere. (b) Meissner state close
to the critical field: the currents flowing on the edge reach the critical velocity which reduces the
order parameter and therefore the current density. (c) To minimize the effect of currents and remain
superconducting beyond the critical field of the Meissner phase, the system accepts a vortex whose
currents partially compensate Meissner currents. A line of zero current is formed in the disk; the flux
of the magnetic field across the region bounded by the zero-current line is equal to a flux quantum.
(d) A pinned vortex at zero field, no zero-current line present in the disk, the total magnetic flux
through the sample is much less than a quantum of flux.
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Fig. 3.5: (a–d) Modulus of the order parameter as a function of radius for a superconducting disk
(R = 60 nm and ξ = 25 nm) as a function of the applied magnetic field for a vorticity L = 0 (a),
L = 1 (b), L = 2 (c) and L = 3 (d). (e) Kinetic energy as a function of magnetic field to L = 0−3, the
corresponding condensation energy is shown in (f), and the total free energy in (g).

As shown in Figure 3.5g, beyond a certain magnetic field, solutions with vortices
becomemore stable than the Meissner state. The case of a single vortex is particularly
enlightening for illustrating the delicate relationship between Meissner and vortex
currents. But before analyzing the effect of currents, let us first recall the structure
of an Abrikosov vortex core. Figure 3.5b shows that the order parameter linearly can-
cels in the vortex core: 󵄨󵄨󵄨󵄨ψ (r)󵄨󵄨󵄨󵄨 ∝ r. The vanishing of the order parameter in the vortex
core induces a loss of condensation energy. In a macroscopic sample the cost of a vor-
tex core is μ = πξ2 hϵcond = πξ2 hN (0) ∆2/2, where h is the sample thickness and
ϵcond = N (0) ∆2/2 is the condensation energy per volume unit. This shows that the
core can be seen as a thick tube of height h and radius ξ in which the energy of con-
densation is zero. This image, though simple, is very useful in practice to estimate
orders of magnitude.

To understand themechanisms that govern the penetration of vortices in confined
superconductors onemust examine in detail the dependence of the kinetic energy and
condensation energy as a function of applied magnetic field for different vortex con-
figurations. For the case of a single vortex with L = 1, located at the sample center,
the kinetic energy has twomaximaand a localminimum, as shown in Figure 3.5e. This
shape with two humps illustrates the mechanisms involved, as we now describe. The
local minimum is due to the partial compensation between the vortex and Meissner
currents (see Figure 3.4c). Themaximumobserved at a strongfield is of the sameorigin
as the peak observed for L = 0. There is an excess ofMeissner current at the edge of the
island that induces the destruction of the order parameter beyond a certain field, so
there is an optimum between the increase of the superfluid velocity and the reduction
of the order parameter. The destructive effect of the order parameter by Meissner cur-
rents can be seen on the profile of 󵄨󵄨󵄨󵄨ψ󵄨󵄨󵄨󵄨which decreases close to the edge (gray curve for
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B = 0.6 T in Figure 3.5b). The first maximum is due to the vortex contribution and is
also very well seen on the profile of 󵄨󵄨󵄨󵄨ψ󵄨󵄨󵄨󵄨 near r = 0 (black curve B = 0 T in Figure 3.5b).
It is clear that the order parameter near the vortex core ismore strongly affected at zero
field than at higher fields (dashed black curve B = 0.4 T and gray curve B = 0.6 T).
This is because the vortex currents, not compensated by the Meissner currents, cause
a marked decrease of the order parameter.

3.2.7 Kinetic energy balance: Giant vortex state

In the case L = 2 and L = 3 we see that no vortex state can be stabilized at zero-field.
This comes from the intensity of the vortex currents: the superfluid velocity is given by
vθ = hL

2mr in zero field, thus the kinetic energy of an isolated vortex increases quadrat-
ically with L (if 󵄨󵄨󵄨󵄨ψ󵄨󵄨󵄨󵄨 constant). This kinetic energy goes hand in hand with a significant
loss of condensation energy due to the fact that the vortex core radial dependence of
the wave function changes dramatically with L : 󵄨󵄨󵄨󵄨ψ (r)󵄨󵄨󵄨󵄨 ∝ rL. The rL dependence was
predicted by D. St. James [52], it is clearly seen in Figure 3.5b–d.

In these Ginzburg–Landau calculations we looked for solutions with cylindrical
symmetry, but for L = 2 and L = 3 we could find a solution in the form of two or
three Abrikosov vortices with each L = 1 confined in the sample. This can be done by
using more advanced calculations such as time-dependent Ginzburg–Landau equa-
tions. However, for the choice of parameters of Figure 3.5we should still stabilize giant
vortices. Understanding why a double vortex ismore stable than two single vortices in
this case is not easy. In the followingwegive someclues tounderstandwhat could lead
several vortices tomerge into a giant vortex. When a current flows in a superconductor
the quasiparticle energy is modified by the Doppler effect: Ek = √ϵ2k + ∆2 +ℎk ⋅vs [19],
which provokes a widening of the gap. In practice this Doppler broadening effect is
used for measuring the local superfluid velocity in tunneling experiments [7, 35]. As󵄨󵄨󵄨󵄨k󵄨󵄨󵄨󵄨 ≃ kF, we see that if a quasiparticle of momentum k circulates in the opposite direc-
tion to the supercurrent its energy is decreased. Its energy can even becomenegative if
the superfluid velocity vs becomesgreater than the critical value vd = ∆/kF; thismeans
that the Cooper pairs becomes energetically unfavorable beyond a certain critical de-
pairing current. Note that at a distance ξ from a vortex core the superfluid velocity is
given by vs = ℎ

2mξ = π∆
2kF = π

2 vd. Thus, it is understandable that the gap starts to close
at a distance of the order of ξ the vortex core because the supercurrent exceeds the
critical velocity. If one now considers a giant vortex with L > 1, the superfluid velocity
being proportional to L, vs (r) = ℎL

2mr , the critical velocity is reached at a distance of
about Lξ of a giant vortex. Thus, it is expected that these objects appear as normal
tubes of radius Lξ and area L2πξ2 instead of πξ2 for an Abrikosov vortex. The cost in
terms of condensation energy is in L2 while the cost of L single vortices is just in L.
A double vortex costs twice as much condensation energy as two single vortices, so
multivortex configurations are more stable than giant vortices in large samples. How-
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ever, in a strongly confined superconductor, the generation of two separated vortices
has a significant additional kinetic energy cost. Having two separated vortices in a
disk indeed means that the Meissner currents flowing near the edges will be strongly
affected by the presence of these vortices. Some current lines will be trapped between
the sample edge and the vortices, as if they were circulating in a constriction. The cur-
rent conservation requires that the speed of the superfluid in the constriction becomes
very high, causing a high cost (quadratic) in kinetic energy. It is as if the Meissner cur-
rents exerted a pressure on the vortices that forces them to go towards the center of
the sample. These forces can become so strong that the vortices eventually merge into
a giant vortex. In the following, we give some direct illustrations of this pressure effect
by showing experiments where the Meissner currents provoke a strong confinement
effect which, in some cases, will lead to the formation of giant vortex states.

3.3 STM/STS studies of vortices in nanosystems

3.3.1 Vortex core imaging by STM/STS

Vortices in superconductors are not only magnetic objects – flux bundles – but rather
have a lot in common with the vortices observed in neutral condensate such as su-
perfluid helium. It is therefore necessary to have a probe that allows investigating the
vortex which doesn’t rely directly on the magnetic field they produce. In fact, it is pos-
sible to do vortex imaging by probing the electronic structure in their cores. Caroli,
Matricon and de Gennes indeed showed that the vortices behave like potential wells
in which quasiparticles of energy located in the gap ∆ are confined within a length
scale of the order of the coherence length [11]. The first observation of the vortex cores
wasperformedbyHess et al. in 1989, using scanning tunneling spectroscopy [29]. They
showed that vortex cores in 2H-NbSe2 are manifested by a peak in the local density of
states (LDOS) around the Fermi level as predicted by Caroli, Matricon and de Gennes.
In the case of superconductors in diffusive limit (mean free path l much shorter than
ξ ), the conductance peak in the vortex cores disappears and instead a simple normal
state is recovered as shown by Renner et al. in 2H-NbSe2 doped with tantalum [48].
The superconducting nanostructures elaborated for confinement studies are in the
dirty limit (or diffusive limit) thus their vortex cores will be characterized by a normal
state signature [15, 16, 43, 56].

There are several ways to address the problem of vortex confinement in nanoscale
superconductors by scanning tunneling spectroscopy that can rely either on ex situ
fabricated nanodevices or on in situ self-organized grown nanostructures. In all cases
some important constraints have to be fulfilled. First, one must use a semiconductor
substrate with a forbidden electronic band. Indeed, a metallic substrate in contact
with the superconducting nanoislands would alter or even destroy superconductivity
by the inverse proximity effect. However, tunneling microscopy requires conductive
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substrates in the voltage range used for the tunneling spectroscopy, that is to say, a
few millivolts. Unfortunately, at low temperature, the semiconductors are generally
insulators for such voltage windows. The solution to this problem is to use substrates
that are insulating in volume but which present ametallic surface state that allows for
the evacuation of the current to external macroscopic electrodes.

3.3.2 STM studies on ex situ nanolithographed samples

Using nanostructured samples elaborated ex situ by electronic lithography is quite
interesting if one wants to probe samples with regular shapes: disks, squares, tri-
angles. . . with well-defined lateral size and thickness. Such a route is appropriate
for checking some predictions like the coexistence of vortex and antivortex induced
by confinement in particular geometries for instance [13, 63]. The problem with this
method is that ex situ prepared samples generally have a very bad surface quality that
strongly alters the quality of the STM/STS experiments. Most of the superconducting
materials used for lithographed samples oxidize in air and thus one has to place a
capping layer to protect the surface or to use particularmaterials that are less prone to
surface contamination. Moreover, the samples prepared by nanolithography are gen-
erally not single crystalline and contain a lot of defects at the nanoscalewhich leads to
some pinning of vortices. Inmany cases the vortex configurations are governed by the
local pinning more than by confinement effects. However, progress with this lithogra-
phy route is expected soon. For instance, quite recently a clever technique was devel-
oped that allows the imaging of vortex configurations in well-defined nanostructures
fabricated ex situwith the help of electronic lithography [56]. Themethod relies on su-
perconducting MoGe films that are deposited on a nanostructured SiO2 sample. The
nanostructures are defined byunderlyingGenanostructures on top ofwhich theMoGe
is deposited as can be seen in Figure 3.6a. With this method one obtains some MoGe
squares on top of Ge mesas that are weakly coupled laterally to a conductive MoGe
film that enables scanning tunneling experiments to be done. As the samples are pre-
pared ex situ in a clean room their surface has to be protected from contamination by
a thin Au film. As can be seen in Figure 3.6b the surface is quite rough, the topography
exhibits a granularity that may behave as a pinning potential for vortices. However,
nice regular vortex configurations with threefold and fourfold symmetry can be ob-
tained that match quite well the theoretical predictions for vortex configurations in
clean samples. A shell effect is also obtained when five vortices are confined in the
square: four vortices form a square while the fifth one sits in the middle of the square.
These results are quite encouraging andwemay expect some rapid progress. However,
Timmermans et al. [56] showed that there is still someweak pinning present due to the
granular nature of the films. It seems quite unlikely that very clean samples could be
obtained by the lithography route. For very clean samples another route has to be ex-
plored that relies on in situ growth of nanostructures as described in the following.
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Fig. 3.6: Confinement of vortices in MoGe nanosquares. (a) Structure of the sample made of an
MoGe film grown on a nanopatterned sample of Ge/SiO2. The MoGe film is covered by gold in or-
der to protect it from oxidation. (b) The topography of an MoGe square shows a rough surface with a
granular structure. (c) Topography of a square and the corresponding conductance map at zero bias
in different magnetic fields showing different configurations of vortices as a function of increasing
magnetic field (up) and decreasing magnetic field (down) [56].

3.3.3 A model system for confinement studies: Pb/Si(111)

One of the most promising options for studying vortex confinement at nanoscale
relies on the self-organized growth of nanostructures that generally allows for pure
monocrystals exempt from defects and with an atomically clean surface. Among all
the possibilities the system constituted by Pb nanoislands grown on Si(111) is cer-
tainly one of the best choices. Indeed, the Pb/Si(111) system has been extensively
studied in surface science and a lot is known about the growth of Pb islands of vari-
ous lateral size and thickness. Pb growth on Si (111) follows the Stranski–Krastanov
mode, which results in the completion of a Pbwetting layer (1–2monolayers) followed
by the growth of nanoscale atomically flat Pb crystals [4, 30, 59]. For a deposition
at room temperature without annealing, the wetting layer is amorphous and has all
the characteristics of a bad metal with a low mean free path: it presents a very strong
Altshuler–Aronov Coulomb correction of the density of states at the Fermi level [5, 54].
However, the wetting layer is sufficiently conductive to drain the charges injected by
the STM, thereby allowing tunnel spectroscopy measurements to be made in good
conditions.

The choice of Pb/Si(111) has been very successful for the study of confined vor-
tices for several reasons. The first is that it is possible to obtain very flat and very pure
monocrystals, several nanometers high and several hundred nanometers wide (see
Figure 3.7). These dimensions are well suited to measurements by STM and are per-
fect to adjust the confinement effects. Indeed, by varying the growth conditions, we
managed to develop different types of islandswith adjustable thicknesses, widths and
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Fig. 3.7: Different types of islands of Pb/Si(111). (a) STM image 2.0 × 2.0 μm2 showing (111)-oriented
2D Pb islands with irregular edges and crowns obtained by depositing 5 monolayers of Pb at 290 K
with a poorly outgassed Pb source. (b) STM image 1.2 × 1.2 μm2 showing flat and faceted islands
obtained by depositing 3.5 monolayers at 260 K with a cleaner Pb source.

shapes. This allowedus to explore extremeconfinement regimes, for example a regime
where only one vortex can penetrate, or weak confinement regimes, where many vor-
tices can penetrate. Figure 3.7 shows a number of very different forms of islandswhich
we have grown by varying the growth conditions in a more or less controlled way, one
of the crucial parameters is the purity of the lead source which evolves with the num-
ber of evaporations. As shown in Figure 3.7a, it is possible to obtain flat Pb islands
oriented along the (111) direction that are elongated along the steps of the substrate
and of irregular shape (little faceted edges, crowns, holes). This type of islands were
obtained with a new source of lead or an almost empty one. The fact that the islands
are only slightly faceted indicates that the diffusion of lead has slowed, which sug-
gests the presence of impurities. With a Pb source that has been purified after many
cycles of evaporation one obtains flat and well-facetted truncated-cuboctahedral is-
lands oriented along (111) as shown in Figure 3.7b.

3.3.4 Ultimate confinement: The single vortex box

Using superconductingPb islandswith adjustable sizes grown in situ, low-temperature
STM/STS experiments on the magnetic phase diagram of the nanoislands in different
confinement regimes can be performed. To begin with wewill tackle themost extreme
case of all: an island that can accept at most one vortex (Figures 3.8 and 3.9) [16, 43].
The island shown in Figure 3.8a has a hexagonal shape with a diameter D ≈ 110nm
and a thickness h ≈ 5.5 nm, and it has a slight hollow in the center. The coherence
length in this island is ξeff ≈ 45nm, corresponding to D ≈ 2, 5ξ , which should lead
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to a strong vortex confinement. The effective London penetration depth is estimated
to be λeff ≈ 150nm which is comparable to the diameter. But, as we have seen in the
theoretical part, when the thickness is much smaller than λ, which is the case here,
the penetration depth is given by the Pearl length Λ = λ2/h. So the typical distance of
screening of the magnetic field should be Λ ≈ 4000nm, about 40 times the diameter!
Under these conditions, the magnetic field will fully penetrate the sample, and we
can consider, to a good approximation, that the magnetic field is equal to the applied
field.

The phase diagram of this island was studied in various ways to obtain the most
information possible about its response in a magnetic field. In the first method we
mapped conductance by measuring the tunnel conductance at a temperature of 4.2K
(Figure 3.8b) at any point of the island for different applied magnetic fields. This
yielded maps of the zero-bias conductance (ZBC) which reflect the supercurrent dis-
tribution in the sample in the Meissner phase (Figure 3.8d,e). As explained in the
theoretical part the supercurrents produce a Doppler effect which causes a broaden-
ing of the BCS coherence peaks at the gap edge [7, 35]. At 4.2K or T ≈ 0.65Tc, because
of the thermal broadening of 3.5 kT for the tunneling in S–I–N geometry, the Doppler
effect is manifested by an increase in conductance at zero voltage while the density of
states at the Fermi level remains zero, as long as the gapless regime is not achieved,
as seen below.

Meissner state
Themaps of Figure 3.8d,e were measured at 89mT and 178mT, in these fields no vor-
tex is present in the island and the spatial variations in the conductance are only due
to the depairing effect ofMeissner currents. At a low field of 89mT, the conductance is
only weekly affected by the supercurrents, the blue color in the figure indicates a very
low conductance similar to that in zero-field. When the field is doubled to 178mT, the
conductancemap turns red at the edge of the island indicating that the gap is strongly
affected by the Meissner currents. As shown in Figure 3.8c, the current is stronger at
the edge and vanishes at the center. However, we see that at the center of the island
the tunnel conductance is yellow-green, whichmeans that the gap is already quite af-
fected in the center of the island, while here the supercurrent is null. This effect, as
P.G. de Gennes had anticipated, is related to the fact that the local density of states in
a superconductor is sensitive to what is happening in a neighborhood of typical size ξ
around the measuring point; the coherence length is the typical distance over which
the order parameter and the superconducting state density vary. With the radius of
the island R ≈ 1, 2ξ , the center of the island is located at a distance of about ξ from
the edge and therefore the local density of states at the center is strongly affected by
the currents flowing on the edge. It is this nonlocal effect that limits the spatial resolu-
tion of the STM for imaging supercurrents. Despite this inherent limitation, it is clear
that the conductance is higher at the edge than in the center, as expected because the
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Fig. 3.8: (a) Image of a Pb island 110 nm in diameter and 5.5 nm thick at the edge. (b) Tunnel spec-
trum at zero field, measured at 4.2 K, showing the conductance at zero-bias ZBC which is used for
plotting the conductance maps (d) and (e). (c) Profile of supercurrents in the Meissner phase. (d) Im-
age of the ZBC at 89 mT, showing a slight increase in conductance along the island under the ef-
fect of supercurrents. Image (e) shows that at 178 mT the supercurrents flowing at the edge (in red)
greatly affect the superconducting gap [16].

Meissner currents are stronger at the edge of the island. In normalized units (1.0 for the
normal state) the conductance at zero voltage at the edge is about 0.5 (red) compared
with 0.25 measured at zero-field. The zero-bias conductance (ZBC) is doubled due to
the applied field andwould quickly reach that of the normal state for a slightly higher
field. As shown in Figure 3.9f, the evolution of the ZBC as a function of the field at the
edge follows a quadratic dependence that recalls the kinetic energy of supercurrents
(see Figures 3.5e–g) in the Meissner phase.

Single Vortex state
Beyond a certain magnetic field, the superfluid at the edge will exceed the critical ve-
locity thus the order parameter will collapse and the sample will pass into the normal
state or accept a vortex, if the sample is large enough. Here beyond μ0H0 = 240mT
the conductance in the center of the island is equal to that of the normal state (no
gap), this means that above H0 = 240mT a vortex core is present (see Figure 3.9a,d,f).
At field H0, where the vortex penetrates the magnetic field flux through the island is
ϕ = 1, 22ϕ0. One might naively think that the first vortex would penetrate as soon
as a flux quantum passes through the sample, or even before because, by analogy
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with the Little–Parks effect [38], one might think that the first vortex appears when
ϕ = ϕ0/2. In fact, the vortices tend to penetrate with a certain delay in nanosystems
due to the presence of a vortex core which causes a loss of condensation energy of the
order of πξ2 h∆2/2, where h is the thickness. A vortex will thus penetrate if the loss of
condensation energy is offset by the gain in kinetic energy, hence the delay.

The phase with one vortex shows a kind of re-entrant superconductivity which
manifests itself in the form of a dip in the tunnel conductance at the edge of the island
as a function of magnetic field (Figure 3.9e), with a minimum at μ0Hmin = 320mT.
This oscillation effect of the gap is also evident via the dependence of the ZBC as a
function of the field at the center of the island (Figure 3.9f). This effect is related to
the interference between the Meissner and vortex currents [16]. As we have seen in
the theoretical part, in the presence of a vortex the superfluid velocity at a distance
r from the center is given by vθ = e

2mr (ϕ0 − πr2B), where the vortex contribution in
1/r partially compensates the Meissner currents which are proportional to r. When
the vortex enters the sample, the magnetic field flux is ϕ = 1, 22ϕ0. As this is more
than a flux quantum, there should be a zero-current line inside the sample through
which passes just a flux quantum (see Figure 3.4c). Assuming a cylindrical geometry
it is found that the zero-current line lies on a circle of diameter D0 = 100nm, a little
smaller than the diameter D = 110nm of the island. Thus, the zero current line is
very close to the edge. At a field μ0Hmin = 320mT (see Figure 3.9f) the zero-current
line is on a circle of diameter Dmin = 87nm. As can be seen, increasing the magnetic
field also increases the Meissner currents, pushing the zero-current line toward the
center. At a given optimumfield a compensation is achieved between theMeissner and
vortices’ currents, which results in the minimum conductance Hmin. Contrary to what
would be observed for a Little–Parks ring [38], the minimum conductance obtained
at Hmin is significantly higher than the conductance at zero-field. This is due to the
“proximity” effect of the vortex core which provokes a gapless superconductivity and
also to the fact that the Meissner and vortex currents do not perfectly compensate.

Kinetic energy balance
Beyond the field Hmin, the Meissner currents dominate in the kinetic energy balance
and the energy starts to grow quadratically (but offset by the conductance atHmin) un-
til the normal state is achieved at the terminal critical field μ0Hc = 460mT. At Hc the
total flux of themagnetic field through the island isϕ = 2, 32ϕ0. Onemight think that
for such a flux the system should have accepted a second vortex before transiting to
the normal state, but it is not so. The delay between the number of vortices present in
the island and the magnetic flux is in fact quite common. Intuitively, we can see that
accepting a second vortex for ϕ = 2, 32ϕ0 would result in the formation of a zero-
current line very close to the edge, meaning that the kinetic energy would be domi-
nated by the vortex contribution. In this case the additional condensation energy cost
due to the second vortex core will not be compensated by the gain in kinetic energy.
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Fig. 3.9: (a) Tunneling spectra measured at the center of the island (point C on image c) depending
on the applied field. The spectra are shown in red in the Meissner phase and blue after the penetra-
tion of a vortex. (b) Spectra measured at the edge of the island (point E on image c) depending on
the applied field. (d) and (e) Evolution of the dI/dV tunneling spectra at the sample center (d) and
edge (e) with the magnetic field. dI/dV scale extends from 0 to 1.5 as in (a) and (b). (f) Zero-voltage
ZBC conductance depending on the field at the center (C) and the edge (E). The images g–h–i are
calculated with Usadel equations and reproduce the observations d–e–f [16].

In a bulk superconductor the critical field is given by μ0Hc2 = ϕ0
2πξ2 , for ξ = 45nm

the critical field would be μ0Hc2 = 150mT, as compared to the 460mT critical field
of the island. This clearly illustrates that nanostructuration has the effect of multiply-
ing the critical field by more than 3 for a given coherence length! However, as a bulk
superconductor presents a surface superconductivity until Hc3 = 1, 695Hc2, the third
critical field in bulk would be μ0Hc3 = 0.25 T, which remains well below the critical
field of the island. This amplification effect of the critical field is entirely consistent
with what was expected as early as in 1965 by D. Saint James [51].

Usadel simulations
It is possible to reproduce all the effects described above by simulating the systemwith
Usadel equations [57] in cylindrical geometry. Self-consistent calculations are shown
in Figure 3.9g–i. The agreement with experiment is relatively conclusive and validates
thephysical descriptiongivenabove. The simulationsweremadeby taking Tc = 6.5K,
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ξBulk = 80nm, ℎωD = 7.4meV, the only parameter left free being the mean free path.
The numerical simulations lead to l = 11nm, which corresponds to twice the thick-
ness of the island. This relationship between the mean free path and the thickness
was noticed by several teams working on Pb islands on Si(111) [15, 16, 42, 43, 45]. The
fact that the mean free path is generally twice the thickness of the islands suggests
that the interface between the island and the substrate is very diffusive. With such a
mean free path the effective coherence length is ξ = 45nmasmentioned above, which
corresponds to what was determined by studying vortex core profiles [16].

3.3.5 Confinement effect of supercurrents and surface superconductivity

After considering the limiting case of an island that cannot accept more than one vor-
tex, we will consider the case of a larger island that can contain a dozen vortices. As a
first approximation, in a sufficiently large island that accepts many vortices, the crit-
ical field should approach the third critical field Hc3 = 1.695 ϕ0

2πμ0ξ2 . The maximum
number of vortices in an island of diameterD should roughlymatch thenumber of flux
quantums through the sample at Hc3, hence the expected maximum number of vor-
tices is Nmax ≈ μ0πD2Hc3

4ϕ0
= 1.695 D2

8ξ2 . The coherence length depends on the mean free
path as ξ = 0.85√ξ0l. As experiments have shown that themean free path is generally
about twice the thickness h of the islands in Pb/Si(111), we get that themaximumnum-
ber of vortices according to the diameter and the thickness is typically Nmax ≈ D2

8ξ0h .
Thus, if one wants to reduce the confinement, one can increase the diameter, which
is pretty obvious, or reduce the thickness, which is quite counterintuitive.

For an island 250nm wide and 3nm thick as the one shown in Figure 3.10, tak-
ing ξ0 = ξBulkTcBulk/Tc = 113nm, and a mean free path l = 2h = 6nm, we obtain
an effective coherence length ξ = 21nm. For these dimensions one should obtain a
maximumnumber of vortices Nmax = 11. As seen in Figure 3.10, many vortices can en-
ter, but it is difficult to say exactly how many, because beyond four it is too difficult to
distinguish individual vortices due to vortex core overlap. However, it appears that at
island edges, on a width of the order of ξ , a thin rim remains clearly superconducting
(red-orange). This recalls the surface superconductivity predicted by Saint-James and
de Gennes [50]. While inside the island the vortices induce a normal state, the edge
is still superconducting. It is as if there was a vortex confinement effect forcing them
to go to the center of the island. By comparing the conductance maps at 300mT and
350mT, we clearly see that when increasing the magnetic field a group of three vor-
tices get much closer to the center of the island. This effect is again related to the com-
petition between the vortex currents andMeissner currents: when increasing the field,
the zero-current line which surrounds the three vortices is pushed inward, exerting a
kind of compressive force on the vortex. It is precisely that pressure force induced by
Meissner currents that can push so hard on the vortices that beyond a certain thresh-
old several vorticeswill eventually merge. In the caseof the island in Figure 3.10,when
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Fig. 3.10: Left: STM image of an island of a well-faceted Pb/Si(111). Right: zero-bias conductance
maps as a function of the magnetic fields showing different vortex configurations; superconductivity
appears in red, while the normal state appears in blue. The measured area is indicated by the dotted
lines in the left image.

increasing the field beyond 400mT, the system does not form a giant vortex because
instead a fourth vortex penetrates. However, it is quite obvious that by choosing an
island with a slightly smaller diameter, in which the confinement effects should be
stronger, it should be possible to cause several vortices to merge into a giant vortex.

3.3.6 Imaging of giant vortex cores

First attempts to evidence giant vortex states
Several attempts to evidence giant vortex stateswere conducted either bymagnetome-
trymeasurements [20, 24] or bymultitunnel junctionmeasurements [32]. Thesemeth-
ods probe if some magnetic transitions take place that could be interpreted as the
merger of several vortices into a giant vortex, but donot allowdirect imaging. Inpartic-
ular Moshchalkov et al. predicted that upon field cooling certain small superconduc-
tors could show a paramagnetic response instead of a diamagnetic one, the so-called
paramagnetic Meissner effect, attributable to the presence of a giant vortex [40]. An-
other approach based onmagnetic imaging via the Bitter decorationmethod, showed
the formation of dense clusters of vortices in samples subject to strong vortex pinning
[26]. The authors interpreted these results as the possible existence of giant vortices,
however a dense configuration of individual vortices is indistinguishable from a gi-
ant vortex because the spatial resolution of magnetic probes is limited to scales of the
order of λ, which is insufficient to observe a phenomenon that happens at the scale
of ξ in a type II superconductor. We will show in this section that the direct imaging
of vortex cores by scanning tunneling microscopy permits us to reveal without any
ambiguity the existence of giant vortices in strong type II nanoscale superconductors.

As noted previously the Meissner currents flowing at the edge of nanoislands
cause a strong confinement effect on the vortices. According to Ginzburg–Landau cal-
culations [8, 20, 22, 23, 40, 52, 53] it is expected that this pressure effect provokes the
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Fig. 3.11: Left: Combined STM topographic/spectroscopic image of Pb islands seven atomic layers
thick and a few hundred nanometers in diameter in a field of 0.8 T. The color corresponds to the
amount of states in the gap, as shown in the adjacent spectra. Under the effect of the magnetic field
the superconductivity (in red) is gradually destroyed, vortices (blue) appear in the islands. The small
island admits a single vortex, the medium island admits two vortices and the biggest one shows
a large normal area in the center of the island which could be a dense cluster of several vortices.
In the center, the tunnel conductance spectra show the density of states on the small island as a
function of the applied magnetic field. Right panel: conductance maps as a function of the applied
magnetic field from 0 T to 1.8 T [15].

merger of several vortices into a giant vortex (see Figure 3.1b). To observe this effect
the lateral dimensions should be of the order of several times the size of a vortex core
(D ∼ 5ξ in Figure 3.1b) so that the island can only accept a few vortices.

Pb/Si(111) strongly confined islands
In the experiment shown in Figure 3.11, three islands were measured together so as to
optimize the chances of finding an ideal configuration, but also to compare different
confinement regimes under the same experimental conditions. We will show that the
smallest island of the three displays some giant vortex states with L = 2 and L = 3.

The principle of this experiment is shown in the left panel of Figure 3.11. Tunnel
conductance spectra were measured for various magnetic fields for each point of the
sample. As the experimentwas conducted at 300mK the spectroscopic resolutionwas
excellent, but consequently it was no longer possible to image the effect of the Meiss-
ner currents in the zero-bias conductance maps because up to a field of 0.4 T the con-
ductance remained zero at the Fermi level (see spectra in Figure 3.11). To image the
effect of Meissner currents the spectroscopic maps were created by plotting the area
in the gap (gapped area). The colored lines in the spectra give the correspondence be-
tween the color on the maps and the spectra. With this method it was possible to map
very satisfactorily the distribution of Meissner currents as can be seen on the maps
made at 0.2 T and 0.4 T (maps in Figure 3.11, right panel).
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Fig. 3.12: Middle panel: conductance image of Nouf island of Figure 3.11 based on the field in the
Meissner phase (0.2 T), the phase with one vortex (0.6 T), the phase with a giant L = 2 vortex (1.0 T),
the phase with a giant L = 3 vortex (1.4 T) and the normal state at 1.8 T. Bottom panel: conduc-
tance as a function of the field along the section of the island shown in dashed lines. We distinguish
conductance jumps that indicate the successive entry of three vortices. Top panel: a simple vortex
profile L = 1, double giant vortex profile L = 2 and triple giant vortex profile L = 3, with an adjust-
ment, shown in red, which is described in the text [15].

Meissner current depairing effect
In a field of 0.2 T the edge of the islands appears in a red-orange color which indicates
the presence of strongMeissner currents. The largest of the islands, Nif, is the most af-
fected, as expected given that the superfluid velocity increases with radius: vθ ∝ rB.
In a field of 0.4 T the Meissner currents in the large island would have exceeded the
critical velocity if the island had not accepted a vortex. By contrast, the other two is-
lands are still in theMeissner phase but it is clearly visible at the edge of the Naf island
that the gap is almost closed (yellow-green) and therefore, for a slightly higher field
such as 0.6 T, this island would be forced to accept a vortex in order to compensate
the strong currents at the edge by counterpropagating vortex currents.

Strongly confined multivortex state
In a field of 0.6 T, the Nif island already admits two vortices, being wider than the
others. These vortices are extremely close together, their distance is d = 33nm, con-
sidering the estimated coherence length ξ = 30nm it leads to d = 1.1ξ . Such an
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intervortex distance is very small compared to the intervortex distance at the critical
field in a bulk sample, dBulk = 2.8ξ . This clearly shows that the very high pressure
induced by the Meissner currents pushes the vortices closer together than achievable
distances in bulk samples. So one could hope that for highermagnetic fields, 0.8 Tand
1.0 T, the Nif island would eventually accept a giant vortex. In the map of Figure 3.11
a large area in the normal state surrounded by a superconducting rim is observed,
which could suggest a giant vortex, though a more detailed study described in [15]
seems instead to point toward a dense vortex configuration forming a state close to
surface superconductivity.

Giant vortex state
The brightest giant vortex signatures were actually obtained in the smallest island
Nouf. On the detailed maps shown in Figure 3.12, for magnetic fields of 0.6 T, 1 T and
1.4 T, one can distinguish a round object in the center of the island, which can eas-
ily be attributed to a vortex. We see that this object appears to be wider when the field
increases. To obtainmore information on the structure of the vortex, we acquired spec-
tra on a section through the island (black dotted line on the map at 0.2 T). The zero-
voltage conductance as a function of field along this section is shown in the bottom
of Figure 3.12. One can distinguish several regimes separated by discontinuities in the
conductance, starting with the Meissner phase (L = 0), followed by the penetration
of a single vortex (L = 1), then according to the conductance jump a second vortex
penetrates a little before 1.0 T (L = 2) and finally a third vortex seems to penetrate at
1.3 T (L = 3). However, one can only distinguish a single vortex in the map at 1.0 T
where one should see two vortices; and at 1.4 T where we expect three vortices a sin-
gle round object appears in the map. To better understand what type of object it could
be one can focus on a cut of the ZBC through these vortices as shown in the top curves
of Figure 3.12. It appears that the vortex cuts for L = 1, L = 2 and L = 3 are very
different. The first is entirely consistent with that of an Abrikosov vortex with a linear
dependence of the conductance in the core (except in the center, r ≪ ξ , where we
find a parabolic profile). The case L = 2 is very different because it instead shows a
parabolic shape and the case L = 3 is even more flared. These three conductance pro-

files were adjusted by the empirical curve ZBC (r) ∝ 1 − ( r
√Lξeff

)L with a single fitting
parameter for the three curves (red curves in Figure 3.12) [15]. The adjustment shows a
rL dependence of the conductance, which is in good agreement with the dependence
rL of the order parameter predicted by Saint-James in 1969 [52]. However, we must re-
main cautious as there is no direct link between the tunnel conductance and the order
parameter. Further calculations with Usadel formalism should be conducted to con-
firm that the structures we observed are consistent with the theory for a giant vortex
with vorticity L = 2 and L = 3.
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3.4 Proximity Josephson vortices

3.4.1 Proximity effect

When a normal metal (N) and a superconductor (S) are put in contact their electronic
properties near their interface are changed by the proximity effect. The spreading of
Cooper pairs in the normalmetal induces some superconducting correlations in it that
manifest by an induced gap in the density of states and the ability to pass an electric
current without dissipation through the normalmetal. Very recently, the proximity ef-
fect has attracted attention from the surface physics community. It has indeed been
demonstrated that in situ elaboration of superconducting nanostructures combined
with tunneling microscopy/spectroscopy allows the proximity effect to be studied at
a very high spatial resolution, providing new insight into this fundamental quantum
phenomenon. In the following, after a few general explanations on the proximity ef-
fect, we will show some recent advances in this subject that have been established
by the study of nanoscale superconducting-normal-superconducting Josephson junc-
tions. We will show that with the help of the proximity effect it is possible to generate
proximity Josephson vortices in a normal metal.

We will focus primarily on the proximity effect between a superconductor and a
diffusive metal. One of the main signatures of the proximity effect is manifested by
a change of the local density of states (LDOS) which can be directly measured at the
nanoscale using scanning tunneling spectroscopy. The first tunneling measurements
of the proximity effect begun in the 1960s using planar tunnel junctions formed by
thin oxide barriers. These measures evidenced some spectral properties related to the
proximity effect, but they could not probe the spatial aspects of the phenomenon. In
the 1990s, Guéron et al. [27] were able tomake nanotunnel junctions along a wire con-
nected to a normal superconductor and tomeasure the local DOS at different distances
from the SN interface; this was the first spatially resolved experimental study of the
proximity effect. To improve the spatial resolution of tunneling experiments, different
groups have used scanning tunneling microscopy/spectroscopy [21, 36, 41, 58, 60].
The first studies focused on ex situ fabricated nanostructures that posed serious tech-
nical problems for STM/STS,mainly due to surface contamination. Thus, the first spa-
tially resolved STM experiments of the proximity effect [58] have been carried out on
Nb-Au hybrid systems in order to profit from the chemical stability of Au in air. Here
we will show how this experimental limitation was recently overcome by borrowing
the methods of surface physics to develop hybrid superconducting nanostructures by
self-organization under an ultrahigh vacuum. When developing hybrid structures in
the same ultrahigh vacuum environment as the STM, the effect of surface pollution is
greatly minimized. This helped researchers to probe the in situ proximity effect by STS
experiments with high spatial and energy resolution [12, 33, 49, 54, 55]. In the follow-
ing, we describe some recent experiments on hybrid SNS systems grown in situ which
solved the longstanding problem of the internal structure of Josephson vortices.
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3.4.2 Andreev reflection

In the modern view of the proximity effect, which emerged in the 1990s [34, 46], this
phenomenon is closely linked to the notion of the Andreev reflection [6]. The Andreev
reflection is a process in which an electron coming from N with an energy E (mea-
sured from the Fermi energy) is converted into a reflected hole of energy −E, thereby
transferring a zero-energy Cooper pair to the electrode S. Alternatively, theAndreev re-
flection can be seen as the process by which a Cooper pair passes into N and becomes
an electron pair, the two electrons being in states equivalent by time-reversal. This
process governs the transfer of charge in an SN junction for energies below the super-
conducting gap of the S electrode, which are the relevant energies for the proximity
effect. The two electronic states equivalent by time-reversal involved in the Andreev
reflection diffuse into the normal metal and preserve their coherence over a distance
LE = √ℎDN/E [28]. This length comes from the following process: because the dif-
ference in energy between the electron and hole states is 2E, the relative amplitude
of these two states becomes out-of-phase by a factor exp (−2iEt/ℎ) as the pair prop-
agates through the normal metal, where t is the time elapsed since the pair left the
superconductor. A phase shift of order 1 is obtained for t ≈ ℎ/E. For such time the
electrons diffuse over a distance of the order of LE = √DNt = √ℎDN/E, where DN
is the diffusion constant in the normal metal. Thus, LE = √ℎDN/E is the coherence
length, i.e., the length over which the pair correlations decrease in the normal metal
for the characteristic energy E. Therefore, the coherent propagation in N of two states
with energy |E| = ∆ will expand on a scale of characteristic length ξN = √ℎDN/∆, the
normal coherence length. To conclude this discussion, we introduce another relevant
energy scale in diffusive metals, namely the Thouless energy ETh = ℎDN/L2. To this
end, we consider an SNS junction where the normal region has a length L. From our
discussion above, it is clear that, at a given energy E, the superconducting correlations
will extend through the wire as long as L < LE, or equivalently, as long as E < ETh. In
other words, at a given distance L, only electrons having energies below the Thouless
energy still present pair correlations.

3.4.3 Proximity effect in diffusive SNS junctions

In the normal part N of a diffusive SNS junction we expect to see some very peculiar
features induced in the LDOS by the proximity effect. Figure 3.13a shows some cal-
culations, with Usadel Theory, of the spatial variation of the LDOS in the case of an
N bridge of length L = 4ξ (where ξN = √ℎDN/∆), connected to the S electrodes by
perfect interfaces at both ends. As shown in Figure 3.13a, the most notable feature
is the appearance of a minigap ∆g < ∆, which remains constant along the N region.
This minigap gradually decreases as the length of the N bridge increases, as seen in
Figure 3.13b. In the long junction limit, L > ξN (or ETh < ∆), the minigap for fully

Unauthenticated
Download Date | 10/10/17 9:41 AM



120 | 3 STM studies of vortex cores in strongly confined nanoscale superconductors

Fig. 3.13: (a) LDOS within the portion N of an SNS junction of a diffusive N bridge of length L = 4ξ
calculated in the framework of Usadel theory. Note the appearance of a constant width minigap
through N. (b) LDOS in the middle of an SNS junction as a function of energy for different lengths of
the wire N, L = 0 − 5ξ [18].

transparent interfaces is simply given by ∆g ≈ 3, 1ETh. The appearance of a minigap
in the junctions is a neat signature showing that some superconducting correlations
propagate through the N bridge. As a consequence, the junction will be able to carry
a supercurrent throughout the N part, and the SNS junctions will thus behave as a
Josephson junction.

Using the system Pb/Si(111) it was possible to create local nanoscale Josephson
junctions. They were obtained by adjusting the growth conditions so as to get islands
sufficiently close to each other in order to form lateral SNS junctions with a normal
part of width L comparable to a few ξN. As explained above the Pb/Si(111) system is
characterizedby thegrowthof flatPb islands after the completionof a Pbwetting layer.
The amorphous Pbwetting layer behaves as aweak link between two superconducting
reservoirs formed by the adjacent islands. This geometry is similar to the SNS case
discussed above. The geometry (Figure 3.14) allows experimental study of theminigap
predicted in the N part of a S–N–S Josephson junction (Fig. 13a, b).

Figure 3.14 shows the case of two close superconducting Pb islands coupled to-
gether via the amorphous Pb wetting layer which is a strongly correlated diffusive
metal. The SNS system is manifested by strong superconducting correlations induced
in the N part as the zero-bias conductancemap of Figure 3.14b shows. Clearly, a super-
conducting link forms between the two islands that appears as a zero-conductance
region around the Fermi level (in brown). This zero conductance in the N part of the
SNS junction is due to the presence of a minigap as shown in Figure 3.14c. The spa-
tial dependency of the conductance spectra across the junction shows that in the N
part there is a minigap of constant width of about 0.15meV. By contrast, the super-
conducting islands located on either side of the N bridge present a much larger BCS
gap of about 1.1meV. This experiment thus provides a spatial representation of su-
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Fig. 3.14: (a) STM topography image showing two superconducting Pb islands (in white) separated
by about 50 nm and connected via a normal amorphous Pb wetting layer (brown). (b) Zero-bias con-
ductance image in color superposed on the topography in 3D showing the formation of a Joseph-
son link (brown) in the SNS junction. (c) Cut of the LDOS through the SNS junction. A minigap of
0.15 meV appearing in blue is visible in the N region (0 to 43 nm), while the superconducting elec-
trodes have a larger BCS gap of 1.1 meV.

perconducting correlations in a Josephson junction which is entirely consistent with
what Usadel theory predicts for the SNS geometry in diffusive limit.

3.4.4 Josephson vortices in S−N−S junctions

As some superconducting correlations are induced in the N part of an SNS Joseph-
son junction, one could expect that the metallic region will acquire some properties
of superconductors. For instance, such an SNS junction can sustain supercurrents
that flow through the N bridge. Another salient feature of superconductors is their
response to a magnetic field and in particular the formation of Abrikosov vortices in
type II superconductors. Then, a question that naturally arises is if the N part of an
SNS junction will also accept vortices and if yes, what structure will they have? It is
well known that the critical current of large Josephson junctions ismodulatedwith the
magnetic field and follows a Fraunhofer pattern [14, 61]. This modulation was inter-
preted asbeingattributable to thepenetrationof Josephsonvortices into the junctions.
In order to gain some insight into the nature of these vortices, Cuevas&Bergeret per-
formed somecalculationsof theLDOSof anSNS junction in thepresenceof amagnetic
field with the help of the quasiclassical Usadel formalism [9, 17]. On the basis of the
Cuevas& Bergeret model, Figure 3.15a shows how the LDOS at the Fermi level varies
spatially within an SNS junction for length L = 4ξ and widthW = 4L and a magnetic
flux ϕ = μ0HLW = 2ϕ0 through the N part. The first thing to notice is that, as ex-
pected, the LDOS is strongly modulated by the magnetic field. In particular, it seems
that in the middle of the junction (x = L/2) there are areas where the superconducting
proximity effect is completely suppressed (point C inFigure 3.15a). Asdemonstratedby
Cuevas& Bergeret, this is the signature of the appearance of a Josephson vortex in the
middle of the normal wire. They exhibit real vortex cores in which the superconduct-
ing correlations are suppressed, similarly to the suppression of the superconducting
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Fig. 3.15: Josephson vortex cores: local density
of states and generating principle by currents.
(a) LDOS at the Fermi level calculated by the Us-
adel approach for an SNS junction (L = 72 nm,
W = 288 nm) subjected to a magnetic field of
200 mT. Note the appearance of two Josephson
vortices. (b) Josephson vortices generated in an
SNS junction by the presence of current in the
S electrodes but in the absence of a magnetic
field.(c) As previously, but with the current in a
single superconducting electrode [49].

order parameter in Abrikosov vortex cores. These cores, where the LDOS is the one
of normal state, are separated by regions where the minigap appears and where the
spectrum is similar to the one observed in the absence of a magnetic field (point E in
Figure 3.15a).

As shown in the next section, Josephson vortices are induced by a shear of the
gauge invariant phase difference between the two superconducting electrodes. The
magnetic field helps to generate such a shear, but it is not necessary. In fact, a super-
current in the superconducting electrodes also generates a gradient of phase of the
order parameter. If two currents flow in opposite directions, as shown in Figure 3.15b,
some Josephson vortices will form in the junction under the shearing effect of the
phase difference. If the current passes only through one of the two electrodes there
are still some Josephson vortices in the junction, but they move close to the electrode
where a supercurrent is flowing. Hence, it might be possible to generate proximity vor-
tices without a magnetic field.

3.4.5 Imaging of Josephson proximity vortices

To verify the existence and ultimately determine the basic properties of the proximity
Josephson vortices, we used a network of superconducting Pb islands connected by
the Pbwetting layer (Figure 3.16) [49]. Eachpair of islands forms an SNS junction; sev-
eral of these SNS junctions are shown in Figure 3.16. These junctions were character-
ized by STM/STS in the absence and in the presence of a magnetic field. Figure 3.16a
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shows a conductance map at zero bias in the absence of a magnetic field. It can be
seen clearly that: (i) the Pb islands are superconductors (they have zero conductance
at V = 0mV due to the superconducting gap), (ii) the superconductivity is induced
in the regions between the neighboring islands (lower conductance at zero voltage),
and (iii) the remote area of the islands is in the normal state (the conductance is much
higher and corresponds to the conductance of the wetting layer in the normal state).

Figure 3.16c shows conductance spectra acquired at three different locations (A,
B and C) in the SNS junction named J1, see Figure 3.16a. As can be seen, the spec-
tra are very similar and they all have a minigap, in agreement with the results dis-
cussed in the previous section. The situation changes when an external magnetic field
is applied perpendicularly to the plane of the wetting layer. Figure 3.16b shows a zero-
bias conductance of the sample acquired at 60mT. Thismap shows the appearance of
Abrikosov vortices in the Pb islands, but, more importantly, the tunnel conductance

Fig. 3.16: Imaging of proximity Josephson vortices. (a) Zero-bias conductance image in zero field.
The proximity effect appears as a blue halo around the superconducting lead islands. SNS Joseph-
son junctions are formed in between the islands (dark blue). (b) In the presence of a 60 mT field,
the proximity effect becomes spatially modulated in the SNS junctions, especially in the J1 junction
which accepts a Josephson vortex in its center. (c) Conductance spectra showing a homogeneous
minigap in three locations (A, B, C) of the junction J1 in zero field.(d) Spectra taken at the same lo-
cation as in (c) in a field of 60 mT, the spectra measured in A and C are unchanged while spectrum B
shows a LDOS representative of normal state, this is the signature of a proximity vortex core [49].
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Fig. 3.17: Josephson vortex penetration at 0, 120 and 180 mT. Zero-bias conductance maps in color
superimposed on 3D topography showing the superconducting gapped area in red and normal in
dark blue. The measurement area corresponds to the gray rectangle in Figure 3.16. From left to right
the field rises from 0 mT to 120 mT and 180 mT. We see a first vortex in the two junctions at 120 mT
and then two vortices in each junction at 180 mT.

inside the N regions of the SNS junctions is spatially modulated along the transverse
direction. This effect is particularly clear in the junction J1. We now analyze the con-
ductance spectra acquired in the three areas A, B and C that are shown in Figure 3.16d.
While spectra A and C show a proximity minigap very similar to the one acquired in
zero magnetic field, spectrum B does not show any sign of a proximity effect; rather it
reflects the spectrum of the wetting layer in the normal state. Note here that the nor-
mal state spectrum exhibits a small depletion at the Fermi level that has nothing to
do with a minigap, it is in fact an Altshuler–Aronov zero-bias anomaly due to strong
Coulombian correlations in the strongly diffusivewetting layer [5, 37]. Themodulation
of theminigap observed inside the SNS junctions is precisely the signature of the prox-
imity Josephson vortices, as described in the previous section. The disappearance of
the minigap is the signature of the presence of a vortex core there [49].

The proximity Josephson vortices canbe seenmore clearly in a zoom-in of the four
islands forming the junctions J2, J3, J4 as indicated by the gray square in Figure 3.16b.
To see the connection between the structure of the SNS junctions and the Josephson
vortices we represented the conductance in color superimposed on the 3D topography
as shown in Figure 3.17. This figure shows the junctions in three different magnetic
fields: 0 T, 120mT and 180mT. The red color corresponds to zero conductance, i.e., a
superconducting gap, while the blue-green color corresponds to a high conductance,
that of the normal state. Josephson links appear clearly in zero field as zero conduc-
tance regions. In the presence of a magnetic field one can see that Abrikosov vortices
appear in the islands and that Josephson vortices also appear in the junctions. The
junctions J2 and J3 both admit a vortex at 120mT, while by increasing the magnetic
field at 180mT both junctions admit two vortices. In Figure 3.17 we can see that the
minigap disappeared in the center of junction J2 at 120mT but it reappears at 180mT.
This behavior is expected due to the penetration of additional Josephson vortices in
the junction.
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3.4.6 Interpretation of the vortex structure

Shear of the phase difference
The structure of the Josephson vortex and the corresponding modulation of the local
DOS are easy to understand within the limits of a wide junction (W ≫ L). In this case,
as we will show below, the role of the magnetic field is to change the superconducting
phase difference ϕ between the two adjacent S electrodes. More importantly, we can
show that, within that limit, the vortex cores located in the middle of the N junction
form a linear array. The vortex cores appear at points such as ϕ = π, ±3π, ±5π where
the minigap disappears due to an interference effect [36]. In addition, the minigap is
fully recovered when ϕ is a multiple of 2π. Since the magnetic field induces a shear of
the gauge invariant phase difference a series of Josephson vortices forms in the junc-
tion (see Figures 3.15 and 3.18).

Simulations with an extended Ginzburg–Landau Model
In order to show that a shearing effect of the phase difference causes Josephson
vortices, we conducted phenomenological simulations, using a model based on the
Ginzburg–Landau approach, to simulate the experimentally observed vortex config-
urations. The model reproduces the observations very accurately, as shown in Fig-
ures 3.19c and 3.20. Note that the model uses no adjustable parameter which makes
the agreement between the model and the experiments quite robust. The purpose of
these simulations is to illustrate that the Josephson vortices are induced by quantum
interferences between the condensates of each superconducting island. Specifically,
they show that the structure and position of the Josephson vortices are entirely de-
termined by the phase portrait of the superconducting order parameter at the edges
of the islands to which are added two constraints: minimizing the kinetic energy of
supercurrents and current conservation (current flow into an island is zero).

The basic idea of the model is to calculate the Ginzburg–Landau order parameter
in the Pb islands, taking into account their complex shapes and depletions to repro-
duce the observed Abrikosov vortex configurations. In these calculations the islands

Fig. 3.18: Schematic diagram of a Josephson vortex. When the phase difference across the junction
is (2n + 1) π the minigap is destroyed by an interference effect. This gives rise to the formation of
a vortex core in the center of the junction. The superconducting phase turns by 2π around the core;
this is associated with a flow of supercurrent around the vortex.
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are totally disjoint and uncoupled, but all calculations are done with the symmetri-
cal gauge A = 1

2B × r, where r is placed in the center of the image. This gives rel-
atively complex phase portraits as seen in Figure 3.19b. In this model the observed
Josephson vortex configurations can be reproduced by considering only interferences
of superconducting evanescent waves taking into account an invariant phase differ-
ence φ∗ = φ (r2) − φ (r1) − 2e

ℎ ∫r2
r1
Adl, where φ (ri) are the local phases of the order

parameter on both sides of the island at positions ri. The general idea is that for two
opposite edges with φ∗ equal to 0, ±2π, ±4π, ±6π,. . . the superconducting correla-
tions induced by nearby islands are in phase and result in constructive interference
that result in a proximity minigap (see Figure 3.18). In contrast, in places where φ∗

is equal to ±π, ±3π, ±5π,. . . superconducting correlations interfere destructively, and
the proximity gap is destroyed,which gives rise to Josephson vortex cores (Figure 3.18).

The implementation of the model is as follows. Once the phase portrait of each
island is known, one considers evanescent waves over a distance ξN starting from
each point ri located on islands. These phenomenological evanescent waves repre-
sent the superconducting correlations in the proximity area. Each partial correlation
contributes to the amplitude of the superconducting correlationmap ϕ (r). All partial
waves interfere in r according to their relative amplitude and gauge invariant phase
difference:

ϕ (r) ∝ ∑
i
∫
Ci

e−
|r−ri |
2ξ eiφ∗(r,ri)dl

whereφ∗ (r, ri) = φ (ri)+ 2e
ℎ ∫riri Adl. The phaseφ (ri) is taken on the edge of the island

i. The local magnitude of ϕ (r) correlations is thus given by the sum of the evanescent
waves on Ci circuits around each island indexed by i. It should be noted that each
phase portrait φ (ri) is defined up to an arbitrary offset αi : φ (ri) = φGL (ri) + αi.

Since in this model the phase of each island edge is set to an arbitrary global
phase, one has to determine (N− 1) phase differences for N islands. Tomake themodel
fully self-consistent, the phases were fixed so as to cancel the currents in-between the
islands (Figure 3.19c, d) which generally gives two possibilities. To distinguish these
two possibilities the model opts for the phase that minimizes the kinetic energy of su-
percurrents in the junction (Figure 3.19e). The comparison between this model with-
out any adjustable parameter and the experiments is very good as can be seen in Fig-
ure 3.20.

Proximity versus Abrikosov vortices
Proximity Josephson vortices are not perfectly identical to Abrikosov vortices for sev-
eral reasons. For example, Abrikosov vortex cores are generally round (when they
do not overlap too much) and their radius is given by the coherence length ξ , while
Josephson vortices may have shapes and sizes depending on the geometry of the
junction. For a very long junction (L ≫ ξ ) Josephson vortices should be extremely
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Fig. 3.19: Simulation method of Josephson vortex cores. (a) Module of Ginzburg–Landau order pa-
rameter of the islands in a 60 mT field. (b) Phase portrait of the order parameter. (c) Calculated su-
perconducting correlations reproducing the experimental configuration of Figure 3.16b. (d) The cur-
rent flow between two islands as a function of the global phase difference (for each junction the flow
is calculated through the segments shown in (c)). (e) Kinetic energy of supercurrents as a function of
the global phase difference [49].

elongated. Moreover, Josephson vortices form a line in the middle of junctions while
Abrikosov vortices form a 2D network. Finally, in the cases we studied, the Ginzburg–
Landau simulations clearly show that we can calculate the phase portrait for separate
islands regardless of the back-effect of the junctions and reach an excellent agreement
with the measurements. This means that superconducting correlations in the wetting
layer do not influence the phase portrait in the islands, but only set the overall phase
difference between the islands. Thus, the Josephson vortices are totally constrained
by what happens in the S electrodes and do not seem able to exert a back-action on is-
lands other than to adjust an overall phase difference; they are sort of passive objects.
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Fig. 3.20: (a) and (b): Conductance maps at the Fermi level at 120 mT and 180 mT showing the ap-
pearance of multiple Josephson vortices. The images in (c) and (d) are numerical simulations of
the spatial variations of superconducting correlations; the Abrikosov and Josephson vortex config-
urations are calculated with the fully self-consistent model described in the text. A good general
agreement is observed [49].

Finally, the Josephson vortices havemanydifferent properties fromAbrikosov vortices
making them unique quantum objects, not to mention the fact that they appear in a
nonsuperconducting material!

3.5 Conclusion

In this chapter we explored different kinds of vortex confinement in nanoscale su-
perconductors. We have shown that in the limit of samples with a lateral size much
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shorter than the penetration depth the vortices could no longer be considered flux
bundles but instead they have to be seen as a singularity in the phase field, as is the
case for other superfluids such as superfluid helium or quantum condensates of cold
atoms. In this limit, the vortex physics can be understood as a competition between
the kinetic energy, which depends on both vortex and Meissner currents, and the loss
of condensation energy associated with the formation of vortex cores. We explored a
strong confinement regimewhere the coherence length, which gives the typical size of
the vortex core, was comparable to the size of the system. In this limit, we found that
the vortices are strongly confined by Meissner currents. We showed that in strongly
confined systems, because of the pressure induced by Meissner currents, several vor-
tices could merge to form a giant vortex state. In addition to this new type of vortex,
we showed that a normal metal could also exhibit vortex cores due to the proximity
effect. The proximity Josephson vortices observed inside SNS junctions are induced by
a shear in the relative phase of the two superconducting electrodes. A magnetic field
was used to generate the phase shear, but a supercurrent in the superconducting elec-
trodes could also generate a phase gradient. Hence, it might be possible to generate
proximity vortices without a magnetic field. This could be a good trick for elaborating
nanoscale quantum-electronic devices based on vortex manipulation. For instance,
proximity vortices induced in surface states of topological insulators should exhibit
a Majorana zero energy bound state in their vortex core. It would then be possible to
braid the Majorana vortex core states by applying some current in the nearby S elec-
trodes and pave the way towards quantum computing.
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